FP7-1CT-2011-7

288094 - eCOMPASS

eCO-friendly urban Multi-modal route PIAnning Services for mobile uSers

FP7 - Information and Communication Technologies

Grant Agreement No: 288094
Collaborative Project

Project start: 1 November 2011, Duration: 36 months

D4.3 - Semantic content repository and web-based

Workpackage:

Due date of deliverable:
Actual submission date:
Responsible Partner:
Contributing Partners:

Nature:

Dissemination Level:
PU: Public

registration tool

WP4 - Content Gateway Module
30 April 2013

26 April 2013

CERTH

CERTH, PTV

L] Report [X] Prototype [| Demonstrator [Other

O rpr: Restricted to other programme participants (including the Commission Services)

[0 RE: Restricted to a group specified by the consortium (including the Commission Services)

O co: Confidential, only for members of the consortium (including the Commission Services)

Keyword List: Service providers, Web Services (SOAP, REST), Automatic Web Service
Categorisation, Service Invocation, Service Integration, Semantics.

SEVENTH FRAMEWORK
FROGEAN MY

The eCOMPASS project (www.ecompass-project.eu) is funded by the
European Commission, DG CONNECT (Communications Networks,
Content and Technology Directorate General), Unit H.5 - Smart Cities
& Sustainability, under the FP7 Programme

D4.3: Page 1 of 54

FP7-1CT-2011-7

The eCOMPASS Consortium

Computer Technology Institute & Press “Diophantus”
(CTI) (coordinator), Greece

CTl

'DIOPHANTUS"

Centre for Research and Technology Hellas (CERTH),
Greece

m . Eidgenossische Technische Hochschule Ziirich (ETHZ),
Ziirich Switzerland

:\! (I I Karlsruher Institut fuer Technologie (KIT), Germany

Karisruksr Institut or Tochnokagia

3 TOMTOM INTERNATIONAL BV (TOMTOM),
To mTo m L2 Netherlands

€1X{Ol0|& PTV PLANUNG TRANSPORT VERKEHR AG. (PTV),

Germany
the mind of movement

288094 - eCOMPASS

D4.3: Page 2 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

Document history

Version Date Status Modifications made by
0.1 13.03.2013 First draft D. Kehagias
0.2 21.03.2013 ToC finalized D. Kehagias, F. Krietsch
0.3 15.04.2013 An example of use was added | D. Kehagias,
about SOAP services (6.1)
0.4 23.04.2013 An example of use was added | F. Krietsch
about REST services (6.2)
0.5 24.04.2013 First draft version of the D. Kehagias, F. Krietsch

document, integrating input
from contributors

0.6 25.04.2013 Draft sent to reviewers D. Kehagias
0.7 26.04.2013 Final version incorporating D. Kehagias
Reviewers’ Comments
1.0 26.04.2013 Final version approved by the
PCB

Deliverable manager
* Dionisis Kehagias (CERTH)

List of Contributors
* Dionisis Kehagias (CERTH)
* Florian Krietsch (PTV)

List of Evaluators
* Spyros Kontogiannis (CTI)
= Julian Dibbelt (KIT)

Summary

This deliverable describes the Web-service registration tool as well as the underlying
Semantic Content Repository, which comprise a significant part of the Content Gateway
Module intended for potential service providers. The purpose of the web-service registration
tool is to facilitate the integration into eCOMPASS of such web services provided by third
party service providers. Examples of those services include POI services and Weather
information services among others. Thus, this tool enables integration of the corresponding
content that is necessary for the pilots, and is freely available by service providers outside
the eCOMPASS consortium. The web-service registration tool provides a web interface for
those service providers who are willing to register their services, making them accessible in
the eCOMPASS context. In the case of SOAP, as well as RESTful web services for which a
WADL description is available, the tool automatically identifies the domain that a service
belongs to and matches its input and output parameters with the ones provided by the
Content Gateway Module communication interface. This report outlines the implementation
details of the Web-service registration tool and the Semantic Content Repository, and
provides a few examples of use.

D4.3: Page 3 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

Table of Contents

I 112 ¢ o 1 Tl 5 (03 OO 6
11 GENETAL ..t 6

1.2 Task 4.3 PUrpose and SCOPEoceiririeueiririeiciririeetireeeeeeee et 6

1.3 Structure of Deliverable ... 6

2 Semantic Content RepoSitoryiiiiininininininninninnininnininiensisiss 8
201 ATCRIEECEUTE ...ttt 8

2.2 Underlying Database Structurecccccccuiuiuiiiiiiiiiiiiiiicccceas 9

221 Table FeautureInfoPTOUIACYSccoceoeeereeueuirinieieiineeieeeneee et 11

222 Table FUuelCostPrOUIAETS.........ccceeuveeueueeereeieiiieieieestreeseeeeee et eeenes 12

223 Table GetAccidentSPrOUIACTS.cocieereeueuieieieieeeireeeeeeeee et 13

224 Table GetPredictedTrafficPrOVIAErs..........c.cooevueueeeireeeeieeneeeeireeeeeeee e 14

225 Table GetRoadworkSPIOUVIAEYS.........c.cceuveeueuecieeeieieirieiceeneeeeeseeee et 15

22.6 Table GetTraffiCPrOVIAEYS.......c.ccouvueueuieireeieiiieeeetreeeeeeee et 16

2.2.7 Table LowestFuelCoStPIOUIARTS.c.coureeueuereeeereinireereeieeeieeereese e eenenes 18

2.2.8 Table MapProviders..........iiiiiiiciciciciiciccccssss 19

2.2.9 Table PoiProviders............ccocviiioininiiiiiiiiiiinieeiseeeieeessene e 19

2.210 Table PoiTypesProviders ...t 20

2211 Table PtGetNextStopProvidersccocivviiiicininiiiiiniiciinieeeiseeeeenes 21

2212 Table PtGetTripProviders..........ccviiciviiiiuiiiniiiiiiniiciinicieccieeeeseene e 23

2.213 Table PtLookupStopsProviders............ccoeiviviiuiicininiiiiiniiiecinieieeieienecnnnes 23

2.2.14 Table PtNearbyTransitStopsSProviders.............ccvviiviviiiicinineiiiniicienines 24

2.215 Table PtStopTimetableProvidersc.ccccviiicininiiiiniieiiniieeiienecnnenes 25

2216 Table RoadConditionSProviderscccccoveiicininiiiiniiniiiiniieeiniinecennes 26

2217 Table SelectedProvidercccoviiciniiiiiiiiniiiiiiniiiiiieceeeeee e 27

2.2.18 Table WeatherForecastProviders ... 27

2219 Table WeatherProviders.............cccoeeieiviviiiiiniiiiiiniiciieeeieeeiene e 28

23 Implementation Details.........cccocooeoimiiiiiniiiiiccc e 29

3 Web Registration TOOL.......inininnininniininiininninniensinniesesissenisiesesss 30
3.1 SOAP SEIVICESooviiiiiiiiiiiiicicicic e 30

3.2 ReSHUL SEIVICES.......ccuivimiiiiiiiiiiiciiicc e 34

4 Web Service Categorization MechaniSmccccvnirennnennneseniesnnsesesscsessesenns 36
41 Domain ClassifiCationccccccciviiiiiiiiiiiiiiiiiiiiee e 36

411 Data Pre-processing and Preparationccccoeeiviviiicniniicinncicinnnes 36

41.2 Reduction of the Feature Space Dimensionccccoevevveenieinieenccnncncnnee 38

41.3 Building the Classifier............ccccoeiiiiiiiiiiiiiiice 39

4.2 Operation ClassifiCation.........cccoecerieirieinieiiniiinieiccceeeeee e 40

43 Input/Output Matchmaking............cccccoviiiiiiniiiiiiniiiiiciccceces 41

44 Preliminary Experimental Evaluationccccccoviiiiniiniiiniiiiiiiiccns 45

4.5 Future EXteNSIONScccccviiiiiiiiiiiiiiiic s 47

5 Web Service Registration Tool: Examples of Use.........cceceevurerenrirernircrenncsesnenenes 48
51 An Example of a SOAP Web Service about Weather Information......................... 48

5.2 Registration of a Fleet Management Service............cccccccvvviiiininiinnniiniiicinnes 50

D4.3: Page 4 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

6 Summary and ConcluSIiONS.......ueeiiciiiriniintiiiniinsiiniisesissssessssssenes 52

References

D4.3: Page 5 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

1 Introduction

1.1 General

The Content Gateway Module (CGM) of eCOMPASS is a key component of the overall
eCOMPASS architecture. The main role of CGM is to respond to each query with the
appropriate content. On top of this, CGM is responsible for enabling interoperability with
external services and information resources that are required by other integrated
eCOMPASS components. For this purpose, a set of components and tools are developed
within WP4 in order to facilitate the integration of external web services (WS) and data
resources, provided by e.g. local providers. These include the Data Communication
Interfaces (developed in Task 4.1), the Information Querying and Data Delivery Mechanisms
(developed in Task 4.2) and the Semantic Content Repository and Registration Tool
(developed in Task 4.3). Also, appropriate Data Trust and Security mechanisms are foreseen
(Task 4.4) in order to safeguard the data exchange between the external data providers and
the requesting parties through the CGM. This deliverable describes the Semantic Content
Repository and Registration Tool whose purpose is to allow external Service Providers (SP),
as well as data providers who make data available through WSs, to register their services in
an open and interoperable way into the eCOMPASS context of use. More specific details on
Task 4.3 are provided in what follows.

1.2 Task 4.3 Purpose and Scope

The purpose of Task 4.3 is to develop all the software components that are required for the
implementation of the Semantic Content Repository (SCR) and the Web Registration Tool (WRT).
The latter comprises a web interface that guides the interested SP to all appropriate steps for
completing the registration process. The interface supports both REST and SOAP WS
protocols, whereas it provides automatic categorization capabilities only for SOAP services,
as well as for REST service, which are accompanied with a machine understandable
document that describes the WS operations and their input/output parameters.

In addition to web interfaces represented by the WRT, the SCR provides the underpinning
technical infrastructure for realizing the functionality of WS registration and in particular for
meeting the technical needs for storing information about all registered SPs, as well as their
services, and for facilitating their invocation. Such information is related to the technical
characteristics of the WS, such as its physical location of the WS (i.e. its URI), but also
includes semantic information (i.e., metadata) for facilitating the various “matches” between
the newly registered services and the Common Data Interfaces that are supported by the
CGM. The SCR provides all underpinning mechanisms and components for facilitating the
process of WS registration thus enabling smooth service invocation and execution by the
appropriate CGM mechanisms.

This deliverable describes the major outcome of Task 4.3., which is the development of the
SCR and WRT. It serves both as a scientific reference for the technical details that describe
the functionalities supported by the underlying SCR mechanisms, as well as a reference
manual for using the functionalities offered by the WRT.

1.3 Structure of Deliverable

The rest of this deliverable is structured as follows.
e Section 2 contains a description of the Semantic Content Repository architecture as
part of the Content Gateway Module and describes the structure of the database that
was designed for hosting information about the registered WSs.

D4.3: Page 6 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

e Section 3 provides documentation about the functionalities supported by the Web
Registration Tool user interface.

e Section 4 describes the technical details of the automatic Web Service Categorisation
mechanism and its key components and reveals its underlying technical details and
the algorithmic approach that was adopted.

e Section 5 presents some examples of use of the Web Registration Tool.

e Section 6 summarises and concludes the deliverable.

