
FP7-ICT-2011-7 288094 - eCOMPASS

eCO-friendly urban Multimodal route PlAnning Services for mobile uSers

FP7 - Information and Communication Technologies

Grant Agreement No: 288094
Collaborative Project

Project start: 1 November 2011, Duration: 38 months

D3.6 – Final Assessment of Multimodal Route Planning Algorithms

Workpackage: WP 3 - Algorithms for Multimodal Human Mobility
Due date of deliverable: 30 November 2014
Actual submission date: 30 November 2014

Responsible Partner: TomTom
Contributing Partners: CTI, ETHZ, KIT, TomTom

Nature: 4 Report 2 Prototype 2 Demonstrator 2 Other

Dissemination Level:
4 PU: Public
2 PP: Restricted to other programme participants (including the Commission Services)
2 RE: Restricted to a group specified by the consortium (including the Commission Services)
2 CO: Confidential, only for members of the consortium (including the Commission Services)

Keyword List: Tourist Trip Design Problem, Route planning, Orienteering Problem, Time
Window, Time Dependent Team Orienteering, Time dependent travel time, Multimodal, Public
transport.

The eCOMPASS project (www.ecompass-project.eu) is funded by the European
Commission, DG CONNECT (Communications Networks, Content and Technology
Directorate General), Unit H5 - Smart Cities & Sustainability, under the FP7
Programme.

D3.6: Page 1 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

The eCOMPASS Consortium

Computer Technology Institute & Press ’Diophantus’ (CTI) (coordinator),
Greece

Centre for Research and Technology Hellas (CERTH), Greece

Eidgenössische Technische Hochschule Zürich (ETHZ), Switzerland

Karlsruhe Institute of Technology (KIT), Germany

TOMTOM INTERNATIONAL BV (TOMTOM), Netherlands

PTV PLANUNG TRANSPORT VERKEHR AG. (PTV), Germany

D3.6: Page 2 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Document history
Version Date Status Modifications made by

0.1 08.10.2014 Table of Contents draft Damianos Gavalas, CTI
0.2 31.10.2014 First Draft Julian Dibbelt, KIT
0.3 05.11.2014 Second Draft Tobias Pröger, ETHZ
0.4 05.11.2014 Third Draft Damianos Gavalas, CTI
0.5 08.11.2014 Combined Draft Julian Dibbelt, KIT
0.6 11.11.2014 Fifth Draft Julian Dibbelt, KIT
1.0 13.11.2014 Sent to internal reviewers Felix König, TomTom
1.1 14.11.2014 Updated Section 3 Tobias Pröger, ETHZ
1.2 17.11.2014 Reviewers’ comments incorporated (sent

to PQB)
Felix König, TomTom

1.3 21.11.2014 PQB’s comments received Felix König, TomTom
1.4 30.11.2014 Final (sent to the Project Officer) Christos Zaroliagis, CTI

Deliverable manager

• Felix König, TomTom

List of Contributors

• Kateřina Böhmová, ETHZ

• Julian Dibbelt, KIT

• Damianos Gavalas, CTI

• Andreas Gemsa, KIT

• Felix König, TomTom

• Vlasios Kasapakis, CTI

• Matúš Mihalák, ETHZ

• Grammati Pantziou, CTI

• Tobias Pröger, ETHZ

• Ben Strasser, KIT

• Nikolaos Vathis, CTI

List of Evaluators

• Dionisis Kehagias, CERTH

• Florian Krietsch, PTV

Summary
In this deliverable we report on our final assessment of models and algorithmic solutions to multimodal
route planning developed in WP 3. After reviewing the eCOMPASS results obtained by month 20
in Tasks 3.3, 3.4, and 3.5, respectively, we discuss modeling extensions, new algorithmic approaches,
and rigorously experimentally evaluate them on real-world transportation networks. Based on
this evaluation, we identify the most applicable and technically most robust solutions, which are
integrated by project partners in WP 5 and extensively evaluated during the pilot in Berlin in WP 6.

D3.6: Page 3 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Contents

1 Introduction 5

2 Final assessment of robust multimodal route planning algorithms 6
2.1 Brief overview of D3.3 algorithmic approaches . 6
2.2 Extensions and New Solutions . 9

2.2.1 Network decomposition and parallelization for faster public transit routing . 9
2.2.2 Additional experimental details for user-constrained multimodal route planning 13
2.2.3 Assessment on the multimodal transportation network of Berlin 15

2.3 Conclusions . 17

3 Final assessment of multimodal route planning algorithms using methods from
stochasticity and machine learning 19
3.1 Brief overview of D3.4 algorithmic approaches . 19
3.2 New Improved Algorithm for Enumeration of all Solutions 22
3.3 Additional Methods for Assessing Robustness of Solutions 24

3.3.1 A Mean-Risk Model . 25
3.3.2 Norm-Based Approaches . 25

3.4 Experimental Results . 26
3.4.1 Experiments on Synthetic Data . 26
3.4.2 Description of the Data . 27
3.4.3 Modelling Challenges . 27
3.4.4 Compared Methods and Used Instances . 30
3.4.5 General Results . 31
3.4.6 Results over the Day . 33
3.4.7 Influence of the Test Instance . 37
3.4.8 Maximising the Similarity . 37

3.5 Conclusions . 42

4 Final assessment of algorithms for context-aware multimodal daily routes for
tourists 45
4.1 Brief overview of D3.5 algorithmic approaches . 45
4.2 Incorporating lunch breaks in multimodal tour planning 47
4.3 The Arc Orienteering Problem (AOP) . 48

4.3.1 Related work . 49
4.3.2 Approximation algorithms for the AOP . 50
4.3.3 Approximation Algorithms for the AOP in Undirected Graphs 51

4.4 The Mixed Team Orienteering Problem with Time Windows (MTOPTW) 53
4.4.1 Iterated Local Search Metaheuristic for the MTOPTW 54
4.4.2 A Simulated Annealing Metaheuristic for the MTOPTW 59
4.4.3 Assessment upon real data . 63

4.5 Conclusions . 65

5 Discussion and Final Remarks 66

D3.6: Page 4 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

1 Introduction

The aim of this deliverable is to document the results of Task 3.6. It describes progress made in
Work Package 3 with respect to the algorithmic solutions of month 20 (c. f. Deliverable D3.3.x,
D3.4.x, D3.5.x). The main goal of this deliverable is to assess the success of the algorithmic solutions
developed within WP 3 upon real public transportation network and to identify the technically most
robust solutions. This deliverable concludes WP 3.

Falsifiable
Hypotheses

Design

Experim
ent

A
n
a
lyze

Implemen
t

Figure 1: Algorithm Engineering cycle.

Background. The aim of WP 3 is to provide
novel methods for environmentally friendly routes
in urban public transportation networks. In partic-
ular, the goal is to develop mathematically sound
models for various (context-aware) route planning
scenarios arising in the field of urban human mo-
bility for city residents, commuters and tourists,
as well as to provide algorithmic methods for mul-
timodal routes in urban transportation networks
with respect to multiple criteria and high robustness
with a strong focus on the environmental footprint
of these routes. Algorithms and methods developed
within this work package will be implemented and
an extensive experimental evaluation regarding per-
formance and quality will be conducted following
the Algorithm Engineering paradigm [58, 59]. This paradigm differs from traditional Algorithmic
Design in Theoretical Computer Science in several key factors: instead of deriving asymptotic bounds
for a given algorithm’s performance with respect to worst-case inputs on abstract machine models,
typical and realistic instances are examined on real machines to measure the practical performance
of the implementation of a given algorithm. The results of this experimental evaluation are then
analyzed and used to guide the design of the algorithm, the improvement of which is then again
experimentally verified in a continuing feedback loop.

Objectives and Scope of Deliverable D3.6. The goal of WP 3 is the development of new
models and solutions to route planning in multimodal urban transportation networks. Within Task
3.6 specifically, we have deepened our understanding of the algorithmic nature of route planning
for multimodal urban transportation networks, rigorously tested our approaches on real world
transportation network data, and identified the most promising solutions. Results were integrated
by partners in WP 5 and tested in the pilot within the scope of WP 6. The research done so far in
WP 3 has led to several peer-reviewed scientific publications as well as several pending publications
(c. f. Technical Reports ECOMPASS-TR-003, TR-005, TR-006, TR-010, TR-011, TR-013, TR-015,
TR-019, TR-020, TR-021, TR-022, TR-023, TR-026, TR-030, TR-031, TR-032, TR-033, TR-034,
TR-047, TR-049, TR-055, TR-056, TR-057, TR-058, TR-060, TR-062, TR-063).

Outline. In Section 2, we discuss the progress made for robust multimodal route planning since
Deliverables D3.3.1 and D3.3.2. We describe extensions, model refinements for eco-friendly routing,
and experimental results. Section 3 reports on the final assessment for multimodal route planning
algorithms using methods from stochasticity and machine learning and the progress made since
Deliverables D3.4.1 and D3.4.2, and Section 4 shows the new achievements on context-aware
multimodal daily routes for tourists made since Deliverables D3.5.1 and D3.5.2. In Section 5, we
discuss and identify the most applicable and robust solutions to be integrated and prepared for
piloting. We also highlight changes applied as a reaction to YR2 recommendations.

D3.6: Page 5 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

2 Final assessment of robust multimodal route planning al-
gorithms

2.1 Brief overview of D3.3 algorithmic approaches

The main goal of Deliverable D3.3 (“New eco-aware models and solutions to robust multimodal
route-planning and their empirical assessment”) has been the design of new models and algorithmic
solutions to multimodal route-planning. We identified the core algorithmic challenges that arise for
fully multimodal urban networks as follows: Modeling issues and better solutions to subproblems,
preprocessing flexible enough for user-defined path constraints, capturing the richness of “best”
solutions in fully multimodal networks. In Deliverable D3.3, we proposed several interesting new
approaches to these challenges, which we summarize below.

Connection Scan. The problem of computing “best” journeys in public transportation networks
comes in several variants [53]: The simplest, called earliest arrival, takes a departure time as input,
and determines a journey that arrives at the destination as early as possible. If further criteria, such
as the number of transfers, are important, one may consider multi-criteria optimization [22, 29].
Finally, a profile query [20, 22] computes a set of optimal journeys that depart during a period of
time (such as a day). Traditionally, these problems have been solved by (variants of) Dijkstra’s
algorithm on an appropriate graph model. Well-known examples are the time-expanded and time-
dependent models [20, 34, 53, 57]. Recently, Delling et al. [22] introduced RAPTOR. It solves
the multi-criteria problem (arrival time and number of transfers) by using dynamic programming
directly on the timetable, hence, no longer requires a graph or a priority queue.

In Deliverable D3.3, we presented the Connection Scan Algorithm (CSA). In its basic variant, it
solves the earliest arrival problem, and is, like RAPTOR [22], not graph-based (c f. [20, 34, 53, 57]).
However, it is not centered around routes (as RAPTOR), but elementary connections, which are
the most basic building block of a timetable. CSA organizes them as one single array, which it
then scans once (linearly) to compute journeys to all stops of the network. The algorithm turns
out to be intriguingly simple with excellent spatial data locality. CSA is easily extended to handle
multi-criteria profile queries: For a full time period, it computes Pareto sets of journeys optimizing
arrival time and number of transfers, very efficiently.

Moreover, CSA does not make use of heavy preprocessing, thus, enabling dynamic scenarios
including train cancellations, route changes, real-time delays, etc. Our experiments on the dense
metropolitan network of London validated the approach. With CSA, we computed earliest arrival
queries in under 2 ms, and multi-criteria profile queries for a full period in 150 ms—faster than
previous algorithms. For details please refer to ECOMPASS-TR-021.

User-Constrained Multimodal Route Planning. In Deliverable D3.3, we presented UCCH
(User Constrained Contraction Hierarchies), the first multimodal speedup technique that handles
arbitrary mode-sequence constraints as input to the query—a feature unavailable from previous
techniques. Unlike Access-Node Routing [21], it also answers local queries correctly and requires
significantly less preprocessing effort. We revisited one technique, namely node contraction, that
has proven successful in road networks in the form of Contraction Hierarchies (CH), introduced by
Geisberger et al. [36]. We showed how CH can be used to compute shortest paths with restrictions
on sequences of transport modes. However, applying CH on the combined multimodal graph without
careful consideration either yields incorrect results to the Label Constrained Shortest Path Problem
with Mode Sequence constraints (LCSPP-MS) or predetermines the constraints automaton during
preprocessing. We therefore introduced UCCH, a practical adaption of Contraction Hierarchies
to LCSPP-MS that enables arbitrary modal sequence constraints as query input. By ensuring
that shortcuts never span multiple modes of transport, we extended Contraction Hierarchies in
a sound manner. Moreover, we showed how careful engineering further helps our scenario. As a

D3.6: Page 6 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

result, UCCH is the first, fast multimodal speedup technique that handles arbitrary modal sequence
constraints at query time—a problem considered challenging before. Besides not determining the
modal constraints during preprocessing, its advantages are small space overhead, fast preprocessing
time and the ability to implicitly handle local queries without the need for a separate algorithm.
Its preprocessing can handle huge networks of intercontinental size with many more stations and
airports than those of previous multimodal techniques. Our experimental study showed that, unlike
previous techniques, we can handle an intercontinental instance composed of cars, railways and
flights with over 50 million nodes, 125 million edges, and 30 thousand stations. With only 557 MiB
of auxiliary data, we achieved query times that are fast enough for interactive scenarios. For details
please refer to ECOMPASS-TR-006.

Multicriteria Multimodal. Online services for journey planning have become a commodity
used daily by millions of commuters. The problem of efficiently computing good journeys in
transportation networks presents several algorithmic challenges, and has been an active area of
research in recent years. Much focus has been given to the computation of routes both in road
networks [1, 19, 23, 37, 42, 61] and in scheduled-based public transit [5, 6, 8, 18, 22, 29, 52, 54, 60],
but these are often considered separately. In practice, however, users want an integrated solution that
can find the “best” way to get to their destination considering all available modes of transportation,
e. g., within a metropolitan area including buses, trains, driving, cycling, taxis, an walking. We refer
to this as the multimodal route planning problem.

In fact, any public transportation network necessarily has a multimodal component, since journeys
require some amount of walking. Existing solutions [6, 8, 20, 22, 29] handle this by predefining
transfer arcs between nearby stations, and running a search algorithm on the public transit network
to find the “best” journey. Unlike in road networks, however, defining “best” is not straightforward.
For example, while some people want to arrive as early as possible, others are willing to spend a
little more time to avoid extra transfers. Most recent approaches therefore compute the Pareto
set [41] of non-dominating journeys optimizing multiple criteria, which is practical even for large
metropolitan areas [22, 54].