D4.3: Page 7 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

2 Semantic Content Repository

This section describes the underpinning technical infrastructure of the WRT, namely the
Semantic Content Repository, whose purpose is to host all information that is provided by any
interested SP who are willing to register their services, so that it will become visible and thus
callable within the eCOMPASS framework. This section begins by outlining the various
components involved in the WS registration functionality, from an architectural point of
view and then it presents the structure details of the underpinning database infrastructure.

21 Architecture
Figure 1 provides the architectural view of all components that are involved in the WS
registration scenario.

Web Map Server,

hﬂool N
Q
S
[
,,,,,,,,,,,,,,,, 5
,,,,,, =
5]
""""""""""""""""""""""" s Requests
Go /glg places a for new
® service
[©] registration
= VORLD B 2)
V/ WEATHFR b 8 www
ONLIN P -
| eCOMPASS
Web browser ‘_Neb B
COMPASS Registration
Web Registration Tool Tool Web
(User Interface) server

Service Providers

www

Common Gateway Module

eCOMPASS
Semantic Content Repository

MySQL database

Web Application
Server

d
Matchmaking Service Invocation
Mechanism Mechanism
Data Delivery
(secured layer)

Content requesting party

Figure 1: Semantic Content Repository Architecture and communication interfaces

D4.3: Page 8 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

In particular, the architecture schema involves the following entities:

Service providers (SPs), represent any “information service” providers who are
willing to register their services into the eCOMPASS framework. We assume that all
interested providers have developed and provide all necessary technical
infrastructure for accessing their services in the form of WSs, ie., they have
developed the appropriate APIs and / or WS interfaces. Two WS protocols are
supported: SOAP and REST.
The eCOMPASS Web Registration Tool (WRT) is the web application and
corresponding user interface that allows SPs for entering the required information in
order to register their services, using any typical web browser. The information that
is entered through the tool provides the essential links to the real WS, so that their
invocation can be handled in an automatic way by the CGM’s service invocation
mechanism.
The eCOMPASS WRT Web server is the necessary web server that is required for
hosting the tool. It receives new requests for WS registration and sends them to the
SCR.
The Semantic Content Repository consists of two subsystems:

o A web application server that hosts the automatic WS categorization

functionality (described in Section 4).
o A database, which stores all information concerning all registered SPs (its
structure is described in detail in the next subsection).

The entity denoted as Content Requesting Party represents any external software
component or CGM client in general, which requests, through the Data Query
component, particular content to be delivered through CGM’s Data Delivery
mechanism, according to the eCOMPASS Data Communication Interface protocol
(see Deliverable D4.1.2).
Data Query receives requests for content by any Content Requesting Party (see
above).
Data Delivery delivers the requested content to the corresponding Content
Requesting Party (see above), in a data secure way.
The Matchmaking Mechanism of CGM is responsible for selecting the most
appropriate service provider that fulfils a particular request for content in an optimal
way, according to a set of criteria, such as Quality of Service, user preferences,
reliability of SP, etc.(for details on the Matchmaking mechanism, see Deliverable
D4.2.1)
Service Invocation Mechanism. As soon as the appropriate SP has been selected by
the matchmaking mechanism, the Service Invocation mechanism is responsible for
executing the corresponding WS wrapper and for calling the corresponding WS,
based on the information entered into the Semantic Content Repository.

2.2 Underlying Database Structure
The semantic content repository is realized by a rational database, whose structure is
illustrated in Figure 2.

A different table in the database has been created for each type of service, for the use of
WRT. Each table contains the following default columns, which are used for storing the
service characteristics along with some statistical data about the availability of the service
and the Quality of Service.:

“id”, a unique identifier
“Name”, the name of the service provider

D4.3: Page 9 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

“type”, the WS protocol type (SOAP, or REST)

“url”, the URL that points to a WS description file (WSDL)

“operationName”, name of WS operation

“output”, name of WS operation’s output parameter

“email”, the email contact address of the SP

“implemented”, a flag that indicates if a WS wrapper is implemented for this WS or
not.

“Ratio”, service acceptance ration

“Reputation”, a degree of SP’s reputation based on service availability
“SelectedCounter”, number of selections of this WS by the user

“QoS”, Quality of Service parameter for indicating service availability of this WS by
its users

“ Availability”, service availability for all times this service was requested
“ResponseTime”, time that takes for the WS to response upon request
“RespTimeCounter”, an auxiliary variable that counts how many times

“Similarity”, similarity score for selecting the service

“userRank”, user ranking of this WS

ptnearbytransitstopsproviders getpredictedtrafficproviders

éy id int 43@ id int

weatherforecastproviders ptstoptimetableproviders

£ id int £ id int

roadconditionsproviders lowestfuelcostproviders ptlookupstopsproviders

£ id int £ id int P id int

getroadworksproviders ptgetnextstopproviders getaccidentsproviders

é:ﬂid int éé)id int 6@ id int

featureinfoproviders gettrafficproviders poitypesproviders

éé?id int éﬁ'id int éﬁ'id int

ptgettripproviders weatherproviders fuelcostproviders

<é@id int Q‘?id int égid int

selectedprovider mapproviders poiproviders

& id int & id int & id int

Figure 2: Database tables of the Semantic Content Repository

D4.3: Page 10 of 54

FP7-1CT-2011-7

The rest of the columns of each database table are used for storing the mapped inputs and
outputs of the operation that is to be registered in the repository. This information is entered
automatically in the database in the case of SOAP WS, in which the WS categorization

mechanism is activated.

The database contains the following tables:

The structure of these tables is presented in detail in what follows.

221 Table FeauturelnfoProviders

The structure of the FeatureInfoProviders database table is illustrated below.

id

Name

type

url

FeaturelnfoProviders

FuelCostProviders

GetAccidentsProviders
GetPredictedTrafficProviders
GetRoadworksProviders

GetTrafficProviders

LowestFuelCostProviders

MapProviders
PoiProviders
PoiTypesProviders

PtGetNextStopProviders

PtGetTripProviders

PtLookupStopsProviders

PtNearbyTransitStopsProviders

PtStopTimetableProviders
RoadConditionsProviders

SelectedProvider

WeatherForecastProviders

WeatherProviders

operationName

output

email
implemented
Ratio
Reputation
SelectedCounter
QoS
Availability
ResponseTime
RespTimeCounter
Similarity
UserRank
maxx_in

int(11)
varchar(45)
varchar(45)
varchar(200)
varchar(45)
varchar(45)
varchar(45)
tinyint(4)
double
double
int(11)
double
double
double
int(11)
double
double
varchar(100)

No
No
No
No
Yes
Yes
Yes
Yes

288094 - eCOMPASS

NULL
NULL
NULL

Wrlookr R okrl~Rro

Z
C
=
[

D4.3: Page 11 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

Column Type Null Default

maxy_in varchar(100) Yes NULL
minx_in varchar(100) Yes NULL
miny_in varchar(100) Yes NULL
resx_in varchar(100) Yes NULL
resy_in varchar(100) Yes NULL
BboxSource_in varchar(100) Yes NULL
heigh_in varchar(100) Yes NULL
width_in varchar(100) Yes NULL
exceptionalFormat_in varchar(100) Yes NULL
featureCount_in varchar(100) Yes NULL
infoFormat_in varchar(100) Yes NULL
layers_in varchar(100) Yes NULL
queryLayers_in varchar(100) Yes NULL
requestName_in varchar(100) Yes NULL
source_in varchar(100) Yes NULL
styles_in varchar(100) Yes NULL
version_in varchar(100) Yes NULL
parameters_out varchar(100) Yes NULL
subtype_out varchar(100) Yes NULL
type_out varchar(100) Yes NULL
featureInformation_out varchar(100) Yes NULL

Table 1: The “FeatureInfoProviders” table structure

2.2.2 Table FuelCostProviders

The structure of the FuelCostProviders database table is illustrated below.

Column Type Null Default

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0

QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
city_in varchar(100) Yes NULL

D4.3: Page 12 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

Column Type Null Default
country_in varchar(100) Yes NULL
currency_in varchar(100) Yes NULL
type_in varchar(100) Yes NULL
latitude_in varchar(100) Yes NULL
longitude_in varchar(100) Yes NULL
radius_in varchar(100) Yes NULL
error_out varchar(100) Yes NULL
currency_out varchar(100) Yes NULL
type_out varchar(100) Yes NULL
price_out varchar(100) Yes NULL

Table 2: The “FuelCostProviders” table structure

2.2.3 Table GetAccidentsProviders

The structure of the GetAccidentsProviders database table is illustrated below.

Column Type Null Default

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0

QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
city_in varchar(100) Yes NULL
country_in varchar(100) Yes NULL
accidentCause_in varchar(100) Yes NULL
accidentType_in varchar(100) Yes NULL
generationTime_in varchar(100) Yes NULL
observationTime_in varchar(100) Yes NULL
severity_in varchar(100) Yes NULL
totalNumberOfPeoplelnvolved_in varchar(100) Yes NULL
totalNumberOfVehiclesInvolved_in varchar(100) Yes NULL
startArrivLinkID_in varchar(100) Yes NULL
startDepartLinkID_in varchar(100) Yes NULL
startLatY_in varchar(100) Yes NULL
startLongX_in varchar(100) Yes NULL
startNodeID_in varchar(100) Yes NULL
getaccidentsproviderscol varchar(100) Yes NULL

D4.3: Page 13 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

Column Type Null Default
endArrivLinkID_in varchar(100) Yes NULL
endDepartLinkID_in varchar(100) Yes NULL
endLatY_in varchar(100) Yes NULL
endLongX_in varchar(100) Yes NULL
maxSpeed_in varchar(100) Yes NULL
roadID_in varchar(100) Yes NULL
accidentCause_out varchar(100) Yes NULL
accidentType_out varchar(100) Yes NULL
generationTime_out varchar(100) Yes NULL
observationTime_out varchar(100) Yes NULL
severity_out varchar(100) Yes NULL
totalNumberOfPeoplelnvolved_out varchar(100) Yes NULL
totalNumberOfVehiclesInvolved_out varchar(100) Yes NULL

Table 3: The “GetAccidentsProviders” table structure

224 Table GetPredictedTrafficProviders

The structure of the GetPredictedTrafficProviders database table is illustrated below.

Column Type Null Default

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0

QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
city_in varchar(100) Yes NULL
country_in varchar(100) Yes NULL
accidentCause_in varchar(100) Yes NULL
accidentType_in varchar(100) Yes NULL
generationTime_in varchar(100) Yes NULL
observationTime_in varchar(100) Yes NULL
severity_in varchar(100) Yes NULL
totalNumberOfPeoplelnvolved_in varchar(100) Yes NULL
totalNumberOfVehiclesInvolved_in varchar(100) Yes NULL
startArrivLinkID_in varchar(100) Yes NULL
startDepartLinkID_in varchar(100) Yes NULL

D4.3: Page 14 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

startLatY_in varchar(100) Yes NULL
startLongX_in varchar(100) Yes NULL
startNodelID_in varchar(100) Yes NULL
endArrivLinkID_in varchar(100) Yes NULL
endDepartLinkID_in varchar(100) Yes NULL
endLatY_in varchar(100) Yes NULL
endLongX_in varchar(100) Yes NULL
endRoadID_in varchar(100) Yes NULL
maxSpeed_in varchar(100) Yes NULL
roadID_in varchar(100) Yes NULL
time_in varchar(100) Yes NULL
timeInMinutes_in varchar(100) Yes NULL
generationTime_out varchar(100) Yes NULL
observationTime_out varchar(100) Yes NULL
roadworks_out varchar(100) Yes NULL
severity_out varchar(100) Yes NULL
speedValKpH_out varchar(100) Yes NULL
speedValError_out varchar(100) Yes NULL
speedValReasonError_out varchar(100) Yes NULL
vehiclePercPercentage_out varchar(100) Yes NULL
vehiclePercError_out varchar(100) Yes NULL
vehiclePercReasonError_out varchar(100) Yes NULL
avgVehSpeedKpH_out varchar(100) Yes NULL
avgVehSpeedError_out varchar(100) Yes NULL
avgVehSpeedReasonError_out varchar(100) Yes NULL
roadID_out varchar(100) Yes NULL
timestamp_out varchar(100) Yes NULL
velocity_out varchar(100) Yes NULL
statusTime_out varchar(100) Yes NULL
statusPeriod_out varchar(100) Yes NULL
statusError_out varchar(100) Yes NULL
statusReasonError_out varchar(100) Yes NULL
statusEnum_out varchar(100) Yes NULL
trafficTrendType_out varchar(100) Yes NULL
Table 4: The “GetPredictedTrafficProviders” table structure
2.25 Table GetRoadworksProviders
The structure of the GetRoadworksProviders database table is illustrated below.
id int(11) No
Name varchar(45) No
type varchar(45) No
url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL

D4.3: Page 15 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

Column Type Null Default

implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0
QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
city_in varchar(100) Yes NULL
country_in varchar(100) Yes NULL
accidentCause_in varchar(100) Yes NULL
accidentType_in varchar(100) Yes NULL
generationTime_in varchar(100) Yes NULL
observationTime_in varchar(100) Yes NULL
severity_in varchar(100) Yes NULL
totalNumberOfPeoplelnvolved_in varchar(100) Yes NULL
totalNumberOfVehiclesInvolved_in varchar(100) Yes NULL
startArrivLinkID_in varchar(100) Yes NULL
startDepartLinkID_in varchar(100) Yes NULL
startLatY_in varchar(100) Yes NULL
startLongX_in varchar(100) Yes NULL
startNodeID_in varchar(100) Yes NULL
getaccidentsproviderscol varchar(100) Yes NULL
endArrivLinkID_in varchar(100) Yes NULL
endDepartLinkID_in varchar(100) Yes NULL
endLatY_in varchar(100) Yes NULL
endLongX_in varchar(100) Yes NULL
maxSpeed_in varchar(100) Yes NULL
roadID_in varchar(100) Yes NULL
time_in varchar(100) Yes NULL
generationTime_out varchar(100) Yes NULL
observationTime_out varchar(100) Yes NULL
roadworks_out varchar(100) Yes NULL
severity_out varchar(100) Yes NULL

Table 5: The “GetRoadworksProviders” table structure
2.2.6 Table GetTrafficProviders
The structure of the GetTrafficProviders database table is illustrated below.

Column Type Null Default
id int(11) No
Name varchar(45) No
type varchar(45) No
url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL

D4.3: Page 16 of 54

FP7-1CT-2011-7

implemented

Ratio

Reputation
SelectedCounter

QoS

Availability
ResponseTime
RespTimeCounter
Similarity

UserRank

city_in

country_in
accidentCause_in
accidentType_in
generationTime_in
observationTime_in
severity_in
totalNumberOfPeoplelnvolved_in
totalNumberOfVehiclesInvolved_in
startArrivLinkID_in
startDepartLinkID_in
startLatY_in
startLongX_in
startNodeID_in
endArrivLinkID_in
endDepartLinkID _in
endLatY_in

endLongX_in
maxSpeed_in

roadID_in
generationTime_out
observationTime_out
roadworks_out
severity_out
speedValcKpH_out
speedValcError_out
speedValReasonError_out
vehiclePercKpH_out
vehiclePercError_out
vehiclePercReasonError_out
avgVehSpeedKpH_out
avgVehSpeedError_out
avgVehSpeedReasonError_out
roadID_out
timestamp_out
velocity_out

tinyint(4)
double

double

int(11)

double

double

double

int(11)

double

double

varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar
varchar

—_~ e~~~ I~~~ ~~ e~~~ A~~~ N~ AN~~~ AN s~~~
A N N N Nl N2 Nl Nl Nl i) N2 N2 N N g N N N gl N S N N e g N N N N2 g Sl N2 Nl Nl Ny 2 g

varchar

288094 - eCOMPASS

Yes

W R OOoOR R OR RO

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

D4.3: Page 17 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

Column Type Null Default
statusTime_out varchar(100) Yes NULL
statusPeriod_out varchar(100) Yes NULL
statusError_out varchar(100) Yes NULL
statusReasonError_out varchar(100) Yes NULL
statusEnum_out varchar(100) Yes NULL
trafficTrendType_out varchar(100) Yes NULL

Table 6: The “GetTrafficProviders” table structure
2.2.7 Table LowestFuelCostProviders
The structure of the LowestFuelCostProviders database table is illustrated below.

Column Type Null Default

id int(11) No
Name varchar(45) No
type varchar(45) No
url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0
QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
city_in varchar(100) Yes NULL
country_in varchar(100) Yes NULL
currency_in varchar(100) Yes NULL
type_in varchar(100) Yes NULL
latitude_in varchar(100) Yes NULL
longitude_in varchar(100) Yes NULL
radius_in varchar(100) Yes NULL
error_out varchar(100) Yes NULL
currency_out varchar(100) Yes NULL
type_out varchar(100) Yes NULL
price_out varchar(100) Yes NULL
address_out varchar(100) Yes NULL
stationCurrency_out varchar(100) Yes NULL
stationType_out varchar(100) Yes NULL
stationPrice_out varchar(100) Yes NULL
name_out varchar(100) Yes NULL

Table 7: The “LowestFuelCostProviders” table structure

D4.3: Page 18 of 54

FP7-1CT-2011-7

2.2.8 Table MapProviders

The structure of the MapProviders database table is illustrated below.

288094 - eCOMPASS

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0
QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
maxx_in varchar(100) Yes NULL
maxy_in varchar(100) Yes NULL
minx_in varchar(100) Yes NULL
miny_in varchar(100) Yes NULL
resx_in varchar(100) Yes NULL
resy_in varchar(100) Yes NULL
BboxSource_in varchar(100) Yes NULL
heigh_in varchar(100) Yes NULL
width_in varchar(100) Yes NULL
exceptionalFormat_in varchar(100) Yes NULL
requestName_in varchar(100) Yes NULL
source_in varchar(100) Yes NULL
layers_in varchar(100) Yes NULL
styles_in varchar(100) Yes NULL
transparent_in varchar(100) Yes NULL
version_in varchar(100) Yes NULL
parameters_out varchar(100) Yes NULL
subtype_out varchar(100) Yes NULL
type_out varchar(100) Yes NULL
map_out varchar(100) Yes NULL

Table 8: The “MapProviders” table structure

2.2.9 Table PoiProviders

The structure of the PoiProviders database table is illustrated below.

D4.3: Page 19 of 54

FP7-1CT-2011-7

id

Name

type

url
operationName
output

email
implemented
Ratio

Reputation
SelectedCounter
QoS

Availability
ResponseTime
RespTimeCounter
Similarity
UserRank
address_in

city_in

country_in
language_in
type_in
latitude_in
longitude_in
radius_in
poilnformationDescription_out
poilnformationName_out
shortName_out
POIid_out
poiEntranceescription_out
poiEntrancelD
typeOfPoi_out
bearing_out
latitude_out
longitude_out
serviceDays_out
error_out
radius_out

Table 9: The “PoiProviders” table structure

2.210 Table PoiTypesProviders

int(11)
varchar(45)
varchar(45)
varchar(200)
varchar(45)
varchar(45)
varchar(45)
tinyint(4)
double
double
int(11)
double
double
double
int(11)
double
double
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)

288094 - eCOMPASS

Yes
Yes
Yes
Yes

The structure of the PoiTypesProviders database table is illustrated below.

NULL
NULL
NULL

WRrR ooRRoOoR RO

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

D4.3: Page 20 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

Column Type Null Default

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0

QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
address_in varchar(100) Yes NULL
city_in varchar(100) Yes NULL
country_in varchar(100) Yes NULL
latitude_in varchar(100) Yes NULL
longitude_in varchar(100) Yes NULL
radius_in varchar(100) Yes NULL
error_out varchar(100) Yes NULL
typesOfPoi_out varchar(100) Yes NULL

Table 10: The “PoiTypesProviders” table structure

2.2.11 Table PtGetNextStopProviders
The structure of the PtGetNextStopProviders database table is illustrated below.

Column Type Null Default

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0

QoS double No 1
Availability double No 1

D4.3: Page 21 of 54

FP7-1CT-2011-7

ResponseTime
RespTimeCounter
Similarity

UserRank

maxDist_in

maxStops_in

latitude_in

longitude_in

time_in

error_out

distance_out
startArrivLinkID_out
startDepartLinkID_out
startLatY_out
startLongX_out
startNodeID_out
endArrivLinkID_out
endDepartLinkID_out
endLongX_out
endLatY_out
endNodelD_out
linkID_out

maxSpeed_out
numOfLanes_out
accidentCause_out
accidentType_out
generationTime_out
observationTime_out
severity_out
totalNumberOfPeoplelnvolved_out
totalNumberOfVehiclesInvolved_out
accidStartDepartLinkID_out
accidStartArrivLinkID_out
accidStartLatY_out
accidStartLongX_out
accidStartNodelD_out
accidEndDepartLinkID_out
accidEndArrivLinkID_ out
accidEndLatY_out
accidEndLongX_out
accidEndNodelID_out
accidMaxSpeed_out
accidRoadID_out

Table 11: The “PtGetNextStopProviders” table structure

double

int(11)

double

double

varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)

288094 - eCOMPASS

No
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

WR oo

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

D4.3: Page 22 of 54

FP7-1CT-2011-7

2.212 Table PtGetTripProviders

288094 - eCOMPASS

The structure of the PtGetTripProviders database table is illustrated below.

Column Type Null Default

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0

QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
date_in varchar(100) Yes NULL
fromPublicCode_in varchar(100) Yes NULL
fromShortName_in varchar(100) Yes NULL
fromStopPointID_in varchar(100) Yes NULL
fromStopPointName_in varchar(100) Yes NULL
toPublicCode_in varchar(100) Yes NULL
toShortName_in varchar(100) Yes NULL
toStopPointID_in varchar(100) Yes NULL
toStopPointName_in varchar(100) Yes NULL
error_out varchar(100) Yes NULL
summary_out varchar(100) Yes NULL
publicCode_out varchar(100) Yes NULL
shortName_out varchar(100) Yes NULL
stopPointID_out varchar(100) Yes NULL
stopPointName_out varchar(100) Yes NULL

2.213 Table PtLookupStopsProviders

Table 12: The “PtGetTripProviders” table structure

The structure of the PtLookupStopsProviders database table is illustrated below.