Extending public transportation solutions to a full multimodal scenario (with unrestricted
walking, biking, and taxis) may seem trivial at first: One could just incorporate routing techniques
for road networks [19, 37, 42] to solve the new subproblems. Unfortunately, meaningful multimodal
optimization needs to take more criteria into account, such as walking duration and costs. Some
people are happy to walk 10 minutes to avoid an extra transfer, while others are not. In fact, some
will walk half an hour to avoid using public transportation at all. Taking a taxi all the way to the
airport is a good solution for some; users on a budget may prefer a cheaper solution. Not only
do these additional criteria significantly increase the Pareto set [24, 35], but some of the resulting
journeys tend to look unreasonable, as Figure 2 illustrates.

Given the limitations of current approaches, in Deliverable D3.3 we revisited the problem of
finding multicriteria multimodal journeys on a metropolitan scale. Instead of optimizing each mode
of transportation independently [30], we argued that most users optimize multiple criteria, e. g.,
travel time, convenience, and costs. While this produces a large Pareto set, we proposed using
fuzzy logic [31, 68] to filter it in a principled way to a modest-sized set of representative journeys.
This postprocessing step is not only quick, but can also be user-dependent, incorporating personal
preferences. Building on the algorithmic developments of [22, 27, 37] allowed us to answer exact
queries optimizing time and convenience in less than two seconds within a large metropolitan area,
for the simpler scenario of walking, cycling, and public transit. To accelerate the queries further, we
also proposed heuristics (still multicriteria) that are significantly faster, and closely match the top
journeys in the Pareto set. By thorough experimental evaluation of all algorithms in terms of both
solution quality and performance, we showed that our approach yields high quality results while being
fast enough for interactive applications. Moreover, since it does not rely on heavy preprocessing, it
can be used in fully dynamic scenarios. For details please refer to ECOMPASS-TR-022.

D3.6: Page 7 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 2: Exemplary multicriteria multimodal query on London with criteria arrival time, number
of transfers, walking duration, and cost. The left figure shows the full Pareto set (65 journeys),
while the right figure shows the three journeys with highest score. Each dot represents a transfer
and included transportation modes are walking (thin black), taxi (thick purple), buses (thin red),
and tube (other thick colors).

D3.6: Page 8 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Preprocessing many-to-many multimodal time-dependent travel times for the Tourist
Trip Design. In their most-inner loop, algorithms for tourist trip design optimization (c. f.
Section 4) require the pairwise travel time distance between points of interest (POIs). Typically,
in the literature such distances are assumed to be already available in a two-dimensional matrix
quadratic in the number of POIs. In our scenario however, we consider multimodal travel times
between POIs also to be dependent on the time of day. In WP 3, we developed algorithms to
precompute such a time-dependent distance matrix between POIs. This preprocessing step ensures
fast travel time lookup during tourist trip optimization. In Deliverable D3.5.2, we evaluated the
performance of our approach for POIs chosen in the multimodal network of the greater Athens
area. This public transit network has 7 778 stops, 570 routes, 26 192 trips, 1 003 188 daily departure
events; in the time-dependent route model graph [57] this results in 29 055 vertices and 63 424 arcs.
The walking network consists of 287 003 vertices and 685 850 arcs. Points of interests were obtained
as described in Deliverable D3.2, however, the size of that data set has grown to 557 POIs total.
As of month 20, evaluated on a single core of a 4x 12-core AMD Opteron-6172 machine clocked
at 2.1 GHz, preprocessing this network took 162 seconds, after which 40 283 vertices remained in
the core network. We ran 557 multimodal one-to-all profile (24h range) queries on this core, and
acquired a multimodal distance matrix with 71 145 759 entries total. Computing these distances
took approximately 105 minutes. Each of the 557 × 557 POI combinations had on average about
229 distinct walking/public transportation journeys throughout the day.

2.2 Extensions and New Solutions

In this deliverable, we build upon the algorithmic approaches summarized above. The main efforts
in our research in the context of Deliverable D3.6 are: model extensions to further eCOMPASS
objectives as well as parallelization and network decomposition to speedup algorithmic performance of
our approaches. We show the practicability of our new approaches by means of detailed experimental
evaluations. More specifically, in Section 2.2.1 we show how to accelerate our Connection Scan
Algorithm, in Section 2.2.2 we discuss more detailed experiments on UCCH, in Section 2.2.3 report
our final assessment on the transportation network of Berlin, in particular, we discuss model
extensions developed for eCOMPASS for our multimodal multi-criteria route planning approach and
report updated statistics on preprocessing travel time profiles for use in the TTDP problem.

2.2.1 Network decomposition and parallelization for faster public transit routing

Here, our approach uses the Connection Scan Algorithm (CSA) [26] as its core. As described above
in Section 2.1, CSA is a simple algorithm that does not use a priority queue and does not rely on
computing auxiliary data in a preprocessing phase. Its strength lies in its very low running time
constants allowing it to solve even moderately sized timetable networks such as the London urban
region in about 2 ms for earliest arrival queries, 150 ms for full day profile queries. However, sublinear
running times are necessary on larger country-scale timetable networks such as the one used by
bahn.de. We therefore introduce an additional preprocessing phase. We adapt the basic ideas of
CRP [19, 25] and its multi-level overlay predecessors [60, 43] to timetables. Previous studies [7]
have shown that directly applying speed-up techniques designed for road graphs to timetables does
not work. It is crucial to adapt the algorithms to the special timetable structure. CSA’s ability to
handle moderately sized timetable networks efficiently makes our approach practical. Recent studies
[22, 26] have shown that often algorithms not based on Dijkstra’s [28] work better on timetable
networks. We describe the first preprocessing based speedup technique that at its core is not based
on Dijkstra’s algorithm.

Accelerating Connection Scan. We utilize the core idea from CRP [19, 25]. It consists of
subdividing a road graph into cells and computing for each cell a replacement graph that preserves
shortest paths. Translated into the timetable setting, we recursively partition the stop set into k

D3.6: Page 9 of 72

bahn.de

FP7-ICT-2011-7 288094 - eCOMPASS

Table 1: Instance size

#stops 252 374
#connections 46 218 148
#trips 2 395 656
#footpaths 103 535
#FIFO-routes 229 666
#TE-nodes 82 017 803
#TE-arcs 202 073 458

Table 2: Parallelized running time needed to compute overlays.

S
IM

D

tr
an

sf
er

running
time [s]

◦ ◦ 45.4
• ◦ 49.2
◦ • 2007.8
• • 1794.7

cells over ` levels. The top cell is the full stop set. We define a connection to be interior (exterior)
to a cell z if it (does not) departs in z. The base algorithm is correct if it processes all connections
adjacent to a transfer in the sequence of an optimal journey. We therefore only preserve such
connections. For every cell z we compute a set T (z) of interior connections with the property: For
every optimal journey j departing and arriving outside of z a journey j′ with the same source and
target stop, source time and quality exists such that all connections adjacent to a transfer in j’s
sequence are in T (z) or exterior to z. These connections are the transit connections of z. In this
section we use a T (z)-computing black box. We define the long distance connection set D (z) of a
cell z as the set of all transit connections of all direct children of z, i. e., D (z) =

⋃
T (zchild). (On

the lowest level all interior connections are in D (z).) At query time we merge all D (z) of cells z
containing the source or target stop. This union is passed to base Connection Scan algorithm. The
main idea for acceleration is that this union does not contain transit connections of places far away
from the source or target stops. The stops are partitioned using a graph partitioner [47]. Two stops
are mapped onto the same node if there is a transfer between them. This prohibits transfers crossing
borders. An edge exists if a corresponding connection exists and is weighted by the number of such
connections.

We ran experiments on a dual 8-core Intel Xeon E5-2670 processor clocked at 2.6 GHz, with
64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. We use g++ 4.7.1 with -O3.
An enabled feature is marked by a “•” and a disabled one by a “◦”. SIMD is done using SSE with
registers containing 4 integers of 32 bits. We ran 104 queries with random source and target stops
and a random source time within the first 24 hours.

Instance. Our test instance is based on the data of bahn.de during winter 2011/2012. The data
contains European long distance trains, German local trains, many buses inside of Germany and
even more exotic vehicles such as rack railways in the Alps. To obtain an instance comparable in
size with [6] we extracted all trips regardless of their day of operation and consider two successive
identical days. We removed data noise such as exactly duplicated trips, vehicles driving at more
than 300 km/h or footpaths at more than 50 km/h. More than half of the connections are buses.
Minimum change times are modeled as transfer loops and footpaths as interstop transfer arcs. We
transitively closed the transfers and obtain the sizes reported in Table 1. For comparison with [22]
we indicate the number of FIFO-routes and for comparison with [6] the time-expanded (TE) graph
size.

D3.6: Page 10 of 72

bahn.de

FP7-ICT-2011-7 288094 - eCOMPASS

Table 3: Number of long distance and loop connections averaged per all cells on the same level.
The top level is 5.

only time Ta (z) with transfers Tt (z)
level |D (z)| |L (z)| |D (z)| |L (z)|

0 193 029 11 232 193 029 11 109
1 70 781 15 204 115 660 14 042
2 93 933 20 046 138 036 18 836
3 125 642 24 046 181 689 24 065
4 154 790 25 155 222 143 24 596
5 168 080 0 277 454 0

Table 4: Running times for the accelerated algorithm split up into the merge and scan phases and
the number of processed connections.

ra
n

ge

ac
ce

l. merge scan processed
[ms] [ms] conn /106

◦ ◦ — 4 173 812
◦ • 12 159 1.2
• • 6 72 0.6

Computing Overlays. In Table 2 we report the times needed to compute the transit sets.
To compute the Ta (z) we set all transfer loops to zero in this experiment. “transfer” indicates
whether Tt (z) or Ta (z) is computed. All 16 cores are used. We recursively subdivide the stops 5
times into 3 partitions. Ta (z) can be computed in under a minute enabling real time updates. The
alternative Tt (z) can be computed in half an hour, which should be fast enough for most applications.
SIMD-speedup is smaller than in the base query case because following journey pointers is sequential.
Further interleaving pointers from different queries destroys cache locality which explains the slight
slowdown for Ta (z). We use Tt (z) in all query experiments.

Table 3 shows the sizes of the overlays corresponding to Table 2. Figure 3 shows how the
processing time is distributed among the various cells for the transfer transit connections Tt (z).
It shows that computing the transit connections for metropolitan areas on the lowest level is very
expensive. The top cities appear decreasing by population count which is reasonable. This huge
variance is why we decided to parallelize inside of the blackbox instead of running several of them
in parallel to avoid unequal load balances. When computing Ta (z) the same Berlin cell needs the
maximum amount of time over all cells but it only needs 0.54s. Further the maximum amount of
interior border stops is 313 (but for a different cell).

Earliest Arrival Time and Local Queries. We examine in Figure 4 the speedup of local
queries. We use a geo-rank instead of the common Dijkstra-rank used for road networks. With the
later it is unclear what source time to use. Further, especially in rural areas, travel times between
neighboring villages can be huge. A Dijkstra-rank does not recognize these queries as being local. A
geo-rank picks a random source stop and orders all other stops by geographical distance. It runs
queries towards the 2r-th stop. The geo-rank of the query is r. Local queries are accelerated on
average by a factor of up to 6. The figure also shows that the running times have a lot of variance.
The largest outliers are queries where no journey exists. With random source and target stops our
query averages at 8.66ms which corresponds to a maximum geo-rank.

Accelerated Profile Queries. We evaluate in Table 4 the speedup of our technique. We assume
that a EA time query (≈ 8.66ms) was run to compute a minimum travel time τ while the user selects
the time interval. We therefore only consider queries where a journey exists. Journey pointers were

D3.6: Page 11 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 3: The number of entry connections against the time needed to compute the transfer transit
connections. The data points are annotated with the geographical regions that they belong to.

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●●●

●
●

●●

●
●●

●

●
●

●

●

● ●●

●

●

●

●

●●●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●
●
●

●

●
●
●●●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●
●●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●●
●●
●
●

●

●

●

●
●

●●

●
●

4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

geo rank

ru
nn

in
g

tim
e

[m
s]

Figure 4: Geo-rank showing the running times of the tailored EA query

D3.6: Page 12 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Table 5: Comparing size figures of our input instances. The column “Col.” indicates whether we
use the coloring approach to model the railway subnetwork. The bottom two instances are taken
from [21].

Public Transportation Road

Network Stations Connections Col. Nodes Edges Density

ny-road-rail 16 897 2 054 896 • 579 849 1 527 594 1 : 56
de-road-rail 6 822 489 801 • 5 055 680 12 378 224 1 : 749
europe-road-rail 30 517 1 621 111 • 30 202 516 72 586 158 1 : 1 133
wo-road-rail-flight 31 689 1 649 371 • 50 139 663 124 625 598 1 : 1 846

de-road-rail(long) 498 16 450 ◦ 5 055 680 12 378 224 1 : 10 711
wo-road-flight 1 172 28 260 ◦ 50 139 663 124 625 598 1 : 139 277

computed. “accel” indicates whether transit sets were used. “range” indicates whether a source
and target time restricted the scan. The source time τs is chosen at random and the target time τt
is set to τs + 2τ . Using transit connections achieves a speedup of 24. This is less than the ratio
of processed connections because the relevant connection data is no longer adjacent in memory.
Restricting the time interval yields another factor 2 totaling in a speedup of 49 over a CSA profile
baseline. Interestingly the number of processed connections is still large, which explains why the
scan phase dominates.

Conclusion. Employing network decomposition techniques and applying multi-core and SIMD
parallelization, we achieve running times of 8.7 ms for the earliest arrival time problem and of
78 ms for the profile problem on a large-scale national timetable networks with secondary transfer
optimization. Depending on the formalization our preprocessing is either very fast (1 min) or fast
(30 min). For details please refer to ECOMPASS-TR-034. However, detailed evaluation also shows
that urban subnetworks are hard to decompose and remain at the core of problem. Hence, for
urban route planning purposes, our query acceleration technique is currently less applicable. We
will further investigate this in future research outside the scope of eCOMPASS.

2.2.2 Additional experimental details for user-constrained multimodal route planning

For our User-Constrained Contraction Hierarchies technique, we conducted further experiments,
especially to demonstrate why Label Constrained Shortest Paths are a required ingredient for
multimodal route planning. As before, we conducted our experiments on an Intel Xeon E5430
processor running SUSE Linux 11.1. It is clocked at 2.66 GHz, has 32 GiB of RAM and 12 MiB of L2
cache. The program was compiled with GCC 4.5, using optimization level 3. Our implementation is
written in C++ using the STL and Boost. We use our own custom implementations for most data
structures. In particular, we represent graphs as adjacency arrays, and as a priority queue we use a
4-ary heap. All runs are sequential for comparison.

Inputs We assemble a total of six multimodal networks where two are imported from [21]. Their
size figures are reported in Table 5. For ny-road-rail, we combine New York’s foot network with
the public transit network operated by MTA [51]. We link bus and subway stops to road intersections
that are no more than 500 m apart. The de-road-rail network combines the pedestrian and railway
networks of Germany. The railway network is extracted from the timetable of the winter period
2000/01. It includes short and long distance trains, and we link stations using a radius of 500 m.
The europe-road-rail network combines the road (as in car) and railway networks of Western
Europe. The railway network is extracted from the timetable of the winter period 1996/97 and

D3.6: Page 13 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Table 6: Query performance of UCCH compared to plain multimodal Dijkstra and Access-Node
Routing. Figures for the latter are taken from [21], which were obtained on a different machine. We
thus scale the running time with respect to Dijkstra.

Dijkstra ANR UCCH

Settled Time Settled Time Speed- Settled Time Speed-
Network Automaton Nodes [ms] Nodes [ms] Up Nodes [ms] Up

ny-road-rail foot-and-rail 404 816 226 — — — 25525 13.61 17
de-road-rail foot-and-rail 2 611 054 2 005 — — — 18 275 12.78 157
europe-road-rail car-and-rail 30 021 567 23 993 — — — 90579 53.78 446
wo-road-rail-flight car-and-flight 36 053 717 33 692 — — — 42056 26.72 1 260
wo-road-rail-flight hierarchical 36 124 105 35 261 — — — 126 072 70.52 500
wo-road-rail-flight everything 25 267 202 23 972 — — — 71389 50.77 472

de-road-rail(long) foot-and-rail 2 735 426 2 075 13 524 3.45 602 12 509 3.13 663
wo-road-flight car-and-flight 36 582 904 33 862 4 200 1.07 31 551 1 647 0.67 50 540

stations are linked within 5 km. The wo-road-rail-flight network is a combination of the road
networks of North America and Western Europe with the railway network of Western Europe and
the flight network of Star Alliance and One World. The flight networks are extracted from the
winter timetable 2008. As radius we use 5 km.

Both de-road-rail(long) and wo-road-flight are from [21]. The data of the Western Euro-
pean and North American road networks (thus Germany and New York) was kindly provided to us
by PTV AG [56] for scientific use. The timetable data of New York is publicly available through
General Transit Feeds [38], while the data of the German and European railway networks was kindly
provided by HaCon [40]. Unlike the data from HaCon, the New York timetable did not contain any
foot path data for short transfers between nearby stops (as typically defined by the operator). Thus,
we generated artificial foot paths with a known heuristic [20].

Our instances vary in the fractional size of their public transit subnetwork with respect to the
total network size. We call the fraction of linked nodes in a subgraph density (see last column of
Table 5). Our densest network is ny-road-rail, which also has the highest number of connections.
On the other hand, de-road-rail(long) and wo-road-flight are rather sparse. However, we
include them to compare our algorithm to Access Node Routing (ANR). Note that we take the
figures for ANR from [21]. Since they used a different machine, we scale the running time figures by
comparing the running time of Dijkstra’s algorithm on our machine to theirs

Detailed query time analysis In this experiment we evaluate the query performance of UCCH
and compare it to Dijkstra and ANR (where figures are available). Results are presented in Table 6.
We observe that we achieve speedups of several orders of magnitude over Dijkstra, depending on the
instance. Generally, UCCH’s speedup over Dijkstra correlates with the ratio of core nodes after
preprocessing (thus, indirectly with the density of transfer nodes): the sparser our networks are
interconnected, the higher the speedups we achieve. On our densest network, ny-road-rail, we
have a speedup of 17, while on wo-road-flight we achieve query times of less than a millisecond—a
speedup of over 50,540. To further highlight how the density of the network affects the speedup,
Figure 5 plots the speedup of UCCH on each instance subject to its density. Comparing UCCH to
ANR, we observe that query times are in the same order of magnitude, UCCH being slightly faster.
Note that we achieve these running times with significantly less preprocessing effort.

Detailed path properties Table 7 reports the impact of integrating modal sequence constraints
on the paths output by the algorithm. It does so by evaluating three main figures: The percentage
of the total number of paths that utilize a certain transportation mode (foot, car, rail with transfers,

D3.6: Page 14 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Table 7: Evaluating the impact of integrating modal sequence constraints on the paths.

Mode Used in % Paths #Modal Changes Stretch

Network Automaton Foot Car Rail Flight Avg. Max. Avg. Max. Ident. [%]

ny-road-rail everything 100 — 57 — 4.1 22 — — —
ny-road-rail foot-and-rail 100 — 57 — 1.1 2 1.07 2.83 64

de-road-rail everything 100 — 100 — 6.8 24 — — —
de-road-rail foot-and-rail 100 — 100 — 2.0 2 1.08 2.94 87

europe-road-rail everything — 100 41 — 1.2 10 — — —
europe-road-rail car-and-rail — 100 41 — 0.8 2 1.03 1.46 92

wo-road-rail-flight everything — 100 13 85 2.2 12 — — —
wo-road-rail-flight hierarchical — 100 9 85 1.8 4 1.08 2.25 89
wo-road-rail-flight car-and-flight — 100 — 85 1.7 2 1.06 2.34 84

and flight with transfers), the average and maximum number of interchanges between transportation
modes along the journeys, and the average and maximum factor by which the travel time increases
when mode sequence constraints are enabled. Note that for the latter, we only count paths that
actually differ from the unconstrained one, additionally reporting the amount of paths where mode
sequence constraints have no impact (Ident.). Each instance in Table 7 is evaluated on both
an appropriate constrained automaton as well as the everything automaton, which essentially
corresponds to running unrestricted queries.

10−5 10−4 10−3 10−210
1

10
2

10
3

10
4

10
5

Density

Sp
ee

du
p

Figure 5: Evaluating the speedup of UCCH
subject to the density of the input from Table 5.

We observe that on ny-road-rail 57 % of the
paths utilize the rail network, regardless whether
we constrain paths by the foot-and-rail automa-
ton. However, 36 % of the paths are indeed dif-
ferent, and enabling constraints reduces the av-
erage number of modal interchanges by a factor
of almost four with only a 7 % increase in travel
time. Figures for de-road-rail are similar: All
paths use the rail network, and enabling constraints
reduces the number of modal interchanges by a
factor of almost 3.5 with only little increase in
travel time. On our sparser long-distance networks
the effects are less pronounced. For example, on
wo-road-rail-flight, we see that 89 % of the
paths already follow a hierarchical use of trans-
portation modes, and the difference in the number
of modal interchanges decreases only by 0.4. How-
ever, while this difference may seem small, we argue that model constraints are nevertheless important,
since our experiment shows that in 11 % of the cases the (unconstrained) path violates the modal
constraints, which may render it completely infeasible to the user.

For a detailed discussion of UCCH please refer to ECOMPASS-TR-058.

2.2.3 Assessment on the multimodal transportation network of Berlin

Improved Multimodal Multi-Criteria Route Planning. From M20 onwards, we have adapted
our final assessment of the multimodal multi-criteria prototype to the data sources available for the
metropolitan area of Berlin. The considered multimodal network of Berlin consists of public transit,
walking, taxi, and points of interests. The public transit network provided to us by the Verkehrsver-
bund Berlin-Brandenburg (VBB) has 12 876 stops, 7 450 routes, 55 250 trips, and 1 230 735 daily

D3.6: Page 15 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 6: Multi-criteria optimization of multimodal journeys in Berlin, Germany. For the given
source and destination locations several alternative journeys are suggested based on arrival time,
walking duration, number of transfers. Eco-friendliness estimates are visualized as colored leafs,
where green indicates the most ecological, dark red the most un-ecological travel alternative. This
example shows that eco-friendly means of traveling are available at just small costs of additional
travel time.

departure events. The walking network consists of 357 018 vertices and 822 196 arcs. The taxi
network consists of 175 918 vertices and 332 869 arcs. The multimodal overlay consists of 12 972
vertices and 38 916 links.

To enable the eco-awareness feature of our prototype we have added CO2 emission calculations
to our implementation, based on road characteristics, travel speed and distance traveled, as well as
the mode of transportation used. Since VBB, the association of transit operators in Berlin, could
not provide us with detailed consumption data, we instead relied on data provided by the UK
Department of Energy & Climate Change and Department of Environment, Food & Rural Affairs12.

Figure 6 shows an example of a location-to-location query as produced by our multimodal
multi-criteria route planning prototype with emission estimates. For a quantitative evaluation, we
ran random queries on a single core of an 8-core Intel Xeon E5-2670 processor clocked at 2.6 GHz,
with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache, compiling on g++ 4.7.1
with optimization level -O3. The results are summarized in Table 8. It shows that eco-friendlier ways
means of traveling can be chosen among a set of increasingly slower journeys. To obtain a clearer
picture, we distinguish between journeys solely based on taxi or pure walking as well as journeys
based on a mix of public transit use and walking. Please note that travel times for taxi do not

12008 Guidelines to Defras GHG Conversion Factors: Methodology Paper for Transport Emission Factors, July
2008, http://www.gov.uk/defra

22013 Government GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors,
July 2013, http://www.gov.uk/defra

D3.6: Page 16 of 72

http://www.gov.uk/defra
http://www.gov.uk/defra

FP7-ICT-2011-7 288094 - eCOMPASS

Table 8: Relative increase in travel time versus decrease in consumption. We report average figures
for journeys made of a single taxi ride, the fastest public transit and walking journey, the second
fastest public transit and walking journey, the second-most eco-friendly public transit and walking
journey, the first-most eco-friendly public transit and walking journey, and finally average figures for
walking-only journeys. We take the fastest public transit and walking journey as a baseline.

Taxi only 1st fastest 2nd fastest 2nd eco 1st eco Walking only

Rel. travel time 46.4 % 100.0 % 109.4 % 119.2 % 164.3 % 325.5 %
Rel. consumption 219.7 % 100.0 % 97.1 % 86.8 % 79.2 % 0.0 %

account for the time spent waiting for the taxi. Likewise, if the same journey would be taken by a
private car, one would need to consider additional time need for parking and unparking. Accounting
for these effects with eight additional minutes on an average journey would increase taxi-only relative
travel time to 60–70 %, easily making it the least favorable mode of transportation in terms of
travel time–consumption tradeoff. However, even for the public transit mode of transportation CO2

emission savings can be realized by choosing between bus, tram, underground, as well as different
amounts of walking. For the second-most eco-friendly route we see an estimated decrease of 13.2 %
emissions at only 19.2 % increase in travel time (which corresponds to about 9 minutes additional
travel time in total).

Improved TTDP travel time matrix preprocessing. It was suggested to apply parallelization
to the TTDP travel time preprocessing. Indeed, since the required output is a time-dependent
matrix between all points of interests (POIs), its computation is easily parallelized per POI.

We reran our experiments on a dual 8-core Intel Xeon E5-2670 processor clocked at 2.6 GHz,
with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. (Please note that this
is a fairly recent, two year old machine, much newer than the one used in Deliverable D3.5.) Our
implementation is done in C++ (with OpenMP for parallelization), compiling on g++ 4.7.1 with
optimization level -O3.

Points of interests for Berlin were obtained as described in Deliverable D3.2. For Berlin our data
set contains 733 POIs total. After preprocessing we acquire a multimodal distance matrix with
143 327 755 entries total. Computing these distances on a single core takes approximately 76 minutes.
Applying multi-core parallelization, computation time is reduced to 11 minutes. Each of the 733 ×
733 POI combinations has on average about 267 distinct walking/public transportation journeys
throughout the day. The average walking/public transportation travel time is about 46 minutes, the
maximal travel time is about 4.2 hours of walking during the nightbreak of public transit operation.

2.3 Conclusions

In Task 3.6, regarding techniques for robust multimodal route planning, we investigated network
decomposition techniques, multi-core and SIMD parallelization to accelerate route planning queries
(extending our previous approaches from Deliverable D3.3.1 and D3.3.2). While parallelization
proved very helpful in the context of eCOMPASS, we have learned that while (at least our current
approach to) network decomposition has large positive effects on transportation networks of national
size, it does not contribute to relevant speedups on urban transportation networks, which are in the
focus of the eCOMPASS project.

Furthermore, we have extended our multimodal multi-criteria route planning prototype to
the transportation network of Berlin, adding the assessment of eco-friendliness based on CO2

consumption estimates obtained utilizing a principled approach. The multi-criteria optimization
approach enables us to deliver the end-user several good alternative travel plans, offering travel
choices that range from fast to more environmentally sustainable. By increasing eco-awareness, we

D3.6: Page 17 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

aim to enable end-users to establish more eco-friendly traveling styles.
From our final assessment we conclude that both our multimodal multi-criteria route planning

prototype and the module for preprocessing TTDP travel time profile distances are the most apt for
inclusion in the eCOMPASS pilot. These prototypes will hence be integrated by WP 5 partners in
preparation of the WP 6 Berlin pilot.

D3.6: Page 18 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

3 Final assessment of multimodal route planning algorithms
using methods from stochasticity and machine learning

3.1 Brief overview of D3.4 algorithmic approaches

Consider a dense public transportation network in which buses, trams, metros, etc. operate with
high frequency. Imagine that you would like to use public transport to travel from home to some
important appointment that takes place at time tA. On one hand, one would not like to arrive much
earlier than tA; on the other hand, it is important to really arrive not later than tA. In an ideal
situation, every bus and every tram is on time, and it sufficient to compute a route that is planned
to leave the starting point as late as possible but still arrives at the destination before time tA.
However, in reality, traffic can be congested due to a huge amount of vehicles on the street, road
work, accidents, etc. Thus, in reality, delays can always occur, so we are interested in the following
natural problem. Given two stops s, t, and a time tA, we are searching for a robust route from s to
t that likely arrives before time tA, but still leaves s at a “reasonable” time. In Deliverable D3.4
we described an approach for finding such robust routes. Additional details on the algorithms can
be found in eCOMPASS-TR-023. This deliverable presents an improvement of the algorithms. In
particular, we present an improvement of the subroutine that generates all feasible routes from s
to t. To compare the new methods with the ones presented in D3.4, we performed an extensive
experimental study on historic real-world delay data from Zürich.