Column Type Null Default
id int(11) No
Name varchar(45) No
type varchar(45) No
url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL

D4.3: Page 23 of 54

FP7-1CT-2011-7

email

implemented

Ratio

Reputation
SelectedCounter
QoS

Availability
ResponseTime
RespTimeCounter
Similarity
UserRank
modesOfTransport_in
resultsCount_in
term_in

error_out
publicCode_out
shortName_out
stopPointID_out
stopPointName_out

varchar(45)
tinyint(4)
double
double
int(11)
double
double
double
int(11)
double
double
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)

Table 13: The “PtLookupStopsProviders” table structure

2.2.14 Table PtNearbyTransitStopsProviders

288094 - eCOMPASS

NULL

W R OOoORRRIORI RO

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

The structure of the PtNearbyTransitStopsProviders database table is illustrated below.

id

Name

type

url
operationName
output

email
implemented
Ratio
Reputation
SelectedCounter
QoS
Availability
ResponseTime
RespTimeCounter
Similarity
UserRank
maxDist_in
maxStops_in
latitude_in
longitude_in

int(11)
varchar(45)
varchar(45)
varchar(200)
varchar(45)
varchar(45)
varchar(45)
tinyint(4)
double
double
int(11)
double
double
double
int(11)
double
double
varchar(100)
varchar(100)
varchar(100)
varchar(100)

No

No

No

No

Yes NULL
Yes NULL
Yes NULL
Yes 0

No 1

No 1

No 0

No 1

No 1

No 0

No 0

No 1

No 3

Yes NULL
Yes NULL
Yes NULL
Yes NULL

D4.3: Page 24 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

time_in varchar(100) Yes NULL
error_out varchar(100) Yes NULL
distance_out varchar(100) Yes NULL
startArrivLinkID_out varchar(100) Yes NULL
startDepartLinkID_out varchar(100) Yes NULL
startLatY_out varchar(100) Yes NULL
startLongX_out varchar(100) Yes NULL
startNodeID_out varchar(100) Yes NULL
endArrivLinkID_out varchar(100) Yes NULL
endDepartLinkID_out varchar(100) Yes NULL
endLongX_out varchar(100) Yes NULL
endLatY_out varchar(100) Yes NULL
endNodelID_out varchar(100) Yes NULL
linkID_out varchar(100) Yes NULL
maxSpeed_out varchar(100) Yes NULL
numOfLanes_out varchar(100) Yes NULL
accidentCause_out varchar(100) Yes NULL
accidentType_out varchar(100) Yes NULL
generationTime_out varchar(100) Yes NULL
observationTime_out varchar(100) Yes NULL
severity_out varchar(100) Yes NULL
totalNumberOfPeoplelnvolved_out varchar(100) Yes NULL
totalNumberOfVehiclesInvolved_out varchar(100) Yes NULL
accidStartDepartLinkID_out varchar(100) Yes NULL
accidStartArrivLinkID_out varchar(100) Yes NULL
accidStartLatY_out varchar(100) Yes NULL
accidStartLongX_out varchar(100) Yes NULL
accidStartNodeID_out varchar(100) Yes NULL
accidEndDepartLinkID_out varchar(100) Yes NULL
accidEndArrivLinkID_out varchar(100) Yes NULL
accidEndLatY_out varchar(100) Yes NULL
accidEndLongX_out varchar(100) Yes NULL
accidEndNodeID_out varchar(100) Yes NULL
accidMaxSpeed_out varchar(100) Yes NULL
accidRoadID_out varchar(100) Yes NULL
Table 14: The “PtNearbyTransitStopsProviders” table structure
2.215 Table PtStopTimetableProviders
The structure of the PtStopTimetableProviders database table is illustrated below.
id int(11) No
Name varchar(45) No
type varchar(45) No
url varchar(200) No
operationName varchar(45) Yes NULL

D4.3: Page 25 of 54

FP7-1CT-2011-7

output

email
implemented
Ratio

Reputation
SelectedCounter
QoS

Availability
ResponseTime
RespTimeCounter
Similarity
UserRank
tripType_in
isRealTime_in
time_in

erro_out
publicCode_out
shortName_out
stopPointID_out
stopPointName_out

Table 15: The “PtStopTimetableProviders” table structure

varchar(45)
varchar(45)
tinyint(4)
double
double
int(11)
double
double
double
int(11)
double
double
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)

2.2.16 Table RoadConditionsProviders

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

288094 - eCOMPASS

NULL
NULL

WR OO R OR RO

Z
C
=
=

NULL
NULL
NULL
NULL
NULL
NULL
NULL

The structure of the RoadConditionsProviders database table is illustrated below.

id

Name

type

url
operationName
output

email
implemented
Ratio
Reputation
SelectedCounter
QoS
Availability
ResponseTime
RespTimeCounter
Similarity
UserRank
date_in
latitude_in
longitude_in
error_out
pubReportTimeDate_out

int(11)
varchar(45)
varchar(45)
varchar(200)
varchar(45)
varchar(45)
varchar(45)
tinyint(4)
double
double
int(11)
double
double
double
int(11)
double
double
varchar(100)
varchar(100)
varchar(100)
varchar(100)
varchar(100)

No
No

NULL
NULL
NULL

WrloolkrlrRr ok~ o

NULL
NULL
NULL
NULL
NULL

D4.3: Page 26 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

Column Type Null Default
date_out varchar(100) Yes NULL
langitude_out varchar(100) Yes NULL
longitude_out varchar(100) Yes NULL
weatherRelatedRoadConditionType_out varchar(100) Yes NULL

Table 16: The “RoadConditionsProviders” table structure

2.2.17 Table SelectedProvider

The structure of the SelectedProvider database table is illustrated below.

Column Type Null Default
id int(11) No
ServiceName varchar(45) No
SelectedProviderID int(11) No
SelectedCounter int(11) No

Table 17: The “SelectedProvider” table structure

2.2.18 Table WeatherForecastProviders

The structure of the WeatherForecastProviders database table is illustrated below.

Column Type Null Default

id int(11) No

Name varchar(45) No

type varchar(45) No

url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0

QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
barPressureUnits_in varchar(100) Yes NULL
city_in varchar(100) Yes NULL
country_in varchar(100) Yes NULL
date_in varchar(100) Yes NULL
latitude_in varchar(100) Yes NULL
longitude_in varchar(100) Yes NULL

D4.3: Page 27 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

Column Type Null Default
tempUnits_in varchar(100) Yes NULL
windSpeedUnits_in varchar(100) Yes NULL
error_out varchar(100) Yes NULL
pubReportTimeDate_out varchar(100) Yes NULL
date_out varchar(100) Yes NULL
dayOfTheWeek_out varchar(100) Yes NULL
description_out varchar(100) Yes NULL
high_out varchar(100) Yes NULL
low_out varchar(100) Yes NULL
tempUnits_out varchar(100) Yes NULL
humidity_out varchar(100) Yes NULL
pressure_out varchar(100) Yes NULL
pressureUnits_out varchar(100) Yes NULL
rising_out varchar(100) Yes NULL
visiblity_out varchar(100) Yes NULL
chill_out varchar(100) Yes NULL
direction_out varchar(100) Yes NULL
speed_out varchar(100) Yes NULL
speedUnit_out varchar(100) Yes NULL

Table 18: The “WeatherForecastProviders” table structure
2219 Table WeatherProviders
The structure of the WeatherProviders database table is illustrated below.

Column Type Null Default
id int(11) No
Name varchar(45) No
type varchar(45) No
url varchar(200) No
operationName varchar(45) Yes NULL
output varchar(45) Yes NULL
email varchar(45) Yes NULL
implemented tinyint(4) Yes 0
Ratio double No 1
Reputation double No 1
SelectedCounter int(11) No 0
QoS double No 1
Availability double No 1
ResponseTime double No 0
RespTimeCounter int(11) No 0
Similarity double No 1
UserRank double No 3
barPressureUnits_In varchar(100 Yes NULL
city_in varchar(100 Yes NULL
country_in varchar(100 Yes NULL
date_in varchar(100 Yes NULL

D4.3: Page 28 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

latitude_in varchar(100) Yes NULL
longitude_in varchar(100) Yes NULL
tempUnits_in varchar(100) Yes NULL
windSpeedUnits_in varchar(100) Yes NULL
error_out varchar(100) Yes NULL
pubReportTimeDate_out varchar(100) Yes NULL
city_out varchar(100) Yes NULL
country_out varchar(100) Yes NULL
description_out varchar(100) Yes NULL
latitude_out varchar(100) Yes NULL
longitude_out varchar(100) Yes NULL
publicationDate_out varchar(100) Yes NULL
title_out varchar(100) Yes NULL
weatherCondDescription_out varchar(100) Yes NULL
tempUnits_out varchar(100) Yes NULL
temperature_out varchar(100) Yes NULL
timeDate_out varchar(100) Yes NULL
chill_out varchar(100) Yes NULL
direction_out varchar(100) Yes NULL
speed_out varchar(100) Yes NULL
speedUnit_out varchar(100) Yes NULL

Table 19: The “WeatherProviders” table structure

2.3 Implementation Details

e Semantic Content Repository has been realized using MySQL v. 5.5.27 and Apache
web server v. 2.4.3.

e Web Registration Tool’s functionality has been programmed in PHP 4.0. The tool is
hosted on an Apache web server v. 2.4.3

D4.3: Page 29 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

3 Web Registration Tool

In this section the appropriate documentation for using the WRT is provided in the form of
illustrative examples of use for each step of the WS registration process. The WRT is
available at the following URL:

http://160.40.50.57 /ecompass/

The welcome page (Figure 3) contains some introductory instructions to the provider and
how he/she should proceed.

Semantic Repository Web Service
Registration Tool.

Home New SOAP Web Hew RESTful
Service Service

This site is the Semantic Repository Web Tool that can be used to insert new Web Services to the
eCOMPASS Content Gateway Module. eCOMPASS is a European funded project that introduces new
mobility concepts and establishes a methodological framework for route planning optimization following a
holistic approach in addressing the environmental impact of urban maobility.

As part of eCOMPASS, the Content Gateway Module (CGM) is responsible for integrating publicly available
content, in the form of Web Services, to the eCOMPASS project. This Web Tool can be used by a Web
Service Provider to Register his Web Service to the CGM.

To insert a SOAP Web Service click here!
To insert a RESTful Web Service click herel

Figure 3: Welcome page of the Web Service Registration Tool

Through this page, the provider can register WSs that rely on the SOAP or REST protocols,
through the available links. The procedure that is adopted is different for the two services,
therefore we present them in two separate sections in what follows.

3.1 SOAP Services
Once the SOAP WS option is selected, the interested SP is redirected to the page that is
shown in Figure 4.

Semantic Repository Web Service
Registration Tool.

Home Hew SOAP Web Hew RESTTul
Service Service

Please provide the details below and press next.
Provider Name:
email:
WSDL URL: next

Figure 4: SOAP web service details input form

D4.3: Page 30 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

In this page the following information should be filled in: Provider’s name, Provider’s email
and the online WSDL URL that describes the operations supported by the SOAP WS in
question. It should be noted that both WSDL 1.1 and 2.0 versions are supported by the WRT.

When the “next” button is pressed, the backend mechanism tries to parse the online WSDL
file containing the WS description and extracts all the required information containing in it.
The purpose of this process is to extract the WS operation names, inputs and outputs names
and the documentation that is available in the WSDL file. With this information, the
framework can classify the WS that will be registered into the predefined domains of
services shown in Table 20.

Service domain Description

Fuel Services Includes those web services that report the
fuel prices at a specific region upon request.

Map Services Web services that provide maps of a specific

region, city or area (in the form of images), as
well as GIS data (e.g. shape files), typically
provided by a Web Map Server (WMS).

Points of Interest Services These web services return a list of points of
interest for a specific region
Public Transport Services Services that provide static or dynamic

information about specific means of public
transport, e.g. bus timetables, estimated time
to arrive at a specific stop, etc.

Traffic Data Services Either historic or real time data about traffic
conditions, usually provided by loop
detectors or

Weather Services Services about reporting current or
forecasted weather conditions for a specific
city or area.

Table 20: The available service domains of the web service registration tool

The WS registration process, based on the WSDL description, tries to predict the service
domain to which the incoming service belongs and the result is presented in the “Predicted
Domain” field.

Semantic Repository Web Service
Registration Tool.

Home Hew SOAP Web Hew RESTful
Service Service

Predicted Domain: Weather Service
[[1 Choose Alternative Domain: next

*If the domain is wrong, please specify the correct one from the list above and press next.
**If the domain is the correct one leave it empty and press next.