Mathematical Preliminaries Given a directed graph G = (V,E) and a vertex v ∈ V , the
in- and out-neighbourhoods of v are denoted by N+(v) and N−(v), respectively. A walk in G
is a sequence of vertices 〈v0, . . . , vk〉 such that (vi−1, vi) ∈ E for all i ∈ [1, k]. A path is a walk
π = 〈v0, . . . , vk〉 such that vi 6= vj for all i 6= j in [0, k], i.e. a path is a walk without crossings.
A path π = 〈s = v0, v1, . . . , vk−1, vk = t〉 is called an st-path, and every contiguous subsequence
π′ = 〈vi, . . . , vj〉 of π is called a subpath. The length of a path (or walk) π = 〈v0, . . . , vk〉 is k,
the number of edges in the walk, and is denoted by |π|. A path π of length |π| ≥ 1 is called
non-degenerate. For a walk w = 〈v0, . . . , vk〉 and some vertex v ∈ V , we write v ∈ w if and only if
there exists an index i ∈ [0, k] with v = vi. For two walks w1 = 〈u0, . . . , uk〉 and w2 = 〈v0, . . . , vl〉
with uk = v0, w1 · w2 denotes the concatenation 〈u0, . . . , uk = v0, . . . , vl〉 of w1 and w2. Given two
integers i, j, we define the function δij (Kronecker delta) as 1 if i = j and 0 if i 6= j.

Model A public transportation network is a directed graph G = (V,E) plus a set of non-degenerate
paths (called lines) L in G, such that every vertex and each edge of G belongs to at least one path in
L. In other words, the set of lines covers all the vertices and edges of G. We explicitly distinguish two
lines that contain the same vertices but have opposite directions (these may be operated under the
same identifier in reality). The vertices of G are also called stops. In the following, let M =

∑
l∈L |l|

denote the sum of the lengths of all lines. For β ∈ N, a sequence of lines r = 〈l1, . . . , lβ〉 is called an
st-route if there exist β + 1 stops v0 := s, v1, . . . , vβ−1, vβ := t such that both vi−1 and vi are stops
on the line li, and the line li visits vi−1 (not necessarily directly) before vi. Notice that a line might
occur multiple times in r; however, we assume that any two consecutive lines in r are different. For
i ∈ {1, . . . , β − 1}, we say that a transfer between the lines li and li+1 occurs at the transfer stop vi.
Notice that there might exist multiple transfer stops between two lines. The length of the route r is
|r|, i.e. the number of transfers plus one. We say that a path π follows the route 〈l1, . . . , lβ〉 if π is
the concatenation of non-degenerate subpaths of l1, . . . , lβ , in this order. For two vertices s, t ∈ V
and an integer β ∈ N, let Rβst denote the set of all st-routes with length at most β, i.e. the set of all
st-routes with at most β − 1 transfers. Furthermore, we define the L-distance from s to t as the
length of a minimum st-route (i.e., an st-route with minimum number of transfers), and denote it
by dLG(s, t).

D3.6: Page 19 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Trips and Timetables While the only information associated with a line itself are its consecutive
stops, it usually is operated multiple times per day. Each of these concrete realisations that departs
at a given time of the day is called a trip. Let τ be a trip. We denote the line associated with τ by
L(τ). If L(τ) contains some stop v ∈ V , then A(τ, v) denotes the arrival time of τ at v, and D(τ, v)
denotes the departure time of τ at v. In the following, we assume time to be modelled by integers.
For a given trip τ , we require A(τ, v) ≤ D(τ, v) for every stop v ∈ L(τ). Furthermore we require
D(τ, v1) ≤ A(τ, v2) for every two stops v1, v2 ∈ V where L(τ) visits v1 before v2. A set of trips is
called a timetable. We distinguish between

1. the planned timetable Tplanned. We assume it to be periodic, i.e., every line realised by some
trip τ will be realised by a later trip τ ′ again (not necessarily on the same day).

2. recorded timetables Ti that describe how various lines were operated during a given time period
(i.e., on a concrete day or during a concrete week). These recorded timetables are concrete
executions of the planned timetable.

In the following, timetable refers both to the planned as well as to a recorded timetable. We assume
that timetables respect the FIFO property, i.e. for two trips τ1, τ2 with L = L(τ1) = L(τ2) we
either have A(τ1, v) ≤ D(τ1, v) ≤ A(τ2, v) ≤ D(τ2, v) for every stop v ∈ L, or A(τ2, v) ≤ D(τ2, v) ≤
A(τ1, v) ≤ D(τ1, v) for every stop v ∈ L. The FIFO property intuitively states that two buses or
trams of the same line do not overtake each other.

Goal For the rest of this deliverable, we assume that s, t ∈ V are the departure and the target
stop, β ∈ N is the maximum number of allowed (not necessarily different) lines, R = Rβst is the set
of all st-routes with length at most β, tA is the latest allowed arrival time at t, and T is a set of
recorded typical timetables for comparable time periods (e.g., daily recordings for the past Mondays).
A journey consists of a departure time tD, a route 〈l1, . . . , lα〉 ∈ Rαst with α ≤ β, and a sequence of

transfer stops 〈s(1)
CH , . . . , s

(α−1)
CH 〉. The intuitive interpretation of such a journey is to depart at stop

s at time tD, take the first line l1 (more precisely, the first arriving trip of the line l1), and for every

i ∈ {1, . . . , α− 1}, leave li at stop s
(i)
CH and take the next arriving line li+1 immediately. Our goal is

to compute a recommendation to the user in form of one or more (robust) journeys from s to t that
will likely arrive on time (i.e., before time tA) on a day for which the concrete travel times are not
known yet. We formalise the notion of robustness later.

A Similarity-Based Approach In Deliverable D3.4 we investigated how a general approach to
robust optimisation designed by Buhmann et al. [13] can be applied for computing robust journeys.
Let T ∈ T be a timetable and γ ∈ N0. We define an approximation set Aγ(T) as the set of all
routes r ∈ R such that there exists a journey along r that departs at s at time tA − γ or later, and
that arrives at t at time tA or earlier (both times refer to timetable T). The major advantage of
this definition over classical approximation definitions (such as the multiplicative approximation)
is that we can consider multiple recorded timetables at the same time, and that the parameter γ
still has the direct interpretation as the time that we depart before tA. Especially, if we consider
approximation sets Aγ(T1), . . . , Aγ(Tk) for T1, . . . , Tk ∈ T , every approximation set contains only
routes that are realised in the same time period [tA − γ, tA], and that are therefore comparable
among different approximation sets.

The approach of Buhmann et al. [13] expects that exactly two timetables T1, T2 ∈ T are given.
To compute a robust route when only two timetables are available, we consider Aγ(T1)∩Aγ(T2): the
only chance to find a route that is likely to be good in the future is a route that was good in the past
for both recorded timetables. The parameter γ determines the size of the intersection: if γ is too
small, the intersection will be empty. If γ is too large, the intersection contains many (and maybe
all) st-routes, and not all of them will be a good choice. Assuming that we knew the “optimal”
parameter γOPT , we could pick a route from AγOPT (T1) ∩AγOPT (T2) at random. Buhmann et al.

D3.6: Page 20 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

[13] suggest to set γOPT to the value γ that maximises the so-called similarity of the timetables T1

and T2 at value γ,

Sγ =
|R||Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)|

. (1)

The maximum similarity SγOPT is a number indicating how “similar” the two timetables T1 and T2

are. Assume, for example, that T1 and T2 are completely identical, i.e. they contain the same trips
with identical arrival and departure times at each stop of the corresponding lines. Then, for every
γ we have Aγ(T1) = Aγ(T2) = Aγ(T1) ∩ Aγ(T2), and Sγ = |R|/|Aγ(·)|. Now it is easy to see that
the similarity is maximised when the approximation sets are as small as possible. Thus, we obtain
γOPT = minγ

{
γ | Aγ(·) 6= ∅

}
, and the maximum similarity is SγOPT = |R|/nOPT where nOPT is

the number of different optimum routes. On the other hand, timetables can differ substantially.
Imagine, for example, that there were only two (tram) lines l1 and l2 departing from s, and that
there was a time tB < tA such that in Ti no trams of line li were departing from s after time tB.
Such a situation could possibly occur if the rails of li were blocked due to some accident on the
day of Ti after time tB . Obviously we have γOPT ≥ tA − tB > 0, and |AγOPT (T1)| and |AγOPT (T2)|
might be large while the intersection contains only very few routes. Thus, SγOPT will be much
smaller than |R|. For more information about the similarity of instances, refer to [13].

Notice that up to now we did not consider how often a route is realised by a journey in a
recorded timetable. For public transportation, this is undesirable: when we pick a route from
AγOPT (T1)∩AγOPT (T2) at random, the probability to obtain a route should depend on how frequently
it is realised. Therefore we change the definition of Aγ(T) to a multiset of routes, and Aγ(T) contains
a route r as often as it is realised by a journey starting at time tA − γ or later, and arriving at time
tA or earlier.

Now the approximation set Aγ(T) can be represented by a function µTγ : R → N0, where for a

route r ∈ R, µTγ (r) is the number of journeys starting at time tA − γ or later, arriving at time tA
or earlier and following the route r. Thus, we have |Aγ(T)| =

∑
r∈R µ

T
γ (r), and for two recorded

timetables T1, T2, we need to compute

γOPT = arg max
γ

∑
r∈Rmin(µT1

γ (r), µT2
γ (r))(∑

r∈R µ
T1
γ (r)

)
·
(∑

r∈R µ
T2
γ (r)

) . (2)

After computing the value γOPT , we pick a route r from AγOPT (T1)∩AγOPT (T2) at random according
to the probability distribution defined by

pr :=
min

(
µT1
γOPT (r), µT2

γOPT (r)
)∑

r∈Rmin
(
µT1
γOPT (r), µT2

γOPT (r)
) . (3)

An alternative strategy consists of picking a route r from the intersection which has a maximum
number of realisations.

After computing γOPT and picking a route r from the intersection (using one of the two strategies
mentioned above), we have to suggest a time tD for departing at s. A natural choice might be
tD = tA − γOPT , but this has disadvantages in the following (realistic) situation. Let l be the
first line of the suggested route r, and assume that the given timetables T1 and T2 both contain
a trip of line l departing at time γOPT . Now if this trip is late by one minute in both instances,
tD = tA − γOPT is a bad choice if no delay in a future instance occurs: since we will miss the trip
departing on time, we have to wait for the succeeding trip of the same line which might lead to an
arrival at t only after time tA. Assuming that a planned timetable Tplanned is available, let τ1, . . . , tk
be the trips of line l in this planned timetable. We set

tD = max
i∈[1,k]

{
D(τi, s) | D(τi, s) ≤ tA − γOPT

}
, (4)

D3.6: Page 21 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

i.e. we choose the latest departure time at stop s of a trip of line l which departs at least γOPT
time units before the latest allowed arrival time tA.

3.2 New Improved Algorithm for Enumeration of all Solutions

For this section we assume that a public transportation network G = (V,E) with lines L, and two
stops s, t ∈ V are given. We first describe an algorithm that computes an st-path which follows a
minimum route r. After that we describe an algorithm that, given β ∈ N, enumerates all paths
π which follow an st-route from Rβst, i.e. it enumerates all paths that follow a route of length
at most β. Notice that this algorithm generates paths (not routes) while the algorithms in the
following section assess the robustness of routes (not paths). However, for a fixed path π, the set

R(π) = {r ∈ Rβst | r follows π} can easily be computed, and we can just unite these sets to obtain

Rβst, the set of all st-routes with length at most β. This section is a joint work with Gustavo
Sacomoto and Marie-France Sagot. More information about the presented algorithms, especially the
analysis of their running time, can be found in eCOMPASS-TR-056.

Finding a Solution with a Minimum Number of Transfers For computing a route with a
minimum number of transfers, we first construct a weighted graph Γ[G] = (V [Γ] ⊃ V,E[Γ]) such
that for any two vertices s, t ∈ V , the cost of a shortest st-path in Γ[G] is exactly dLG(s, t), the
L-distance from s to t. For a given vertex v ∈ V , let Lv ⊆ L be the set of all lines that contain v.
We add every vertex v ∈ V to V [Γ]. Additionally, for every vertex v ∈ V and every line l ∈ Lv, we
create a new vertex vl and add it to V [Γ]. The set E[Γ] contains three different types of edges:

1) For every vertex w that is the direct successor of a vertex v on a line l, we create a travelling
edge (vl, wl) with cost 0. These edges are used for travelling along a line l.

2) For every vertex v and every line l ∈ L(v), we create a boarding edge (v, vl) with cost 1. These
edges are used to board the line l at vertex v.

3) For every vertex v and every line l ∈ L(v), we create a leaving edge (vl, v) with cost 0. These
edges are used to leave the line l at vertex v.

Figure 3.2 shows an example of the graph construction.

Theorem 1. A minimum st-route r and a corresponding st-path π that follows r can be computed
in time O(M logM).

Proof. We compute the graph Γ[G] and run Dijkstra’s algorithm in the vertex s. Let πst be a
shortest st-path in Γ[G]. It is easy to see that the cost of πst is exactly dLG(s, t). Furthermore, πst
induces an st-path π in G by replacing every travelling edge (vl, wl) by (v, w), and ignoring the
edges of the other two types. Analogously, a corresponding route r can be extracted from πst by
considering only the boarding edges (we start with the empty line sequence r = 〈〉, and every time
that πst traverses a boarding edge (v, vl) for a vertex v ∈ V and a line l ∈ L, we append l to r).
Since only the boarding edges have cost 1 while all other edges have cost 0, we have |r| = dLG(s, t),
and therefore r really is a minimum route.

For every vertex v served by a line l, the graph Γ[G] contains at most two vertices (namely, vl
and v), thus we have |V [Γ]| ∈ O(M). Furthermore, E[Γ] contains every edge e of every line, and
exactly two additional edges for every vertex vl. Thus we obtain |E[Γ]| ∈ O(M). Since Dijkstra’s
algorithm runs in time O(|V | log |V |+ |E|), both the route r as well as a corresponding path π can
be computed in time O(M logM).

D3.6: Page 22 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 7: Consider a public transportation network G with the vertices V = {a, . . . , g} and three
lines l1 = 〈a, d, e〉, l2 = 〈b, e, g〉 and l3 = 〈c, d, e, f〉. The figure shows the graph Γ[G] for this public
transportation network. Dotted lines represent edges of cost 0, solid lines represent edges of cost 1.
The blue circles represent meta-vertices of the corresponding stations.

Generating all Solutions Let Pβst(G,L) denote the set of all st-paths π that follow a route r

with length at most β. We will now present an algorithm that enumerates all solutions in Pβst(G,L).
It is important to stress that the order in which the solutions are output in the algorithm is fixed,
but arbitrary. The algorithm, inspired by the binary partition method, recursively partitions the
solution space at every call until the considered subspace is a singleton (i.e., contains only one
solution) and in that case outputs the corresponding solution. At a generic recursive step on some
vertex u (initially, u = s), let πsu be the su-path discovered so far (initially, πsu = 〈s〉). Let G′

be the graph that we obtain after removing all vertices in πsu except u from G (initially, G′ = G).
To bound the overall running time of the algorithm, we maintain the invariant that the current
partition contains at least one solution. More precisely, the algorithm works as follows.

Invariant: (I) There exists at least one ut-path πut in G′ that extends πsu so that it belongs to

Pβst(G,L), i.e. πsu · πut ∈ Pβst(G,L).

Base case: When u = t, output the st-path πsu.

Recursive rule: Let Pβ(πsu, u,G
′) denote the set of st-paths to be listed by the current recursive

call, i.e. the subset of paths in Pβst(G,L) that have prefix πsu. This set is the union of the following
disjoint sets, for each edge e = (u, v) outgoing from u:

• The st-paths in Pβ(πsu · e, v,G′ − u) that use e, where G′ − u is the subgraph of G′ after the
removal of u and all its incident edges. In order to maintain the invariant (I), we only perform
this recursive call when Pβ(πsu · e, v,G′ − u) is not empty. We will immediately see how this
condition can efficiently be checked.

Algorithm 1 implements this recursive partition strategy. The solutions are only output in
the leaves of the recursion tree (which correspond to the base case described above, step 2 in the
algorithm), where the partition is always a singleton. Moreover, in order to guarantee that every
leaf in the recursion tree outputs one solution, we have to test if Pβ(πsu · e, v,G′ − u) is not empty
before the recursive call (step 9). Given a prefix πsu, let d(πsu, e, li) be the length of a minimum

D3.6: Page 23 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

route (πsu · e, γ) such that li is the last line of γ. For a line l ∈ L, let l|G′−u be the line that we
obtain from l after removing all edges from l that are not contained in G′ − u. Notice that l|G′−u

might potentially be disconnected. Let L′ − u = {l|G′−u | l ∈ L}, and let dL
′−u

G′−u(v, t, lj) be the
(L′ − u)-distance from v to t in G′ − u such that lj is the first line used. For a vertex v ∈ V , let
Lv ⊆ L be the set of all lines that contain an outgoing edge from v. Analogously, for an edge e ∈ E,
let Le be the set of all lines that contain e. Now, the set Pβ(πsu · e, v,G′ − u) is not empty if and
only if

min
{
d(πsu, e, li)− δij + dL

′−u
G′−u(v, t, lj) | li ∈ Le and lj ∈ Lv

}
≤ β.

Basically, min{d(πsu, e, li)− δij + dL
′−u

G′−u(v, t, lj) | li ∈ Le and lj ∈ Lv} is the length of the minimum
route that contains the prefix πsu · e. Now we see that Pβ(πsu · e, v,G′ − u,L′ − u) is empty if and
only if the minimum route has length larger than β.

Observe that we can compute the values d(πsu, e, li) and dL
′−u

G′−u(v, t, lj) using the algorithm
presented at the beginning of this section. The values d(πsu, e, li) need to be computed only for
edges e = (u, v) ∈ E, and only for lines li ∈ Le. Consider the graph G′′ that contains every edge
from πsu and every edge (u, v) ∈ E, and that contains exactly the vertices incident to these edges.
Now we compute H = Γ[G′′] and run Dijkstra’s algorithm from the vertex s. For every v ∈ N−(u)
and every line li ∈ Le, the length of a shortest path in H from s to vli is exactly d(πsu, e, li). For

computing dL
′−u

G′−u(v, t, lj), we can consider the (L′− u)-distances from t in the reverse graph G′R− u
(with all the edges and lines in L′−u reversed). Considering G′ instead of G ensures that lines don’t
use vertices that have been deleted in previous recursive calls of the algorithm. Thus we compute
Γ[G′R − u] and start Dijkstra’s algorithm from the vertex t. Then, the length of a shortest path in

Γ[G′R − u] from t to vlj is exactly dL
′−u

G′−u(v, t, lj).

Algorithm 1: ListPaths(πs, u,G
′)

1 if u = t then
2 Output(πs)
3 return

4 end
5 Compute d(πsu, (u, v), li) for each v ∈ N−(u) and li ∈ L(u,v)

6 Compute dL
′−u

G′−u(v, t, lj) for each v ∈ G′ − u and lj ∈ Lv
7 for e← (u, v) ∈ E do

8 d← min{d(πsu, e, li) + dL
′−u

G′−u(v, t, lj)− δij | i ∈ Le and lj ∈ Lv}
9 if d ≤ β then

10 ListPaths(πsu · e, v,G′ − u,L′ − u)

11 end

12 end

Theorem 2. Algorithm 1 runs in time O(nM logM ·K), where is K the number of returned paths.

3.3 Additional Methods for Assessing Robustness of Solutions

Let T ∈ T be some timetable and r = 〈l1, . . . , lα〉 ∈ R be a route. Let τ1, . . . , τk be the trips of line
l1 in T . We define

γ(r, T) = min
i∈[1,k]

{
tA −D(τi, a)

∣∣∣∣ τi can be extended to a journey along r that
arrives in T at stop t at time tA or earlier

}
(5)

D3.6: Page 24 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

which intuitively can be interpreted as follows: to arrive on time using route r on the day at which
T is realised, one has to leave s at least γ(r, T) units of time before the latest allowed arrival time
tA. Let f : (R+)|T | → R be some objective function (some examples for reasonable choices of f
follow immediately). Now we search a route r ∈ R that minimises

f
(
γ(r, T1), . . . , γ(r, T|T |)

)
. (6)

For the sake of simplicity we write γi instead of γ(r, Ti). However, notice that the values γi are not
constant but still depend on the route r.

3.3.1 A Mean-Risk Model

This section describes the mean-risk model, which was just recently used for finding robust routes in
private transportation [48], but also has numerous other applications such as portfolio optimisation.
Let c ∈ R+

0 be the risk-aversion coefficient, where c = 0 corresponds to the situation where the risk
is being completely ignored. The objective function associated with this model is

f cMR

(
γ1, . . . , γ|T |

)
= Mean

(
γ1, . . . , γ|T |

)
+ c ·

√
Var
(
γ1, . . . , γ|T |

)
, (7)

where the mean and the variance of γ1, . . . , γ|T | are defined as

Mean
(
γ1, . . . , γ|T |

)
=

1

|T |

|T |∑
i=1

γi (8)

Var
(
γ1, . . . , γ|T |

)
=

1

|T | − 1

|T |∑
i=1

(
γi −Mean(γ1, . . . , γ|T |)

)2
. (9)

Let rOPT be a route that minimises f cMR(γ(r, T1), . . . , γ(r, T|T |)). We set

γOPT := f cMR(γ(rOPT , T1), . . . , γ(rOPT , T|T |)), (10)

and, as in Section 3.1, search in the planned timetable Tplanned for a journey along rOPT that leaves
s as late as possible, but at least γOPT time units before tA.

3.3.2 Norm-Based Approaches

Let p ∈ [1,∞] be a real-valued number. As an objective function we use

fpNORM
(
γ1, . . . , γ|T |

)
=
∥∥(γ1, . . . , γ|T |

)∥∥
p
. (11)

It is easy to see that we have

f1
NORM

(
γ1, . . . , γ|T |

)
=

|T |∑
i=1

γi = |T | ·Mean
(
γ1, . . . , γ|T |

)
(12)

f∞NORM
(
γ1, . . . , γ|T |

)
= max
i∈[1,|T |]

{γi}. (13)

Thus, a route r1
OPT minimising the function f1

NORM is a route which in average departs as late as
possible. Since |T | is constant (i.e., it does not depend on γ1, . . . , γ|T |), every route that is optimal
to f1

NORM is simultaneously optimal to f0
MR, the mean-risk approach with a risk-aversion coefficient

set to 0.
On the other hand, a route r∞OPT minimising the function f∞NORM is a route that minimises the

maximum time between the departure and the latest allowed arrival time tA. The route r∞OPT can

D3.6: Page 25 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

alternatively be seen as the route that maximises the earliest departure time that is necessary to
arrive on time in all instances in T . The norm-based approach with p =∞ can be related to the

approximation set-based approach developed in Section 3.1. Let γFI = min
{
γ > 0 |

⋂|T |
i=1Aγ(Ti) 6=

∅
}

be the smallest value for γ such that the intersection of all γ-approximation sets is non-empty.

One can observe that every route r contained in
⋂|T |
i=1AγFI (Ti) minimises f∞NORM and vice versa.

Now, let p ∈ [1,∞] be arbitrary and let rpOPT be a route that minimises fpNORM . As for the
other approaches, we have to suggest a departure time tD. However, if p <∞, setting the departure
time to tA − fpNORM (γ(rpOPT , T1), . . . , γ(rpOPT , T|T |)) (as for the mean-risk approach) is far too
pessimistic. Imagine that we had p = 1, |T | = 24, and the average travel time of an optimum route
was an hour. Then, suggesting tA − f1

NORM (·) as a departure time would lead to a departure of at
least one day in advance! Thus we have to develop an alternative strategy for suggesting a reasonable
departure time. For this purpose we use the previous insights how f1

NORM and f∞NORM behave. For
p =∞, suggesting tA − f∞NORM (·) as a departure time seems to be reasonable as f∞NORM finds a
route that minimises the maximum time difference between the earliest departure and the latest
allowed arrival time. On the other hand, instead of suggesting tA− f1

NORM (·) as a departure time, it
seems reasonable to suggest tA − f1

NORM (·)/|T | as f1
NORM finds a route that minimises the average

time difference between the earliest departure and the latest allowed arrival time. Now for other
values p, we scale the time linearly with respect to p = 1 and p =∞. More concretely, we set

γpOPT = f∞ −
(
fp − f∞

f1 − f∞

)
·
(
f∞ − f1/|T |

)
(14)

where fq = fqNORM (γ(rpOPT , T1), . . . , γ(rpOPT , T|T |)) for every q ∈ [1,∞]. Notice that in the definition
of fq, rpOPT is always a route which minimises fp and not necessarily fq. It is easy to see that
γ1
OPT = f1/|T | and γ∞OPT = f∞. As for the previous approaches we use the optimal route rpOPT

and γpOPT to find a journey along rpOPT that is scheduled to leave s as late as possible, but at least
γpOPT time units before tA.

3.4 Experimental Results

3.4.1 Experiments on Synthetic Data

In Deliverable D3.4 we promised to implement the presented algorithms and to evaluate the quality
of the suggested journeys. At the time when the deliverable was written, only a planned timetable
Tplanned of the public transportation network of Zürich was available for us. This timetable contained
information about the network structure and the planned arrival and departure times, but no real-
world delay data was included. Thus, our preliminary experiments used artificially generated
delays.

For this purpose, we carefully chose a small set of problematic stops S′ where delays usually
occur. Then we generated 100 pairs of stops (s, t) uniformly at random. For each pair, we generated
three timetables T1, T2 and T3 from Tplanned by delaying every trip τ in Tplanned between 0 and 3
minutes at every stop v ∈ S′ (if v occurs on τ). These delays are 0 or 3 minutes with probability
1/8, and 1 or 2 minutes with probability 3/8. Now we computed journeys from s to t using the
instances T1 and T2 as input for the algorithm(s), and measured the arrival time of the suggested
journey(s) with respect to T3. More details about the experimental setup and the obtained results
can be found in eCompass-TR-023.

However, in the meantime, we were provided historic real-world delay data from the Verkehrs-
betriebe Zürich (VBZ) which we used for the extensive evaluation and testing of the proposed
algorithms.

D3.6: Page 26 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

l2

y

a b c d
e

f

lstandard

levening

ldepotlbroken

Figure 8: Different trajectories of one line.

3.4.2 Description of the Data

To assess the proposed methods, we performed experiments on real world data from the public
transportation network of the city of Zürich, Switzerland. This network consists of 401 stops. The
data contains information on tram lines, operating under 15 different labels, bus lines, operating
under 22 different labels, and trolleybus lines, operating under 6 different labels. We are also given
a planned timetable which contains the scheduled departure times of all the lines at all their stops
during the whole day. There are 9999 trips scheduled in the planned timetable.

Moreover, we are given real-world delay information for several days, in the form of past
observations. They describe how the scheduled trips were realised in reality. From these observations,
we reconstructed timetables, one for each day. For our experiments, we reconstructed the timetables
of seven almost consecutive Thursdays for the period from 4 April to 23 May 2013 (except for 9
May, which was a public holiday in Zürich).

In the experiments we model the given scheduled lines as 292 lines. This especially implies that
one line label is in average modelled by more than 6.7 lines. Such a situation occurs since there are
several lines operating under the same label but with different trajectory. In particular, there is a
forward and backward realisation of the line, trajectories that correspond to the vehicles coming
from and going to the depot station, etc. We discuss in more details the rationale behind modelling
one label with several lines in the following section.

3.4.3 Modelling Challenges

When modelling an urban public transportation network and its behaviour, we try to capture the
properties specific to this domain. However, to make a model that is also reasonably simple and
clear, we assume certain behaviour. For instance, since all the trams of one line in one direction use
the same rail-track, one can assume that such trams do not overtake each other. For the simplicity of
the model, we will assume that this FIFO property also holds for buses and other means of transport
that are not restricted to rails. While such assumptions mostly hold, in reality certain events can
cause them to be violated and one has to decide whether and how to model these situations.

In the following we describe some challenges that arise when dealing with real-world data. We
discuss some of our choices either to adapt our model to enhance better the reality or to neglect
some situations that occur very rarely.