Figure 5: Web service domain classification result

D4.3: Page 31 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

In case that the classification mechanism fails to predict the domain of the WS that is to be
registered, the provider may select the domain of his preference at the dropdown box shown
in Figure 6 and press “Next” in order to proceed to the next step.

Semantic Repository Web Service
Registration Tool.

Home Hewr SOAP Web Hewe RESTful
Service Service

Predicted Domain: Weather Service
Choose Alternative Domain: |Map Senice [=] [next

*If the domain is wrong, please E" SSE'“ ‘ne from the list above and press next.
**If the domain is the correct ofp s of Interest Senvice press next.

Traffic Data Service

I Public Transport Senice
| Weather Service

Figure 6: Web service domain selection

The next page (Figure 7) contains an overview of the operations of the WS.

Semantic Repository Web Service
Registration Tool.

Home New SOAP Web Hew RESTful
Service Service

The domain to which yout Web Service belongs is: Weather Service

In the table bellow you can see the matching between Web Service Operations and CGM Ideal Operations.

Operation Ideal Operation Score Inputs/Outputs Alignment
GetWeather GetVWeather |Z| 0.737 [Align]
GetCitiesByCountry GetWeather |z| 0.737 [Align]

next

Figure 7: Web service operation classification results

More specifically, Figure 8 displays for each operation of the WS the matched predefined
“ideal” operation along with the matching score. The SP may change the matched ideal
operation from the dropdown box and align the operation with the ideal of his/her
preference. It should be noted that the alignment score is computed by the tool with the use
of complex lexicographic algorithms, and will be recomputed in the case that the developer
selects another ideal operation than the proposed one. The details of the WS categorization
process are described in Section 4.

D4.3: Page 32 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

Operation Ideal Operation
GetWeather Get\WeatherFarecast |Z|
GetWeather
. GetWeatherForecast
GetCitiesBy Country GetRoadConditions
/A

next

Figure 8: Provider may select another ideal operation

The alignment of each operation can be performed by pressing the “Align” button of the
corresponding row, where the following page (Figure 9) will appear:

Semantic Repository Web Service
Registration Tool.

Home New SOAFP Web New RESTful
Service Service
GetWeather GetWeather
Real Inputs Mathced Inputs CGM Ideal Inputs
CityMame barPressureUnits
Countryllame Inputs CGM Ideal Inputs Score iy
; E country
CityName city 0.575 date
- '3 pointCoordinates
CountryName country 0.575 latitude
longitude
- templnits
Inputs Score: 0.575 e tute e
Real Outputs Matched Outputs CGM Ideal Outputs
GetWeatherResult error
Outputs CGM Ideal Outputs Score pUbReportTimeDate

= {3 weatherTtem
GetWeatherResult | error 0.3228 - =3 pointCoordinates
latitude
Outputs Score: 0.3228 longitude
-3 weatherCondition
description
tempUnits
temperature
timeDate
-3 weatherElementWind
chill
direction
speed
speedUnit
city
country
description
publicationDate
title

Figure 9: Input/Output classification results

In this page, the inputs and outputs of the WS operation are displayed in a tree-like structure
in the left column, while the corresponding trees of the ideal operation are displayed in the
right column. The table in the centre of the page provides the matching of the
inputs/outputs between the WS operation and the ideal operation. Each row of the table
contains the names of the i/o of the WS operation and the ideal operation, along with the
matching score between these two concepts. The total input and output score is also
presented.

D4.3: Page 33 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

In case that the matching algorithm fails to match an input or output parameter of a WS
operation, the SP may correct the alignment between two concepts, just by dragging one
concept from the left trees and drop it to a concept of the corresponding right tree (see Figure
10). By doing so, the new matching is displayed in the table and the new scores are
computed.

longitude
=3 weatherCondition
> .
tar, .PLTG ef\WeatherRe 5L|h'
temperature

Figure 10: Changmg the matching between two concepts (drag and drop)

It should be noted that alignment between inputs and outputs is not allowed. Additionally,
alignment is a 1 to 1 process, i.e. each concept of each tree may have only one matching.

When a SP reviews the alignments and fine tunes the matches, he/she can finally register the
WS operation with all this information to the SCR by pressing the “Save” button. In case that
the alignment was wrong, the SP may realign the service with the appropriate button, as
shown in Figure 11.

Operation Ideal Operation Score Inputs/Outputs Alignment
GetWeather GetWeather [+] 0.737 [Realign |
GetCitiesByCountry GetWeather [+] 0.737 [Align |

next

Figure 11: Realignment of an operation is available only if the operation is already aligned

3.2 Restful Services

The process of registering a WS that relies to the REST protocol is quite straight forward.
After the appropriate selection to the welcome menu, the provider is redirected to the page
shown in Figure 12.

Semantic Repository Web Service
Registration Tool.

Home New SOAP Web News RESTful
Service Service

Here you can register your Web Service that is not described by a wsdl file. Please have in mind that you need to provide some
information about your Web Service and describe your Web Service with examples. Then a developer will integrate your Web
Service to our System.

Provider Name:

email address:

API Documentation URL:
Domain: [+]

Figure 12: REST service details input form

D4.3: Page 34 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

The following data should be inserted:
e The provider’s name
e The provider’s email
e The URL containing the documentation of the REST service.

Additionally, the provider should select the domain that the WS belongs to, from the list of
predefined domains under the dropdown box. When the domain is selected, some additional
information is needed about URL examples of the WS in order to extract the required
parameters of the REST APIL

Semantic Repository Web Service
Registration Tool.

Home New SOAP Web New RESTHul
Service Service

Here you can register your Web Service that is not described by a wsdl file. Please have in mind that you need to provide some
information about your Web Service and describe your Web Service with examples. Then a developer will integrate your Web
Service to our System.

Provider Name: Dionysis Kehagias
email address: dick@iti.gr
API Documentation URL: www iti.gritestSenice
Domain: Map Service [=]
Please provide below some URL examples of your Web Service.
If Your Web Service does not provide the required data leave the corresponding textbox empty.
Please Provide with a URL example that returns a Map Image.
Inputs:
- City: Berlin
- Country: Germany
- Bounding box: (minx=13.1, miny=52.2, maxx=13.9, maxy=52.8)
- Output type: jpeg
Example URL: www iti griestSenice ?City=Thes saloniki&Country=Greece&Output=jpeg
Please Provide with a URL example that returns a feature of the Map.
Inputs:
- City: Berlin
- Country: Germany
- Bounding box: (minx=13.1, miny=52.2, maxx=13.9, maxy=52.8)
- Output type: jpeg
- Feature: color
Example URL: www iti gritestSenice ?City=Thes saloniki&Country=Greece&Output=jpeg&map=true

Output Type:| json [~]

Figure 13: REST service invocation examples

Finally, the provider should select the output type of the service between the two options
“JSONY” and “XML?” formats. When the “Save” button is pressed, the service information is
stored into the registry and the service will be ready for usage through the CGM.

It should be noted that the automatic categorization mechanism is not operational in the case
of REST services. The reason for this is that automatic categorization relies entirely on
information retrieval techniques, which are applied on machine interpretable descriptions of
the WS operations. These descriptions are provided in the form of WSDL files in the case of
SOAP WS. However, as opposed to SOAP, such files are not mandatory in the case of REST
WS. On the contrary, the descriptions of REST WS are not provided in a standard structured
way, but they are mostly available in the form of human-readable API documentation.

! http://www.json.org/
2 http://www.w3.org/XML/

D4.3: Page 35 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

4 Web Service Categorization Mechanism

This section describes the prototype WS Categorization Mechanism of eCOMPASS Content
Gateway Module that was developed in the scope of Task 4.3. The main purpose of this
mechanism is to provide automatic or semi-automatic semantic characterization of all new
WSs that are registered to the CGM in order to provide appropriate content, based on the
categories that are supported (e.g. Weather services, POI info services, map services, etc.).
The automatic mode is supported for SOAP WSs, as these provide textual descriptions in
WSDL that can be parsed and be provided as an input to a text pre-processing mechanism in
sequence to an information retrieval system. The output of such a system can be used for the
efficient categorization of WS and its elements with respect to the communication interfaces
that are defined in CGM.

In order to implement the capability of automatic semantic annotation of SOAP WSs, we
present in this section a technique for automatic categorization of non-semantic WS, i.e., based
on machine understandable descriptors that lack semantics. The WS categorization technique
developed and deployed within CGM, aims to predict the application domain, to which the
WS belongs, hence it provides semantic categorization of any WS to its potential domain. On
top of this, the WRT also performs categorization of WS operations and input/output (i/ o)
parameters into existing descriptive classes. In what follows the different approaches for
domain, operation and i/ o parameter categorization are presented.

4.1 Domain Classification
The WSs that are supported by CGM and are relevant to eCOMPASS can be classified into
the following domains:

e Traffic Prediction

e Weather services

e POl info services

e Map services

e Public Transport

e Fuel Services

e Logistics

For implementing automatic classification of SOAP WSs in one of the available domains, the
eCOMPASS WRT, adopts the following approach.

41.1 Data Pre-processing and Preparation

The automatic WS categorization mechanism receives as input a collection of WS description
documents D. Figure 14 describes the data pre-processing procedure that is applied to the
initial dataset, whose purpose is to “clean” the data by removing words included in a stop-
word list and by applying a stemming algorithm. The output of the pre-processing function
is a set V of distinct words.

Initially, D is split into training and test sets by the application of function split1 on dataset D.
Splitting is performed in one of the two following ways: a) we select a specific number of
random instances within the original dataset in order to form two concrete, non-overlapping
test and training subsets, and b) we apply the leave-one-out cross validation technique [1] in
order to create the test dataset. Based on the latter technique, a single instance from the
original dataset is used as test data, and the remaining observations comprise the training
dataset. This process is repeated for each instance that occurs in the original dataset.

D4.3: Page 36 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

Data-Pre-Processing(D) : V

01.D: WS collection; V: feature vector
02. V<€null;

03. {D,,D,} € splitl(D);
04. For eachw;€ D,

05. S € parse(w)

06. {S] gecey S,'} < SplitZ(S)
07. S’ < stopwords(S)
08. S ¢ stemming($’)
09. End for

10. For eachs,cS"

11. If V# O

12. IfVnis)=0
13. V&V Ufsy)
14. End if

15. End if

16. End for
17. Return V

Figure 14: Data pre-processing procedure for the training dataset.

Set S is generated as a “bag of words” after all available WSDL documents w; are parsed (line
05), and their features regarding operations, i/o parameters are extracted. From the various
elements that comprise a WSDL document only the operations, along with their
corresponding input and output parameters are taken into account, because these elements
include all necessary information that is relevant to the operational characteristics of the
corresponding WS (i.e.,, they describe the functionality of the WS). Also, additional
information provided by the optional <documentation> tag that encompasses human-
readable documentation inside any part of the WSDL document is also taken into account.

Function split2 is then applied (Fig. 1, line 06) to the extracted bag of words for splitting them
into distinct tokens. Splitting is performed in different ways for operation and i/o elements,
respectively. In particular, when a word corresponds to an operation name the most
appropriate naming convention among the ones utilized by WS developers is taken into
account, whereas a different one is assumed to be adopted when it comes to i/o parameters.
Generally, a valid operation name includes strings written in camel case or strings using the
underscore character “_’ to join separate words. The generated operation name usually
describes the functionality of the operation in a developer-readable fashion. Taking this into
account, we apply string manipulation functions, in order to extract those joint words from
operation and i/o parameter names. For example, the following operation names
“getCountryCodes”, “get_company_profile” and “get_Weather_byZIP” result in lists
containing the word tokens [“get”, “Country”, “Codes”], [“get”, “company”, “profile”] and
[“get”, “Weather”, “by”, “ZIP”], respectively. Operations are usually accompanied by
<documentation> tag elements, which contain human readable comments that some
developers usually provide. We also extract all distinct words from the <documentation>

tags, which are separated by space characters.