In particular, defining the lines is a crucial and a nontrivial task. The available data contain the
set of stops, the planned timetable capturing the planned trips, and a detailed information on the
set of trajectories for each physical vehicle during the day. Also, each trajectory of a physical vehicle
has a label that indicates a line. However, there is a problem: Not all the trajectories with the same
label correspond to the same sequence of stops. To illustrate this (cf. Figure 8), let us imagine a
line l that serves the stops 〈a, b, c, d, e〉. Even though most of the day this line serves exactly this
sequence of stops, twice a day it goes into the depot station and serves 〈a, b, c, d, f〉, instead. Also,
in the evening, for logistic reasons, it skips the stop b and serves 〈a, c, d, e〉. Moreover, because of a
larger delay, the vehicle was once rescheduled (unlike the previous two situations, this is not planned
in the timetable) to turn back in advance, resulting in a sequence 〈a, b, c〉. Even though the user
may perceive these sequences as variants of the same line l, it is not clear whether to treat these

D3.6: Page 27 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

lines together as one line or separately. For instance, if one wants to travel from a to f , the line l is
recommendable for this purpose only at the two specific times of the day when l goes to the depot.
On the other hand, if one wants to reach the stop e, but happens to travel at the time when l goes
to the depot, the line l might not be the best choice. In our model, we have chosen to capture the
provided information in the following way. The set of stops in our model directly corresponds to the
given set of stops from the provided data. In the model, we define one line for every sequence of
stops that occurs as a trajectory in the reality. In particular, the line l from the example would be
modelled by 3 different lines in our model (we deal with the broken line separately, when it occurs).
Clearly, even though this is a viable choice, it also has drawbacks. We believe that unifying the
lines, especially if they differ only on parts that do not effect the user, would lead to a better overall
frequencies of the lines and result in a better prediction capabilities of all the algorithms and thus
more robust solutions. However, it is not easy to do this algorithmically in a concise and systematic
way. We plan to consider this issue in a further research. Our goal is not only to find an approach
that would allow to join lines of the same label, but also to join lines of different labels on those
parts where they serve the same sequence of stops. Then, the recommendation to the user could be
in the form “Take the first l1 or l5 in the direction D and change to l4 at stop a.”

Let us now describe in more details some real-world situations that influence the behaviour of
the lines. We distinguish two categories depending on whether the trajectory is planned in the
planned timetable or not.

Topology of the Planned Lines

Standard realisation of a line. In most cases, a line l = 〈v1, . . . , vk〉 is realised throughout the whole
day with high frequency, and there exists a similar line in the opposite direction l′ = 〈vk, . . . , v1〉
which contains the same stops as line l but in reverse order. Notice that it rarely happens
that planned lines change in the evening and leave certain stops out. In Figure 8, the line
levening exhibits such a behaviour.

A vehicle goes to the depot. Such a situation happens roughly twice a day, the vehicle usually
operates under the label l, it follows at least partially the path of l, but the end of the line
is modified. The problem with this situation is the low frequency of such a line going to
the depot: Imagine a situation as in Figure 8. If a user wants to get from the stop y to f ,
taking the line l2 and switching to ldepot might be the only way to get to f with at most one
transfer. If the user wants to travel precisely at one of the few times during the day when
ldepot runs and this journey worked well on the previous days (i.e., one would arrive on time
with this journey), it will be recommended to the user for the next day. However, if the line l2
is delayed on the next day, and, as a result, the user misses the line ldepot, he cannot continue
the recommended journey until the next line ldepot comes, few hours later. It is not clear
whether these journeys containing low frequency lines should be recommended or not. On
one hand, if in the past observations they performed well, they should not be suppressed. On
the other hand, the failure mode is very inconvenient. In the experiments we choose not to
suppress these solutions.

The line l differs in the two directions. That is, the sequences of stops of the forward line l and the
backward line l differ. This situation can be caused, for instance, by one way streets. This
may lead to problems, because it violates a natural assumption that it is never a good idea
to change from some line to the corresponding line in the opposite direction. In the case
where the forward and backward lines differ, this might be necessary. For simplicity, we do
not address this problem in the experiments. That is, we do not allow an immediate transfer
to the line that has the same label.

The line l in fact forms a cycle. That is, the line l does not have a corresponding backward line
going in the opposite direction. Instead, after the last stop of the line l in one realisation,

D3.6: Page 28 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

the vehicle which realised it continues to the first stop of the next realisation of l. This is a
situation that is rather difficult to capture, since in the data there is some stop that is used as
an origin of the line and the cycle is broken accordingly into subsequent realisations of the
line. That is, in reality, it might be possible to continue from the last stop of one realisation
of the line l to the first stop of the next realisation of l, without a transfer (and without the
minimum transfer time needed). For simplicity, in the experiments we deal with these lines as
they are given (as separate lines, without the information that they form a cycle) and we do
not explicitly capture the cyclic topology.

Behaviour not Planned in the Timetable

A vehicle turns back in advance. Sometimes a vehicle is delayed or there is some incident on the
tracks and the strategy to avoid further delay or a dead end consists in turning the vehicle
back before reaching the final destination. This results in a line that is realised just partially.
This may clearly cause problems because the vehicle unexpectedly does not serve certain stops
on the line so some stops that were supposed to be reachable with this line are not. In the
experiments, if this happens on the recommended journey, we assume that the user leaves the
vehicle before it turns back and waits for the next vehicle of the same line. In reality, there
might be an additional vehicle waiting at the turning point and serving the rest of the trip. In
the experiments, however, we do not capture this – such a vehicle is not recognised and thus
not considered.

Two vehicles of the same line leave the stop at the exact same time. It may happen, due to delay,
that two consecutive vehicles of the same line depart at certain stop at the same time (e.g., if
the times are specified in minutes only). The problem is that from the perspective of the user
standing at the stop, it might be difficult to distinguish which of the two vehicles is delayed
and which not, and especially, which of the vehicles will arrive earlier to the destination. In
reality, unless the vehicles of the same line overtake (see the next bullet), the vehicle which
arrives first to the stop will arrive first also to the destination. In the experiments, since
both the vehicles have the same arrival time in minutes, we cannot distinguish which of them
arrives first in reality. In these situations, one of the vehicles is considered and the other one
is ignored (independently on the arrival times in the destination).

The FIFO property is broken. It seems natural to assume that two vehicles of the same line do not
overtake. Even though this is mostly true, in some cases this might be violated. In particular,
in these rare cases, the next bus may arrive earlier then the previous one. In our experiments,
we decide to ignore these situations (and consider only the first bus that arrives), since in
reality, when a bus is coming, this information is not available, and one boards the first bus
that comes with the very same assumption.

Other Issues

Nearby stations. Some of the larger stations, where many lines meet, are sometimes split into several
stops that are very close to each other, but have slightly different names. The question is
whether these stops should be considered together as one station, or not. The argument
towards joining would be the fact that one may want to use such compound station as a
transfer station. An argument against would be that even though the stops are relatively
close to each other, it may not be easy to find them for a person who does not know the area.
Thus, it is not clear how much time would one need on such a transfer. Multimodal solution
(adding walking arcs) may help to solve the problem, however, it remains difficult to set the
minimum transfer times so that the non-local people have enough time to find the right stop,
but without creating too much slack time for the people familiar with the area. Furthermore,
people with reduced mobility may prefer to avoid transfers between the stops in a compound

D3.6: Page 29 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

station completely. In the experiments, for simplicity, we take the stops as given and we do
not create compound stations from nearby stops.

3.4.4 Compared Methods and Used Instances

We experimentally compare several approaches for robust routing in urban public transportation
networks. The considered approaches can be divided into three categories, depending on the amount
of delay information used for prediction.

Methods that Use Only Information from the Planned Timetable The following simple
methods use only the planned timetable and ignore the recorded timetables completely.

Opt-TT: Latest departing journey which arrives on time in the planned timetable. This corresponds
to the optimal journey if no delays occur.

Buffer-δ: Latest departing journey which arrives on time in the planned timetable but requires,
apart from the minimum transfer time, an additional waiting time of δ minutes at every
transfer stop. In the experiments we considered additional waiting times of 1–10, 12, and 15
minutes.

End-Buffer-δ: Latest departing journey which arrives in the planned timetable at least δ minutes
before the specified latest arrival time. In the experiments we considered the end buffer times
of 1, 3, 5, 7, and 9 minutes.

Methods that Use Delay Data from Exactly Two Recorded Timetables The following
routing methods use exactly two recorded timetables for suggesting a journey. Some of these methods
could use more timetables as input, we just restricted the number of input instances so that the
methods are comparable.

Similarity-MRR: A journey obtained by the similarity-based approach, by picking the most
realised route from the intersection.

Similarity-Random: A journey obtained by the similarity-based approach, by picking a route
uniformly at random from the intersection. In our experiments we returned the whole
intersection and computed the expected arrival time and the expected arrival rate, i.e. we
averaged the results over all routes in the intersection. See the next section for more details
on the experimental setup.

Mean-Risk-Only2-c: A journey obtained by the mean-risk method when only two instances
are used as input, and the the risk-aversion coefficient is set to c. In our experiments we
experimented with c set to 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, and 16.

Norm-p-Only2: A journey obtained by the norm-based method when only two instances are used
as input, and the norm parameter is set to p. In the experiments we considered the parameter
p set to 1, 2, and to ∞. The last variant is denoted by Norm-Inf-Only2.

Methods that Use Delay Data from All/Many Recorded Timetables The following
routing methods compute their prediction using all recorded timetables.

Mean-Risk-c: A journey obtained by the mean-risk method when the the risk-aversion coefficient
is set to c. In our experiments we experimented with c set to 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, and
16.

D3.6: Page 30 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Norm-p: A journey obtained by the norm-based method when the norm parameter is set to p. In
the experiments we considered the parameter p set to 1, 2, and to ∞. The last variant is
denoted by Norm-Inf.

To compare the proposed methods, we consider real-world delay data of seven given Thursdays in
April and May 2013, namely 4 April, 11 April, 18 April, 25 April, 2 May, 16 May, and 23 May.
Notice that in general, the traffic on different weekdays might differ substantially (e.g., the traffic on
Mondays behaves completely different than the one on Thursdays). However, many people have
weekly regular schedules. Thus, we can expect the traffic on our selected Thursdays to behave
similarly, and the occurring delays can be considered “typical”. For similar reason we left out 9
May, which was a public holiday in Zürich.

3.4.5 General Results

In the first series of experiments we assess and compare the results obtained by different approaches.
For these experiments we used the recorded timetable of 23 May as the test instance. The training
instances consist either of the planned timetable, or the recorded timetables of 2 May and 16 May,
or all six recorded timetables in the period of 4 April to 16 May for the three types of methods,
respectively, as described in Section 3.4.4. Our goal was to perform experiments for a time when
the traffic is dense, so we set the latest allowed arrival time tA to 18:00. We performed 10000
experiments, in each we randomly chose a pair of stops (s, t), and for each method the goal was to
compute a journey from s to t. If some algorithm suggested multiple journeys J1, . . . , Jk that arrive
in the test instance at times tA(J1), . . . , tA(Jk) (e.g., the Similarity-Random strategy might do

this), then we considered the average arrival time 1
k

∑k
i=1 tA(Ji) and the average chance to arrive on

time, 1
k

∑k
i=1 I

{
tA(Ji) ≤ tA

}
, where I

{
tA(Ji) ≤ tA

}
has the value 1 if tA(Ji) ≤ tA, and 0 otherwise.

If any of the algorithms suggested a journey which is not feasible in the test instance (see section
3.4.3 when such a situation can occur), then for this (s, t) pair, the results of all algorithms were
discarded. In our experiments, we considered the following aspects of the proposed journeys:

• Probability that the proposed journey arrives on time in the test instance,

• Departure time of the proposed journey,

• Standard deviation of the arrival time of the proposed journey in the test instance.

These three measures are computed with respect to the individual experiments for each (s, t) pair.
Notice that the probabilities to arrive on time of the considered methods have no direct implications
on the concrete percentage of delayed vehicles in the network. In particular, an arrival rate of, e.g.,
40% of the Opt-TT method does not imply that 60% of the vehicles are delayed.

Arrival Rate vs. Departure Time We compared the probability to arrive on time (arrival
rate) with the proposed departure time of the different methods. We display the relation of the
methods considering these aspects in Figures 9–14. Intuitively, an earlier departure time leads to a
higher probability to arrive on time. Figures 9–14 show that, independent of the considered method,
there is a clear trade-off between the departure time and the arrival rate, and thus reconfirm the
intuition.

Figures 10 and 11 display the approaches based uniquely on the planned timetable. Since
Opt-TT finds the best journey in the planned timetable, but does not consider any delays, it
chooses to depart very late, which would be optimal in a no-delay situation, but fails to arrive on
time in the presence of delays. Since these methods have no delay information available, better
arrival rate is achieved by enforcing earlier departure time directly (by adding minimum spare
time at the end of the journey which the End-Buffer-δ strategy does) or indirectly (by adding
minimum spare time on the transfers which the Buffer-δ strategy does). Intuitively, by increasing

D3.6: Page 31 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

the additional waiting time δ, we achieve a better arrival rate. Interestingly, since no buffer method
is dominated by another, all considered values for δ give a meaningful trade-off between the arrival
rate and the departure time. However, it is difficult to choose a particular value for δ, because a
value that gives a desired arrival rate in one instance may provide an unsatisfactory rate in another
instance. On the other hand, by setting δ to a large value, the departure time may be too pessimistic.
We note (not shown on the figure) that also the number of transfers of the selected journey influences
the performance of the Buffer-δ strategies, and makes it even more challenging to choose the
parameter δ.

Figures 12 and 13 display the approaches based on delay information from 2 instances. The
similarity based method needs no parameter tweaking, and still proposed a solution which departs
not too early and gives a reasonable arrival rate. The two strategies for the Similarity method,
i.e., Similarity-MRR and Similarity-Random, behave similarly. Notice that the Similarity
approach gives a slightly better arrival rate than Norm-Inf-Only2, while departing at the same
minute. By increasing the parameter c, the arrival rate of the solution produced by Mean-Risk-
Only2-c initially quickly grows. After some threshold, however, the rate begins, surprisingly, to
drop again. This is probably because the standard deviation considered is too high and the number
of instances is too low to compensate for it. As a result, setting the risk parameter to a value
above a certain threshold, the method produces solutions that are dominated by other solutions
(with smaller c), and thus strictly worse. We note that we observed the same tendency when we
experimented also with other instances (i.e., other pairs of days).

Figure 14 displays the Mean-Risk-c approach based on delay information from 6 instances. As
with 2 instances, by increasing the parameter c, the arrival rate of the produced solution initially
quickly grows. However, unlike with 2 instances only, above a certain threshold, the growth of the
arrival rate slows down, but does not drop. Thus all the considered values of c yield a meaningful
solution. However, one could argue that after a certain point the gain in the arrival rate is very
small for the decrease in the departure time.

Figure 9 displays representants of all the methods. The figure shows that the more informed
methods clearly have an advantage. For instance, Mean-Risk-c, for large enough values of c (in the
experiments for c ≥ 1), dominates most of the other methods.

Arrival Rate vs. Standard Deviation Also, we compare the probability to arrive on time
vs. the standard deviation on the arrival time of the different methods. We show the relation of
the methods in these aspects in Figures 15–20. We observe in the figures that there is a trade-off
between arrival rate and the standard deviation.

Figures 16 and 17 display the approaches based solely on the planned timetable. The general
tendency shown in the figures is that by increasing the value of δ for the methods Buffer-δ and
End-Buffer-δ, the arrival rate increases, but so does also the standard deviation. Interestingly,
this is not fully true, as some of the methods with small values of δ (e.g., Buffer-δ for δ ≤ 4) are
strictly worse and dominated in these aspects by other methods. At the moment we cannot explain
this behaviour.

Figures 18 and 19 display the approaches based on delay information from 2 instances. Notice
that the Similarity-MRR approach again gives a slightly better arrival rate than Norm-Inf-Only2
(which corresponds to the first intersection), while having almost the same standard deviation.
Both these methods are dominated by Norm-2-Only2 (even though the difference between these
methods is very small). By increasing the parameter c, the arrival rate of the solution produced by
Mean-Risk-Only2-c initially quickly grows with only a small increase of the standard deviation.
As we saw already in Figure 13, after some threshold, the rate begins, to drop again. Unfortunately,
after this threshold, the standard deviation grows rapidly. Thus, also in these aspects, by setting
the risk parameter to a value above a certain threshold, the method produces solutions that are
dominated by other solutions (with smaller c), and thus strictly worse (again, we remark that we
observed the same tendency in experiments with different choice of the instances).

D3.6: Page 32 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 20 displays the Mean-Risk-c approach based on delay information from 6 instances.
Again, as with 2 instances, by increasing the parameter c, the arrival rate of the produced solution
initially quickly grows, with a rather small increase in the standard deviation. Above a certain
threshold for c, the rate continues to grow, but very slowly, and at the same time the standard
deviation increases rapidly.

Figure 15 displays representants of all the methods. The figure again shows that the more
informed methods clearly have an advantage with respect to the achieved arrival rate. On the other
hand, it is clear that with the increase of the probability to arrive on time, the standard deviation
increases notably.

In both sets of experiments we have seen the behaviour of the methods considering certain
aspects. Most of the methods that require setting a parameter behave well for some values, but
for some other values the trade-off becomes rather inefficient (for small increase in arrival rate,
a big increase in standard deviation and decrease in departure time is needed). We remark that
finding the right parameter is a non-trivial task, as the behaviour of the methods is likely to differ
in different set of instances, and even more in a different public transportation network.

Running Time of the Algorithms We implemented the mentioned algorithms for assessing
the robustness of routes in Java 7. For enumerating all feasible st-routes, we used the algorithm
proposed in eCOMPASS-TR-023. The experiments were performed on one core of an Intel Core
i5-3470 CPU clocked at 3.2 GHz with 4 GB of RAM running Debian Linux 7.0. Enumerating all
routes takes in average 35ms. Assuming that the set of all routes has already been computed, the
trivial buffer strategies have a running time of 1ms or less, the similarity-based methods need in
average 8ms while the norm-based and the stochastic-based methods need in average 24ms. Thus,
the running times of all algorithms is really fast, and the algorithms could be used in real-world
applications.

Notice that our current running times are faster than the ones described in eCOMPASS-TR-023.
One reason is that the preliminary experiments were performed on a network with more stops (611
instead of 401) and more lines (471 instead of 292). Although both networks describe the network
of Zürich, the one previously used did not only include buses and trams but also boats, cable cars
and regional trains, and it also contained stops of rural villages surrounding Zürich. Another reason
why the running time of the algorithms decreased is that we considered the running time only
for those experiments where some feasible route was found. In our preliminary experiments, we
considered all results. Notice that the situation where no feasible route is found occurs only due to
some peculiarities in the data (see Section 3.4.3 for details). Furthermore, in the meantime we also
improved the code of the implementations to be more efficient.

3.4.6 Results over the Day

In this series of experiments, we compared how the behaviour of the methods changes over the day,
influenced by the rush hours and more quiet times of the day. The experimental setup is similar
to the one described in Section 3.4.5. However, we did not fix only one latest allowed arrival time,
but performed 10000 experiments for multiple values of tA. More concretely, the value of tA ranges
from 7:30 to 20:00, in steps of 10 (during the rush hours) to 30 (during the quiet times of the day)
minutes. We were especially interested in the following aspects:

• Probability that the proposed journey arrives on time in the test instance,

• Standard deviation of the arrival time of the proposed journey in the test instance.

Arrival Rate vs. Time of the Day We studied how the probability to arrive on time changes
through the day for different methods. The relation of the methods considering this aspect is shown
in Figures 21–26.

D3.6: Page 33 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

17:10 17:15 17:20 17:25 17:30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Departure time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

OPT−TT

BUFFER−3

BUFFER−6

END−BUFFER−5

SIMILARITY−MRR

MEAN−RISK−ONLY2−1

NORM−1−ONLY2

MEAN−RISK−1

NORM−INF

NORM−1

Figure 9: Arrival rate vs. departure time:
comparing various methods

17:05 17:10 17:15 17:20 17:25 17:30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Departure time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

OPT−TT

BUFFER−1

BUFFER−2

BUFFER−3

BUFFER−4

BUFFER−5

BUFFER−6

BUFFER−7

BUFFER−8

BUFFER−9

BUFFER−10

BUFFER−12

BUFFER−15

Figure 10: Arrival rate vs. departure time:
comparing different buffer times for transfers

17:17 17:18 17:19 17:20 17:21 17:22 17:23 17:24 17:25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Departure time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

END−BUFFER−1

END−BUFFER−3

END−BUFFER−5

END−BUFFER−7

END−BUFFER−9

Figure 11: Arrival rate vs. departure time:
comparing different buffer times at the end

17:18 17:18 17:18 17:18 17:18 17:18 17:19
0.77

0.775

0.78

0.785

0.79

0.795

0.8

Departure time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

SIMILARITY−MRR

SIMILARITY−RAND

NORM−INF−ONLY2

NORM−2−ONLY2

NORM−1−ONLY2

Figure 12: Arrival rate vs. departure time:
comparing similarity and norm-based approaches
based on 2 given instances

16:40 16:50 17:00 17:10 17:20
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Departure time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

MEAN−RISK−ONLY2−16

MEAN−RISK−ONLY2−8

MEAN−RISK−ONLY2−4

MEAN−RISK−ONLY2−2

MEAN−RISK−ONLY2−1

MEAN−RISK−ONLY2−05

MEAN−RISK−ONLY2−025

MEAN−RISK−ONLY2−0125

MEAN−RISK−ONLY2−0

Figure 13: Arrival rate vs. departure time:
comparing mean-risk approach based on
2 given instances

16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20
0.85

0.9

0.95

1

Departure time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

MEAN−RISK−16

MEAN−RISK−8

MEAN−RISK−4

MEAN−RISK−2

MEAN−RISK−1

MEAN−RISK−05

MEAN−RISK−025

MEAN−RISK−0125

MEAN−RISK−0

Figure 14: Arrival rate vs. departure time:
comparing mean-risk approach based on
6 given instances

D3.6: Page 34 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

9 10 11 12 13 14 15 16 17 18 19
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Standard deviation

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

OPT−TT

BUFFER−3

BUFFER−6

END−BUFFER−5

SIMILARITY−MRR

MEAN−RISK−ONLY2−1

NORM−1−ONLY2

MEAN−RISK−1

NORM−INF

NORM−1

Figure 15: Arrival rate vs. standard deviation:
comparing various methods

9.5 10 10.5 11 11.5 12 12.5 13 13.5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Standard deviation

P
ro

b
a

lil
it
y
 t

o
 a

rr
iv

e
 o

n
 t

im
e

OPT−TT

BUFFER−1

BUFFER−2

BUFFER−3

BUFFER−4

BUFFER−5

BUFFER−6

BUFFER−7

BUFFER−8

BUFFER−9

BUFFER−10

BUFFER−12

BUFFER−15

Figure 16: Arrival rate vs. standard deviation:
comparing different buffer times for transfers

9.74 9.76 9.78 9.8 9.82 9.84 9.86 9.88 9.9 9.92
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Standard deviation

P
ro

b
a

lil
it
y
 t

o
 a

rr
iv

e
 o

n
 t

im
e

END−BUFFER−1

END−BUFFER−3

END−BUFFER−5

END−BUFFER−7

END−BUFFER−9

Figure 17: Arrival rate vs. standard deviation:
comparing different buffer times at the end

10 10.2 10.4 10.6 10.8 11 11.2
0.77

0.775

0.78

0.785

0.79

0.795

0.8

Standard deviation

P
ro

b
a

lil
it
y
 t

o
 a

rr
iv

e
 o

n
 t

im
e

SIMILARITY−MRR

SIMILARITY−RAND

NORM−INF−ONLY2

NORM−2−ONLY2

NORM−1−ONLY2

Figure 18: Arrival rate vs. standard deviation:
comparing similarity and norm-based approaches
based on 2 given instances

10 20 30 40 50 60 70
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Standard deviation

P
ro

b
a

lil
it
y
 t

o
 a

rr
iv

e
 o

n
 t

im
e

MEAN−RISK−ONLY2−16

MEAN−RISK−ONLY2−8

MEAN−RISK−ONLY2−4

MEAN−RISK−ONLY2−2

MEAN−RISK−ONLY2−1

MEAN−RISK−ONLY2−05

MEAN−RISK−ONLY2−025

MEAN−RISK−ONLY2−0125

MEAN−RISK−ONLY2−0

Figure 19: Arrival rate vs. standard deviation:
comparing mean-risk approach based on
2 given instances

10 20 30 40 50 60 70 80
0.85

0.9

0.95

1

Standard deviation

P
ro

b
a

lil
it
y
 t

o
 a

rr
iv

e
 o

n
 t

im
e

MEAN−RISK−16

MEAN−RISK−8

MEAN−RISK−4

MEAN−RISK−2

MEAN−RISK−1

MEAN−RISK−05

MEAN−RISK−025

MEAN−RISK−0125

MEAN−RISK−0

Figure 20: Arrival rate vs. standard deviation:
comparing mean-risk approach based on
6 given instances

D3.6: Page 35 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

In all these figures we clearly see that all the considered methods behave similarly through the
day, influenced by the peak hours. In particular, independently of the used method, the probability
to arrive on time decreases significantly when the desired arrival time is between 8:00 and 9:00,
which can be explained by the morning rush hour. After 9:00, this probability quickly increases and
reaches its maximum around noon. The probability to arrive on time then drops again noticeably
around 17:00–18:00, which can be explained by the afternoon rush hour. Notice that we did not
consider arrival times prior to 7:30 or later than 20:00, since we expected the traffic to behave very
regular, and thus the situation is less interesting for finding robust routes.

Figures 22–23 show the results for the approaches that compute the prediction based solely on
the planned timetable. We reconfirm the observation (from Figures 10 and 11) that by increasing the
value of the parameter δ for the methods Buffer-δ and End-Buffer-δ, the arrival rate increases.
Notice that the relative order of these methods based on the arrival rate does not change in the
course of the day.

Figure 24 compares the similarity-based approaches with the norm-based approach when p =∞
and only two training instances are used. We see that these methods behave almost identically.
This is likely due to the fact that the value of similarity is maximised at the smallest γ such that the
intersection of the γ-approximation sets is non-empty (which is the behaviour of Norm-Inf-Only2).

Figure 25 shows that the arrival rate of Mean-Risk-c (based on 6 instances) increases with a
growing value of the parameter c. Notice that when c is greater than a certain threshold, the arrival
rate becomes less affected by the rush hours.

Figure 26 shows the results of the norm based methods, namely Norm-1, Norm-2, and Norm-
Inf, all based on 6 input instances. The figure clearly indicates that the arrival rate of the journeys
suggested by Norm-1 is significantly lower than the arrival rate of the journeys proposed by the
other two methods, independently on the day time.

Figure 21 compares the representants of all the considered methods. Interestingly, some of the
methods are affected by the peak hours more than other methods. In particular, the methods based
only on the planned timetable (Buffer-δ and End-Buffer-δ) seem to be greatly affected by both
morning and afternoon rush hour. On the other hand, the methods that use recorded timetables
for suggesting a journey are less affected by the afternoon rush hour than by the morning rush
hour. We conjecture that the traffic behaves more “regularly” in the afternoon peak time, and this
behaviour is captured in the recorded timetables used as input to these methods.

Standard Deviation vs. Time of the Day We also compared how the standard deviation
of the arrival time varies through the day for the different methods. We show the relation of the
methods in this aspect in Figures 27–32.

The behaviour of the majority of the considered methods suggests that the standard deviation
of the arrival time is significantly greater during the morning rush hour than for the rest of the day.
We suspect that this is due to some lines that are realised with low frequency, in particular lines
coming from or going to the depot station. Such lines are realised only few times in the morning
and then again only few times in the afternoon. Suppose that such a line was selected as a part
of a suggested journey. If in the test instance, due to delays, the morning realisation of this line
is missed, we need to wait for an afternoon realisation of the line and this may greatly influence
the standard deviation of the arrival time. However, if a realisation of this line is missed in the
afternoon, there might not be any more realisation of this line during the rest of the day, and the
whole test case (i.e., the results of all methods) is ignored and does not the standard deviation of
the arrival time. We conjecture that for the same reason, the standard deviation increases between
15:00 and 16:30 which is the time when certain lines are coming from the depot.

Figure 26 displays the results for the Mean-Risk-c approach based on delay information from 6
instances. As we saw in Figure 20, by increasing the parameter c, the standard deviation increases.
Interestingly, for values of c above a certain threshold, the standard deviation increases rapidly, and
unlike the other methods, Mean-Risk-c then reaches its peak in the afternoon, around 15:00 and

D3.6: Page 36 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

17:00. Currently we cannot explain this behaviour.

3.4.7 Influence of the Test Instance

In this series of experiments we investigated how the behaviour of the methods change in dependence
on the test instance. We considered each one of the 7 instances as test instance. The delay
information provided to the methods then consists either of the planned timetable, or the two closest
recorded timetables (i.e., mostly the instances that correspond to the preceding and the succeeding
date), or the six remaining instances. We set the latest allowed arrival time tA to 18:00. We used
each of the seven available recorded timetables as test instance, and for each of these we again
performed 10000 experiments similar to the ones described in section 3.4.5. In our experiments, we
considered the following aspects of the proposed journeys:

• Probability that the proposed journey arrives on time in the test instance,

• Standard deviation of the arrival time of the proposed journey in the test instance.