In the next stage (Figure 14, lines 07-08), all the extracted tokens are filtered so that only
unique elements remain. Firstly, all words are filtered by means of a stop-word list. The stop-
word list contains articles, prepositions, WS-related words and generally words that appear

D4.3: Page 37 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

frequently in WSDL documents, and therefore are not discriminated (e.g. the words the, a,
soap, etc.). Furthermore, words that correspond to HTML tags or web links (which often are
found in the documentation tags) are also removed. Generally, removing stop words is
considered a necessary step for filtering non-relevant terms [2].

The next step involves removal of inflectional endings that results in reducing words to their
stems by applying the Porter stemmer algorithm [3]. The unique features that remain after
the pre-processing actions comprise the feature set (vocabulary) v = [;0, fls---JMJ that is used for

representing each WS as a vector.

4.1.2 Reduction of the Feature Space Dimension

The feature set V that was generated as the output of the previous pre-processing procedure
represents the training dataset. Specifically, the frequency f of occurrence of each feature is
calculated for each WS, denoted as ws,, and is used for forming the following Vector Space

Model (VSM) ws, =[f,y, fij».-» f4,] Were the variable f, is equal to the frequency of occurrence

of term 7, for the feature k. The same representation is also used for the operation
categorization task.

Term weighting schemes such as tf-idf (term frequency-inverse document frequency) [5] are
also valid and could be used instead of term frequency. However, although such techniques
vectorize the data easily, the number of dimensions is equal to the number of features [6].
Since the WS descriptions can be very large, the number of the extracted features may
typically range from a few hundreds to several thousands, thus causing an overfitting effect,
having also a negative impact on the overall procedure performance.

In general the most typical task required for reducing the number of extracted features is to
select only a subset of all features according to some feature selection criterion (e.g. based on
the chi-squared statistic). Feature selection techniques use a scoring function in order to
assign a score to each feature, so that only those features with the highest score are
maintained among all features. Although feature selection techniques generally reduce the
complexity of the commonest classification algorithms, thus increasing their accuracy, the
effect of term removal, as a consequence of feature selection, is to increase the risk of
removing potentially useful information [7].

In order to avoid this, we propose an alternative feature dimension reduction technique,
which preserves all extracted terms that result after the application of the pre-processing
procedure. The goal of our technique is to transform the training data to a lower dimension
format, in order to reduce the number of feature dimension in question, by using the Bayes'
theorem. This approach seems to improve the WS classification performance, in terms of
required training time and classification accuracy, when used with a Support Vector
Machine (SVM) classifier for text categorization [6]. Based on this, our technique adopts the
use of the Bayesian theorem in conjunction with a Logistic Model Trees (LMT) classifier [8]
in order to improve the accuracy of WS categorization.

Bayesian classifiers make strong assumptions about how the data are generated and posit a
probabilistic model that embodies these assumptions. Then, they use the training data to
estimate the parameters of the generative model. The classification of a new example is based
on the Bayes' theorem by selecting the class that is most likely to have generated the example
[9]. In our work, we apply the multinomial Naive Bayes model [10] because it shows the best
performance on conducting text classification. In the context of WS classification, the domain
¢ to which a WS ws; belongs, is determined as the one for which the probability P(c; | ws,)

that ws, belongs to the domain ¢, has its maximum value. P(c; | ws,) is calculated by the

D4.3: Page 38 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

application of Bayes' theorem, as shown in Eq. (1). The term P(ws, |c;) is equal to the
probability that for a given domain c,, all features of ws; occur in that domain. P(c)) is the
probability that ws, belongs to the domain cj , whereas P(ws;) is the probability of occurrence
of ws,. For operation categorization, the same equations apply, but instead of WS instances
(ws;) we consider operation instances (op;) and domains (¢) are replaced by ideal, i.e.,
semantically described, operations (id)).

P(ws; 1¢;)P(c;)

1
P(ws;) @

P(c; lws;) =

where P(c)) is calculated by Eq. (2) as the number y_ of features in the domain ¢;, divided by
the total number of features in the training dataset N _, . It is not necessary to calculate the
value of P(ws;) because it is always fixed. P(ws, I c,) is eventually calculated by Eq. (3) as the

product of all probabilities of each feature # appearing in ;.

IEL‘I»

P(c,) =

2
v

P(ws, l1c,) =P, Ic)) (3)

"

Each probability P(t|¢) is calculated as the number 5, of occurrences of the feature # in

the domain ¢; divided by the total number of occurrences of all features in c;.

ntk &C;

P(tklcj):M— (4)

,€C;
m=0

An alternative way of computing p(, Ic,) is by deploying the Laplacian smoothing operation

[11], as it is shown in Eq. (5). The basic idea is to add a constant term both to the numerator
and denominator of Eq. (4), in order to smooth the estimation of P(f | ¢j), in case a feature that
does not occur in the training set occurs in the test set only.

1+n

fec;

P le,) = ——7— 5)

‘i ‘ : ‘,‘lt ec;
m J
m=0

4.1.3 Building the Classifier

The newly vector model representation of the training dataset is used as input for building a
LMT classifier. LMT is a relatively new classification algorithm, which combines logistic
regression and decision trees. We adopt LMT because it performs efficiently on small and/or
noisy datasets. Another advantage of using logistic regression is that it produces as output
explicit probability estimates for each class, rather than suggesting one output class.

LMT consists of a standard decision-tree structure with logistic regression functions at the
leaves. It contains N inner nodes and a set of leaves (terminal nodes) T. Let S denote the
whole instance space, spanned by all features that are present in the data. The tree structure
gives a disjoint subdivision of S into regions S;, and every region is represented by a leaf in
the tree, as shown in Eq. (6).

D4.3: Page 39 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

S=Js.S5, NS, =@, =1 (6)
teT
Unlike ordinary decision trees, the leaves fe€7 have an associated logistic regression
function F; instead of just a class label. The regression function F; takes into account a subset
of all features present in the data. The LogitBoost algorithm [12] was adopted for building the
logistic regression functions at the tree nodes, which uses the well-known CART algorithm
[13] for tree pruning,.

Given a set of k classes to be learnt, n different bi-partitions are formed for training n binary
classifiers. As a result, a code word of length n is obtained for each class. The classes are
encoded into code words and then a binary classifier is trained for each bit position. The n
binary classifiers produce n binary predictions for a certain input instance (i.e., a WS when
domain categorisation is concerned). For the selection of the dominant class the Hamming
distance? is computed between the predicted code word and the code word of each class. The
class with the minimum Hamming distance is selected as the dominant class.

The Hamming distance between two strings of equal length is the number of positions, for
which the corresponding symbols are different. In other words, the Hamming distance is
used for measuring the minimum number of substitutions that are required to change one
code word into the other. If the minimum Hamming distance is d, then the code can correct
at least (d-1)/2 1-bit errors [14]. Thus, if we make (d-1)/2 errors, the nearest code word will
still be the correct codeword.

Figure 15 illustrates the various steps of the WS domain categorisation process. For the
classification of a test WS, the output code word from the n classifiers is compared to the
class code words, and the one with the minimum Hamming distance is selected to be the
class label. Before the test WS is passed to the decision tree classifier, it has to be pre-
processed in order to represent it according to the vocabulary V, which was determined at
the training phase. After that the test WS is transformed according to Bayes formula (in the
same way as for the training data) and is given as input to the binary LMT classifiers in order
to predict the class to which the WS belongs. The leaves of each LMT correspond to logistic
functions, which produce the class probabilities for the two binary classes “0” and “1”.

4.2 Operation Classification

The purpose of operation categorization is to predict the semantics that characterize a
randomly selected WS operation. To this end, we construct a classifier as described in the
previous subsection for each WS domain, after applying the pre-processing procedure and
the Bayes theorem, as discussed in sections 4.1.1-4.1.3.

In the case of operation categorization, the training dataset consists of operation semantics,
described in appropriate ontologies, which are expressed in the Web Ontology Language
(OWL). The various steps of the WS operation categorization process, are described as
follows. Firstly, a pre-processing procedure is conducted to a test WS, for extracting the
initial set of features. Then, we represent the WS according to the VSM that results from the
application of the Bayes’ theorem (as described in Section 4.1.2 for training data). The
transformed WS operation is provided as an input to the n binary LMT classifiers, which
produce a binary output.

3 http:/ /en.wikipedia.org/wiki/Hamming distance

D4.3: Page 40 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

AN

Test
WS

g 1.Preprocessing

length = |V| length = k
AN /
N,

[0002..31] [0.343 0.02 ... 0.1]

3. Predict a code
2. Transform according to Bayes formula——»| word based on the
binary predictions

etween the predicted codeword and

[. compute the Hamming distance
b
ach of the k class code words.

code words of k classes Hamming distance

c0:001....0 2 i

c1:001.....0 3 P

) 0110 0
predicted

ck:110....1 1 codeword

5. Give as predicted class the class cj with
the minimum calculated Hamming distance.

<

Figure 15: Classification of an unknown web service.

In order to selecting the class label, we perform the following adaptation. We use
WordNet:Similarity with Jiang metric, [15], for comparing lexicographically the name of the
test WS operation with the names of the ideal operations of the domain ontology. Let s be the
name of a randomly selected test WS operation and id; the names of the ideal operations in
the same domain, i = 0...t. For each ideal operation name id; the WordNet:Similarity algorithm
gives a matching score wn; that reflects the matching degree of the two words. We then
combine those scores with the probabilities produced by our classifier for each class in the
following way. The classifier produces a probability for each one of the classes, computed by
summing the probabilities that correspond to the binary predictions after normalizing the
resulted sum. Thus, given the set of classes ID = {id, idj,...,id;} a set of corresponding
probabilities Pr = {pr,, pri,...,pri} are calculated. Then, for each id; we calculate the final score
as ts, = pr.+wn,.

This additional lexicographic check improves the categorization results, tacking especially
the case of rare instances, i.e., instances that correspond to classes with a few training data.

4.3 Input/Output Matchmaking

In the case of i/0 categorization the previous categorization mechanism, adopted in both
domain and operation categorization, cannot be applied, due to the lack of large manually
annotated datasets. For this reason, an alternative algorithmic approach is proposed, which
is based on the Wordnet lexical database.

The purpose of i/o categorization is to map one by one all i/o parameters from a WS
operation to the appropriate i/o parameters of ideal operations defined in the domain

D4.3: Page 41 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

ontology. The new proposed technique is based on a one-to-one similarity comparison
between the i/o elements, with respect to their names, hierarchy and data type. For this
purpose, Wordnet lexical database [15] has been utilized, for extracting words” Synsets (i.e.,
cognitive synonyms) and Hypernyms (i.e., semantic annotated synsets with more general
meanings). The proposed algorithm for calculating the similarity scores between the real and
ideal i/ o parameters is described in Figure 16.

The goal of the Input-Output-Similarity procedure, which is described in pseudo-code in
Figure 16, is to produce the similarity matrix S that contains the similarity scores for each
pair of ideal-real i/o parameters. After calculating S, the Hungarian algorithm is applied in
order to determine the best matchmaking between real-ideal i/o parameters. The algorithm
takes as input an arbitrary WS, denoted as ws, whose operations we would like to
semantically categorize and the corresponding WS ontology (denoted as O) that describes in
ontological form the class of WS to which ws belongs. As a first step, the algorithm parses
the WSDL description of the particular WS operation we wish to categorize, using function
parseWSDL, and puts the extracted i/o parameters along with their parent nodes into vector

Vio. Then, we split each element v; €V, i=1,..., |Vi| into tokens 7 = {t,,..} and for each t; € T;,

j=1,..., |ITi| we compute its Synset S;; and Hypernyms H;; sets, and then their union
C.,;=S,,UH,,. In a similar way, we parse the ideal operation using an OWL parser, which
extracts the corresponding i/o parameters and puts them into vector V';, along with their
parent nodes in the ideal operation hierarchy. Again, each element v'x € V'i, k=1,..., |V'i] is
split into tokens 7", = {r,r,,..}. For each t'; , [=1,..., |T"4| the Synsets S'x; and Hypernyms H'x,
sets are calculated, and then their union set c,, =S, uH',,. In Figure 17, the whole process of

extracting the Synsets and Hypernyms of two operation inputs is presented.

The algorithm is directed to the comparison of sets of words. Sets C;; and C'x; are used for
building a bipartite graph, where each entry corresponds to an i/o of the real (left) and the
ideal operation (right). For each pair v;, v'x a separate (inner) bipartite graph is built where
the left graph elements consist of the sets C;; and the right ones of the sets C';. The scores
between sets C;; and C'x; are calculated as the maximum score observed after conducting an
one by one comparison of their element with the Wordnet similarity metrics [15].

Fig. 6 shows an example of how the score is calculated. If any of the words in a node consists
of multiple tokens, then a new bipartite graph (second level inner graph) is formulated in
order to compute the score between words independently. The comparison between two
sets, as in Fig. 6, is performed by applying the Wordnet Similarity metrics, forming the
bipartite graph that will lead to the optimum matching through the Hungarian algorithm.

The parameters v; and v'x are also compared in terms of their data type, forming the matrix
D;. For this purpose the datatypeSimilarity function is used, which returns 1.0 if the data type
matches exactly, 0.5 if both parameters belong to the same complex data type and 0.0 in any
other case. Parameters v; and v'x are finally compared in terms of their structure, i.e. if their
parent nodes in the operations tree match with each other. The hierarchical tree parents
names are stored in two vectors, where they are compared element-by-element by the same
algorithm presented, ignoring the steps described in lines 31 and 32 of the algorithm shown
in Figure 16, and returning the matrix Lix. This is implemented through the
structureSimilarity function, which returns as an output the structure similarity matrix R, .

The final score matrix M;x is calculated by the following Eq. (7).
M, =0.8L, +0.1D,, +0.IR,, (7)

D4.3: Page 42 of 54

FP7-1CT-2011-7

288094 - eCOMPASS

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

Input-Output-Similarity (ws, O) : M

ws: a web service; WS: ontology
M: similarity matrix
Vien V'ip € null
V;, € parseWSDL (ws)
For each v;eV,
T; € split(w)
For each f€ T;
S;; € synsets (t)
H;; € hypernyms (f)
(O GS,-JUH,-J
End for
End for
v, € parseOWL (0)
For eachv,el’,
T € split(v')
For each teT',
W € synsets (1)
H', & hypernyms (¢')
C €8 UHY,
End for
End for
For each v,€V,

For each v, eV,
G, $bipartite (Ciy, Cigy..o|Clhts Clhse--)
For each ¢;€(;
For each ¢, €CY
i/ €WNSimilarity (¢, k)
End for
End for
Ly € max (s;))
D;;€DatatypeSimilarity (v;, v'%)
R,;késtructuresimilari ty (vi, v%)
M€ 0.8%L;;+0.1*D;;+0.1*R;,
End for
End for
Return M

Figure 16: Algorithm for inputs - outputs classification.

D4.3: Page 43 of 54

FP7-1CT-2011-7

operation1

L inputs

’
> clientName ’

> Street_no ---

split to tokens

,
client .
name
’
sireet
i ¥
no
i ’
S

»

extract Synsets

and Hyphens

client
case
name

| language unit

linguistic _unit,

288094 - eCOMPASS

{ extract Synsets
and Hyphens

user
person
individual

someone
somebody

mortal

soul

name
language unit
linguistric_unit,

split to tokens

)
street .
thoroughfard region
no part -
. location
negative
N~/
— address
computer address|
area reference -
country code
region computer code
no
negative
Bipartite graph

4

|| O region 4-

.

operation2

inputs"|

userName <

addressNo <

Figure 17: The pre-processing steps in order to form the bipartite graph for finding the
best matches.

negative

code

score=(0.24+0.00)/2=0.12

address

no

negative

—

Total score = max of the permutation scores, i.e. 1.00.

Figure 18: An example of how the score between two nodes in the bipartite graph is computed

D4.3: Page 44 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

It should be noted that the weights in Eq. (7) (as also shown in line 33 of the algorithm) were
selected empirically, to be 0.8 for parameter names, 0.1 for their data type and 0.1 for their
structure. This selection of weights gives more significance to the semantic notion they represent,
but can be adjusted accordingly in order to express specific needs. Finally, the best scores from
the final mapping between i/ o of the real and the ideal operations are computed by solving the
assignment problem by the Hungarian algorithm [16].

4.4 Preliminary Experimental Evaluation

In order to evaluate the accuracy of the proposed WS categorization mechanism, we have
conducted a draft evaluation procedure for testing the cases of domain categorisation
accuracy. The experimental setup and the preliminary results are summarized in what
follows.

The original dataset that was used for the first evaluation procedure contains 249 SOAP WS
that were collected from various open WS repositories, including www.webservicelist.com,
www.xmethods.com, and www.programmableweb.com. All WS in our collection were
manually annotated. Domain-level annotation includes the categorization of the WS into the
following six application domains (the number of WSDL files used for each domain is shown
in brackets):

e Business and Money (96),
e Geographic (55),

o Communication (58),

o Tourism and Leisure (13),
e Transport (10),

o Weather (17).

Moreover, different configurations of the training and test datasets are used within the
evaluation procedure, in order to examine the impact of the data on the achieved accuracy.
In particular, we use two different ways for selecting the training set: (a) leave-one-out cross
validation, i.e., a single instance from the original dataset is used as test data, and the
remaining ones as training data and (b) random selection of training and test data

In our experiment, we apply the leave-one-out cross validation technique to the original
dataset for formulating the training set. Our goal is to evaluate the accuracy of the domain
categorization mechanism, using the following metrics: Accuracy, Precision, Recall and F-
measure. In this experiment we perform comparison of MWSAF (developed in [2]) to the
developed mechanism (eCOMPASS Classifier), as well as to a number of its variations. We
use the different variations of our classifier in order to assess the impact of each one of its
specific components to the overall achieved accuracy. All benchmarked approaches are
described as follows:

(@) eCOMPASS: The WS classification method that we developed for domain and
operations categorisation described in the previous subsections,

(b) Bayes: a plain Naive Bayes classifier implementation [10],
(c) LMT: a plain LMT classifier implementation [8],

(d) LMT-B, i.e. the application of the Bayesian theorem for feature space dimension
reduction (see subsection 4.1.2) to an LMT classifier.

(€) MWSAF: The MWSATF tool [2].

Figure 19 shows the results of this comparison. We repeat the same experiment, by changing
the test dataset. In particular, we split the original dataset into 10 different pairs of training

D4.3: Page 45 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

and test datasets by randomly selecting 67% of the original WS as the training set and the
rest 33% as the test set. Figure 20 presents the average values of accuracy, precision, recall
and f-measure metrics all benchmarked classifiers for the 10 distinct datasets.

Domain Categorization (leave-one-out cross validation)
100,00%
90,00%

80,00%

70,00%
B eCOMPASS

60,00%

’ OBayes
0,

50,00% LMT

40,00% 0O LMT-B

30,00% B MWSAF

20,00%

10,00%

\§ \
\: \
3: §
3: §
3: \
nl
\ \

0,00%

Accuracy Precision Recall F-measure

Figure 19: Domain classification accuracy, precision, recall and f-measure comparison for
eCOMPASS, Bayes, LMT, LMT-B and MWSAF approaches with leave-one-out cross
validation.

Domain Categorization (10 random datasets)

90,00% S
80,00% %
ZZ’ZZZ % e B eCOMPASS
I 0 % O Bayes
1512’22: % 313: LMT
l o° \ % O LMT-B
30,00% § : % N
20,00% § : %
10,00% § 1 \

0,00%

Accuracy Precision Recall F-measure

Figure 20: Domain classification accuracy, precision, recall and f-measure comparison for
eCOMPASS, Bayes, LMT, LMT-B and MWSAF approaches with ten random training
datasets.

As it is shown in the previous figures, our categorisation method outperforms MWSAF in all
cases. Among the remaining methods, it also outperforms all of them as it shows the best
value among all compared approaches for all used metrics. In this experiment, we have
noticed that the maximum value of the achieved accuracy is 97.19% for our approach and
96.79% tor MWSAF, with mean values 90.29% and 85.21% respectively.

D4.3: Page 46 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

After benchmarking the eCOMPASS WS categorisation mechanism against its variations, as
well as the MWSAF tool, we proceeded to a statistics test in order to verify whether the
achieved improvement is statistically significant with respect to the accuracy achieved by the
benchmarked methods. To this end, we conducted a Wilcoxon signed-ranks test [17], for
each benchmarked mechanism. The purpose of this test is to check whether the null
hypothesis (i.e. the eCOMPASS and each one of its rivals perform the same) can be rejected.
We tested the null hypothesis at a significance level of a = 0.01. The Wilcoxon signed-ranks
test is a non-parametric test, which ranks the differences of the performance of each pair of
classifiers for each dataset, ignoring signs, i.e., it performs comparison of the rankings of
both positive and negative differences.

After performing the Wilcoxon signed-ranks statistical test, it turns out that the most
statistically significant difference occurs between the performance of eCOMPASS and
MWSAF WS categorization mechanisms. Hence for the eCOMPASS-MWSAF comparison
pair we can safely conclude that the null-hypothesis is rejected, which means that the
outperformance of eCOMPASS over MWSAF WS categorization mechanism is statistically
significant, at a significance level of 0.99. Regarding the other benchmarked approaches, the
performance of eCOMPASS has no significant difference to the one of LMT and LMT-B,
whereas it is more statistically significant with respect to LMT, at a significance level of 0.97.

In a next set of evaluation setup a more detailed comparison is expected to be conducted also
with respect to the additional characteristics and functionalities of the developed
mechanism, i.e. operations and i/ o parameters categorisation.

4.5 Future Extensions

Future research will focus on providing mechanisms which will be more generic and
independent from training data. Furthermore the proposed WS categorization framework
will be extended in order to support automatic categorization of REST services to the best
possible extent.

D4.3: Page 47 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

5 Web Service Registration Tool: Examples of Use

In this section two examples of WS registration to the WRT are presented. The first example
demonstrates how a SP may register a new SOAP WS in the domain of Weather.

5.1 An Example of a SOAP Web Service about Weather Information
In this example, let us assume that the SOAP WS described by

http:/ /www.webservicex.com/ globalweather.asmx?wsdl

will be registered in the WRT.

The aforementioned WS relies on the SOAP protocol and provides operations for weather
information. In order for the WS registration to take place, the SP should enter some personal
information, such as the provider’s name and an email, as well as the URL that points to the
WSDL file, which describes the WS in question, as shown in the figure below.

Semantic Repository Web Service
Registration Tool.

Home Hew SOAP Web Hew RESTful
Service Service

Please provide the details below and press next.
Provider MName: Dionisis Kehagias]
email: |diok@iti.gr
WSDIL URL: http:/fuww websenicex. com/globatweather. asmPwsd|

Figure 21: Provider details and WSDL url form

The WRT parses the online WSDL file and extracts all the required information for
classifying the WS to the available domains, as shown in the figure below.

Semantic Repository Web Service
Registration Tool.

Home Hew SOAP Web Hew RESTful
Service Service

Predicted Domain: Weather Service
[Choose Alternative Domain:

*If the domain is wrong, please specify the correct one from the list above and press next.
**If the domain is the correct one leave it empty and press next.

Figure 22: Domain classification page

The WS is classified correctly in the “Weather Service” domain, thus the provider may
continue by pressing the “Next” button.

The WS operations are displayed along with their matching prediction to domain’s ideal
operation and a score representing the matching score between each WS operation and the
corresponding ideal operation (Figure 23).

D4.3: Page 48 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

Semantic Repository Webh Service
Registration Tool.

Home Hew SOAP Web Hew RESTful
Service Service

The domain to which vout Web Service belongs is: Weather Service

In the table bellow you can see the matching between Web Service Operations and CGM Ideal Operations.

Operation Ideal Operation Score Inputs/Outputs Alignment
GetWeather GetWeather v 0.737 [Align]
GetCitiesBy Country GetWeather v 0.737 [Align]

Figure 23: Operation classification page

For aligning an operation, e.g. the “GetWeather” WS operation with the ideal operation
“GetWeather”, the provider should select “Align”, and the page shown in Figure 24 will
appear.

Semantic Repository Web Service
Registration Tool.

Home Hew SOAP Web New RESTful
Service Service
GetWeather GetWeather
Real Inputs Mathced Inputs CGM Ideal Inputs
Cityhame barPressurelnits
Counryhiame Inputs CGM Ideal Inputs Score ciy
) . Country
CityName city 0.575 date
= 3 pointCoordinates
CountryName country 0,575 latituce
longituide
Inputs Score: 0.575 BrmpUnits
windSpeedUnits
Real ODutputs Matched Dutputs CGM Ideal Outputs
GetieatherResult error
Outputs CGM Ideal Outputs Score pubRegartTimeDate
=3 weatherItem
Get\WeatherResult | error 0.3228 =3 pointCoordinates
latitucle
Qutputs Score: 0.3228 longitude
=3 weatherCondition
description
termpUnits
temperature

timeDats
= {3 weatherElementWind
chill
direction
speed
speedunit
city
country
description
publicationDate
title

Figure 24: Input/output matching page

This page shows the inputs and outputs of the WS operation (on the left trees) and the inputs
and outputs of the ideal operation (on the right trees). The matches between i/o are
displayed in the two tables along with a matching score. It is obvious that the inputs of the
WS are aligned correctly, while the matching mechanism has failed for the output of the WS
operation. This can be adjusted by dragging the output from the left tree to an output (e.g.

D4.3: Page 49 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

“description”) to the right tree. Then the new matching is displayed in the outputs table with
a new score.

Real Dutputs Matched Dutputs CGM Ideal Outputs

GetweatherResult error
i pubReportTimeDate
= weatherIltem
GetWeatherResult description 0.0092 = £3 pointCoordinates
latitude
Outputs Score: 0.0092 longituce
=14 weatherCondition
description
ternplinits
ternperature
timeDate
=1 {4 weatherElementWind
chill
direction
speed
speedUnit
city
country
description
publicationDate
title

QOutputs CGM Ideal Outputs Score

Figure 25: Manual alignment of an output

By selecting “Save”, the WS operation registration is saved and the provider may proceed
with the registration of the rest of his WS operations.

5.2 Registration of a Fleet Management Service

The second example demonstrates how a WS of a fleet management service can be
registered. In this example a REST web service is applied to the gateway by using the
Semantic Repository Web Tool.

The applied web-service visualizes a map. In order to register the web-service via the service
registration, the service provider has to enter personal information, such as the provider
name and an email, as well as the URL that points to the service.

Semantic Repository Webh Service
Registration Tool.

Home Hew SOAP Web Hew RESTTul
Service Service

Here you can register your Web Service that is not described by a wsdl file. Please have in mind that you need to provide
some information about your Web Service and describe your Web Service with examples. Then a developer will integrate
your Web Service to our System.

Provider Name: PTV
email address: florian krietsch@ptv.de
API Documentation URL:
Domain: -

Figure 26: Provider details and URL of logistics service example

D4.3: Page 50 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

After filling out all mandatory fields the WRT can assign the service to its database.

Semantic Repository VWeb Service
Registration Tool.

Home New SOAP Web New RESTful
Service Service

You have Alligned your Web Service to 2 of our Operations,
based on the examples bellow.
- http://80.146.239.157/ecompass/
- http://80.146.239.157/ecompass/
Press submit to save data
or press Cancel to return.

(Sutmi) [Cancl

Figure 27: Aligned logistics service web-service

The WRT then provides the user with a success notification dialog, as shown in Figure 28.

Home New SOAP Web Newr RESTTul
Service Service
Success!

Your Web Service was successfully added to our system.

Figure 28: Successful registration of the logistics web-service

D4.3: Page 51 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

6 Summary and Conclusions

This deliverable is a report that accompanies the prototype implementation of the SCR and
WRT, which have been developed in WP4 as part of the CGM and are publicly available
online (http://160.40.50.57/ecompass). SCR and WRT play a complementary role, as the
former provides the underpinning technical infrastructure for the functionalities that the
latter provides to take place efficiently. The WRT is equipped with a web interface that
allows any interested SPs who are willing to make their WSs visible in the context of
eCOMPASS (or any other similar framework that relies on the CGM). In this way, WRT is
available anywhere, anytime and theoretically any SP may register his/her services, no
matter where he or she is established.

The tool allows the registration of both SOAP and REST-compliant services. The reason for
this is that the majority of the available services today are based on the REST protocol.
However, SOAP is still supported as the de facto industrial standard and for this reason we
decided to include support for these also. Moreover, all services that adhere to the SOAP
protocol can take advantage of the automatic WS categorization mechanism, whose purpose
is to predict the domain, to which a WS belongs. On top of this, the automatic categorization
mechanism is capable of recommending those operations, as well as the corresponding i/o
parameters of the CGM Data Communication protocol, that provide the best match to the
WS under registration. This is only possible for SOAP WS, because they are accompanied by
WSDL files, and the WS categorization mechanism is based on information retrieval
techniques that exploit information from the WSDL files. A WSDL file that accompanies any
SOAP WS contains the implementation details of the WS, as well as additional
documentation and a description of its internal elements, i.e. operations and i/ o parameters.
We implemented this automatic categorization mechanism in order to provide more user
friendly functionality to the WRT tool, by adding a degree of automation, but also in order to
facilitate the job of CGM developers who should implement specific WS wrappers capable of
invoking the real WS for each WS that is registered into the SCR. In the case of REST services
this task still needs to be performed in a manual way, thus increasing the required effort on
the developers’ side.

In this deliverable we have also described the SCM, which basically supports the
functionality of the WRT. SCM does this in a two fold way: (a) by providing a web
application server that implements the “business logic” of the automatic categorization
mechanism, and (b) by hosting a database which stores all information entered by the SP at
the registration process, in addition to other information that is updated externally (i.e. not
by the SPs themselves), either in an automatic or manual way. For instance in order to
provide updated values of the QoS parameter for a particular service, a special deamon (i.e.
background process) runs that pokes the WS and based on its response rate, it updates the
QoS value at real time. In this way, SCM can be considered as the back-end of the system,
whereas can be seen as the user-oriented part of it, as it provides the main user interface.

This report-part of the deliverable also serves as a user manual for the SP who wants to use it
for registering a new WS in eCOMPASS. Through the provided tool, the eCOMPASS
framework in general and CGM in particular allow for external SPs to enter new WS in the
transport data-related domains that are supported in this project. Based on this kind of
interaction between SPs and the eCOMPASS framework in which users are also involved, it
becomes clear that a set of new business models could be enabled through WRT and SCM. In
particular, if seen from a business-oriented perspective, WRT and SCM provide the
necessary infrastructure for enabling a business model according to which any SP can receive

D4.3: Page 52 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

a fee for making their services available to a wide range of users who use the eCOMPASS
services in a transparent way. In this business scenario the users pay for using the
application and the money goes to the SP. Alternatively, the eCOMPASS framework could
be seen as an intermediate procurement party, which demands a percentage of the user
transactions based on the traffic they produce. Similar business scenarios could be also
realized in this context.

Future work with respect to the WRT and SCM would involve all necessary modifications
and/or additions in order to adopt the security mechanism that is developed in Task 4.4. In
this way, the system will make sure that the right content will be provided to the right
requesting party, based on an authentication procedure.

D4.3: Page 53 of 54

FP7-1CT-2011-7 288094 - eCOMPASS

References

[1] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model
selection”, Fourteenth International Joint Conference on Artificial Intelligence, pp. 1137-1143,
1995.

[2] A. A. Patil, A. Oundhakar, A. P. Sheth, and Verma, K., “METEOR-S Web service
annotation framework”, 13th international conference on WWW, ACM Press, 2004.

[3] M. F. Porter “An algorithm for suffix stripping”. Program, vol. 14, no. 3, pp. 130-137,
1980.

[4] G. Salton, and C. Buckley, “Term-weighting approaches in automatic text retrieval”,
Information Processing and Management, pp. 513-523, 1988.

[5] G. Salton, and C. Buckley, “Term-weighting approaches in automatic text retrieval”,
Information Processing and Management, pp. 513-523, 1988.

[6] D.Isa, L. Lee, V. Kallimani, and R. RajKumar, “Text Document Pre-processing with the
Bayes Formula for Classification Using the Support Vector Machine”, IEEE Knowledge
and Data Engineering, vol. 20, no. 9, pp. 1264 - 1272, 2008.

[7] F. Sebastiani, “Machine learning in automated text categorization”, ACM Computing
Surveys, vol. 34, no. 1, pp. 1-47, 2002.

[8] N.Landwehr, and M. E. Hall, “Logistic Model Trees”, Machine Learning, vol. 59, no. 1, pp. 161-
205, 2005.

[9] A.McCallum, and K. Nigam, K, “A Comparison of Event Models for Naive Bayes Text
Classification”. AAAI-98 Workshop on Learning for Text Categorization, 1998.

[10] S. Eyheramendy, D. D. Lewis, and D. Madigan, “On the naive Bayes model for text
categorization”, Artificial Intelligence & Statistics, pp. 332-339, 2003.

[11] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers”, Machine
Learning, vol. 29, pp. 131-163, 1997.

[12] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic Regression: aStatistical
View of Boosting”, The Annals of Statistic, vol. 38, no. 2, pp. 337-374, 2006.

[13] L. H. Breiman,]. Friedman, A. Olshen, and C. J. Stone, Classification and Regression
Trees. Belmont, California: Wadsworth International Group, 1984.

[14] H. Witten, and E. Frank, Data mining: Practical Machine Learning Techniques and Tools
2nd ed. Morgan Kaufmann, 2005.

[15] T. Pedersen, S. Patwardhan, and]J. Michelizzi, “WordNet::Similarity - Measuring the
Relatedness of Concepts”, Fifth Annual Meeting of the North American Chapter of the
Association for Computational Linguistics (NAACL-04), pp. 38-41, 2004.

[16] H. K. Kuhn, “The Hungarian Method for the assignment problem”, Naval Research
Logistics Quarterly, vol. 2, pp. 83-97, 1955.

[17] F. Wilcoxon, “Individual comparisons by ranking methods”, Biometrics Bulletin, vol. 1,
no. 6, pp. 80-83, 1945.

D4.3: Page 54 of 54