In particular, we study how the probability to arrive on time changes for different methods, depending
on the chosen test instance.

Figure 33 shows how the average arrival rate changes in dependence of the test instance. It
seems that the relative order of the methods does not change much and is comparable to the order
shown in Figures 9 and 21. We also observe that all methods exhibit the same tendencies, i.e. there
is no test instance that favours a special method. However, the choice of the test instance does
influence the concrete probability to arrival on time significantly. For instance, if instance 3 is used
as the test instance, then the arrival rates of all methods drop notably. It is possible that on the
corresponding day, the traffic behaved differently than on the remaining days and this would explain
the drop of the arrival rates for this test instance.

Next, Figure 34 shows how the standard deviation on the arrival time varies in dependence
on the chosen test instance and the different methods. The situation differs from the one for the
arrival rate shown in Figure 33. The relative order of the methods with respect to the standard
deviation of the arrival time changes quite a lot. Also the behaviour of different methods changes
substantially: For example, in test instance 3 the suggestions of the Norm-1 strategy have the least
standard deviation while in instance 5, seven methods suggest a journey with a significantly smaller
standard deviation than the journey proposed by Norm-1. At this moment, we cannot explain this
behaviour.

Notice that it seems as if the standard deviation mostly increases when the probability to arrive
on time decreases, and vice versa, although this behaviour is not always observable. This tradeoff
between a higher chance to arrive on time and the standard deviation of the arrival time coincides
with previous observations.

3.4.8 Maximising the Similarity

This section investigates how the similarity-based approach behaves on real-world data, and how the
similarity of instances influences the quality of the predictions. First we notice that the maximum
similarity SγOPT does not only depend on the two training instances T1, T2 but also on the origin
and the destination of the route. At first glance, this might seem strange. However, we will now
see why this is a reasonable and desirable property. Consider a really huge public transportation
network. Imagine that there were two stops s, t ∈ V that are close to each other, and that most
st-routes have no delay at no time, neither in T1 nor in T2. Thus, the similarity of T1 and T2 with
respect to the goal of getting from s to t should be high. On the other hand, imagine that there
additionally exist two stops s′, t′ ∈ V that are far away, and that many s′t′-routes occurring in T1

are not present in T2 (e.g., due to accidents) and vice versa. Clearly, the similarity of T1 and T2

with respect to the goal of getting from s′ to t′ should be much lower, especially in comparison to
the previous case.

D3.6: Page 37 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

06:00 09:00 12:00 15:00 18:00 21:00
0.4

0.5

0.6

0.7

0.8

0.9

1

Desired arrival time

P
ro

b
a

lil
it
y
 t

o
 a

rr
iv

e
 o

n
 t

im
e

OPT−TT

BUFFER−3

BUFFER−6

END−BUFFER−5

SIMILARITY−MRR

NORM−INF

MEAN−RISK−1

NORM−1

NORM−INF

Figure 21: Arrival rate vs. desired arrival time:
comparing various methods

06:00 09:00 12:00 15:00 18:00 21:00
0.4

0.5

0.6

0.7

0.8

0.9

1

Desired arrival time

P
ro

b
a

lil
it
y
 t

o
 a

rr
iv

e
 o

n
 t

im
e

OPT−TT

BUFFER−1

BUFFER−2

BUFFER−3

BUFFER−4

BUFFER−5

BUFFER−6

BUFFER−7

BUFFER−8

BUFFER−9

BUFFER−10

BUFFER−12

BUFFER−15

Figure 22: Arrival rate vs. desired arrival time:
comparing different buffer times for transfers

06:00 09:00 12:00 15:00 18:00 21:00
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Desired arrival time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

END−BUFFER−1

END−BUFFER−3

END−BUFFER−5

END−BUFFER−7

END−BUFFER−9

Figure 23: Arrival rate vs. desired arrival time:
comparing different buffer times at the end

06:00 09:00 12:00 15:00 18:00 21:00
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Desired arrival time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

SIMILARITY−MRR

SIMILARITY−RAND

NORM−INF

Figure 24: Arrival rate vs. desired arrival time:
comparing similarity-based approach and first in-
tersection based on 2 given instances

06:00 09:00 12:00 15:00 18:00 21:00
0.75

0.8

0.85

0.9

0.95

1

Desired arrival time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

MEAN−RISK−0

MEAN−RISK−0125

MEAN−RISK−025

MEAN−RISK−05

MEAN−RISK−1

MEAN−RISK−2

MEAN−RISK−4

MEAN−RISK−8

MEAN−RISK−16

Figure 25: Arrival rate vs. desired arrival time:
comparing mean-risk approach based on
6 given instances

06:00 09:00 12:00 15:00 18:00 21:00
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Desired arrival time

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

NORM−1

NORM−2

NORM−INF

Figure 26: Arrival rate vs. desired arrival time:
comparing norm-based approach based on 6 given
instances

D3.6: Page 38 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

06:00 09:00 12:00 15:00 18:00 21:00
0

10

20

30

40

50

60

70

80

Desired arrival time

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

OPT−TT

BUFFER−3

BUFFER−6

END−BUFFER−5

SIMILARITY−MRR

NORM−INF

MEAN−RISK−1

NORM−1

NORM−INF

Figure 27: Standard deviation vs. desired
arrival time: comparing various methods

06:00 09:00 12:00 15:00 18:00 21:00
0

10

20

30

40

50

60

70

80

Desired arrival time

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

OPT−TT

BUFFER−1

BUFFER−2

BUFFER−3

BUFFER−4

BUFFER−5

BUFFER−6

BUFFER−7

BUFFER−8

BUFFER−9

BUFFER−10

BUFFER−12

BUFFER−15

Figure 28: Standard deviation vs. desired
arrival time: comparing different buffer times
for transfers

06:00 09:00 12:00 15:00 18:00 21:00
0

10

20

30

40

50

60

70

80

Desired arrival time

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

END−BUFFER−1

END−BUFFER−3

END−BUFFER−5

END−BUFFER−7

END−BUFFER−9

Figure 29: Standard deviation vs. desired
arrival time: comparing different buffer times
at the end

06:00 09:00 12:00 15:00 18:00 21:00
0

10

20

30

40

50

60

70

Desired arrival time

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

SIMILARITY−MRR

SIMILARITY−RAND

NORM−INF

Figure 30: Standard deviation vs. desired
arrival time: comparing similarity-based approach
and first intersection based on 2 given instances

06:00 09:00 12:00 15:00 18:00 21:00
0

10

20

30

40

50

60

70

80

90

100

Desired arrival time

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

MEAN−RISK−0

MEAN−RISK−0125

MEAN−RISK−025

MEAN−RISK−05

MEAN−RISK−1

MEAN−RISK−2

MEAN−RISK−4

MEAN−RISK−8

MEAN−RISK−16

Figure 31: Standard deviation vs. desired
arrival time: comparing mean-risk
approach based on 6 given instances

06:00 09:00 12:00 15:00 18:00 21:00
0

10

20

30

40

50

60

Desired arrival time

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

NORM−1

NORM−2

NORM−INF

Figure 32: Standard deviation vs. desired
arrival time: comparing norm-based
approach based on 6 given instances

D3.6: Page 39 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

Test instance

P
ro

b
a
lil

it
y
 t
o
 a

rr
iv

e
 o

n
 t
im

e

OPT−TT

BUFFER−3

BUFFER−6

END−BUFFER−5

SIMILARITY−MRR

MEAN−RISK−ONLY2−1

NORM−1−ONLY2

MEAN−RISK−1

NORM−INF

NORM−1

Figure 33: Arrival rate depending on test
instance: comparing various methods

1 2 3 4 5 6 7
8

10

12

14

16

18

20

22

Test instance

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

OPT−TT

BUFFER−3

BUFFER−6

END−BUFFER−5

SIMILARITY−MRR

MEAN−RISK−ONLY2−1

NORM−1−ONLY2

MEAN−RISK−1

NORM−INF

NORM−1

Figure 34: Standard deviation depending on test
instance: comparing various methods

For the first series of experiments, we set the latest allowed arrival time tA to 18:00, fixed a triple
(T1, T2, T3) of timetables and selected a set Σ of 10000 pairs of stops (s, t) uniformly at random
from the set of all possible stop pairs (s, t) with s 6= t. Now for each of these pairs, we used the
similarity-based approach with the (training) instances T1 and T2 to compute (one or more) robust
routes and corresponding departure times. We selected the most frequent route from the intersection
of the approximation sets. If the intersection was empty or the suggested route was not realised in
T3 (refer to Section 3.4.3 for situations when such a behaviour can occur), we discarded the pair (s, t)
from Σ and did not generate an alternate one. As for the previous experiments, for every pair (s, t)
we computed the average arrival time tstA of the route suggestions in T3. Furthermore, let SstγOPT be
the value of the maximum similarity of T1 and T2 when the origin and destination are set to s and
t, respectively. We now created a plot that contains the points (SstγOPT , t

st
A − tA) for each (s, t) ∈ Σ.

Notice that tstA − tA ≤ 0 if and only if the suggested route(s) arrive on time. Thus, tstA − tA can be
interpreted as the average lateness (in minutes) of the suggested routes for the stop pair (s, t).

Figure 35 shows the corresponding plot when the timetables of 18 and 25 April are used for
training, and the timetable of the 2 May is used for testing. Figure 36 shows the plot when the
timetables of 2 and 16 May are used for training, and the timetable of 23 May is used for testing.
The figures indicate that a high similarity alone does not necessarily imply a higher chance to arrive
on time. Figure 37 confirms this observation. For some number z ∈ R+

0 , let Σz be the set of all stop
pairs (s, t) ∈ Σ with SstγOPT ≥ z. For z ∈ {0, 25, 50, . . . , 200}, Figure 37 shows the number of such
pairs, the arrival rate and the standard deviation of the arrival time (in minutes) when only stop
pairs from Σz are being considered. We can see that for none of the two selected testing/training
triples, a high similarity increases the average arrival rate. Even worse, it seems that a high similarity
even lowers the average arrival rate. It also seems that at least the standard deviation decreases a
bit when the similarity is not too high. However, for pairs with high similarity, no strong statement
about the behaviour of the similarity-based approach can be made. On the other hand one has to
take into account that less than 3% of the pairs in Σ have a similarity above 100. This might be a
reason why no clear behaviour is exhibited.

At first glance, the results shown in Figures 35–37 are rather disappointing. On the other hand,
we just measured the similarity of the training instances T1 and T2, but we did not compare the
similarity between each test training instance and the test instance T3. Imagine that both training
instances T1 and T2 were very similar to each other, but both were not very similar to T3. In such a
situation, a high similarity between T1 and T2 clearly does not help to obtain a good prediction

D3.6: Page 40 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

0 100 200 300 400 500 600 700
−150

−100

−50

0

50

100

150

Similarity

L
a

te
n

e
s
s
 (

in
 M

in
u

te
s
)

Figure 35: Relation between the similarity and
the lateness in minutes. Timetables of 18 and
25 April were used for training, the timetable
of 2 May was used for testing.

0 100 200 300 400 500 600 700
−150

−100

−50

0

50

100

150

Similarity

L
a

te
n

e
s
s
 (

in
 M

in
u

te
s
)

Figure 36: Relation between the similarity and
the lateness in minutes. Timetables of 2 and 16
May were used for training, the timetable of 23
May was used for testing.

18.4, 25.4, 2.5 2.5, 16.5, 23.5

Similarity # Arrival Rate
Standard

Arrival Rate
Standard

deviation deviation

≥ 0 9,268 85.66% 12.75 9,340 79.66% 11.64

≥ 5 1,520 72.50% 11.07 1,588 68.83% 7.81

≥ 50 578 69.72% 11.02 671 66.62% 7.56

≥ 75 302 69.21% 11.62 367 62.40% 7.12

≥ 100 187 65.78% 13.07 216 58.80% 7.78

≥ 125 126 65.87% 12.67 134 54.48% 7.68

≥ 150 89 66.29% 14.03 87 55.17% 7.95

≥ 175 67 64.18% 12.79 59 50.85% 8.62

≥ 200 51 68.63% 12.51 51 49.02% 8.53

Figure 37: Arrival rates and the standard deviation of the arrival time (in minutes) when only pairs
(s, t) with a certain minimum similarity are considered. The lower bound on the similarity is given
in the first column. The number of pairs having at least this similarity are given in the second and
the fifth column. Columns 2–4 contain the results when the timetables of 18 and 25 April are used
for training and the timetable of 2 May is used for testing, Columns 5–7 contain the results when
the timetables of 2 and 16 May are used for training and the timetable of the 23 May is used for
testing.

D3.6: Page 41 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

for T3.
We decided to perform a second series of experiments in which we again generated 10000 pairs of

stops (s, t) uniformly at random (as before). The experimental setup is similar to the one described
in Section 3.4.5. However, this time we selected two triples of timetables, and these two triples did
not stay the same over all experiments but were chosen individually for each stop pair (s, t). Let
T be set of all available timetables (for the Zürich network, see Section 3.4.2 for a list of available
historic timetables). Furthermore, let Υ be the set of all triples (T1, T2, T3) ∈ T 3 whose components
are mutually different. For a given stop pair (s, t) and two timetables T1, T2 ∈ T , let SstγOPT (T1, T2)
be the maximum similarity of T1 and T2 with respect to the origin s and the destination t. For each
stop pair (s, t), we selected a triple whose minimum pairwise similarity is as large as possible,

(Tmax1 , Tmax2 , Tmax3) = arg max
(T1,T2,T3)∈Υ

min
{
SstγOPT (T1, T2), SstγOPT (T1, T3), SstγOPT (T2, T3)

}
(15)

and, analogously, a triple whose maximum pairwise similarity is as small as possible,

(Tmin1 , Tmin2 , Tmin3) = arg min
(T1,T2,T3)∈Υ

max
{
SstγOPT (T1, T2), SstγOPT (T1, T3), SstγOPT (T2, T3)

}
(16)

(Tmin1 , Tmin2 , Tmin3) can be seen as the three least similar instances while (Tmax1 , Tmax2 , Tmax3) are
the three most similar ones. Now, for every stop pair (s, t), we used the instances Tmax1 and Tmax2

as input and Tmax3 for testing, and for comparison, used alternatively Tmin1 and Tmin2 as input and
Tmin3 for testing. Figure 38 shows the results when the latest allowed arrival time tA is set to 9:00,
Figure 39 shows the results when tA is set to 18:00. Notice that even though the mean-risk estimator
as well as the norm-based estimators could handle more instances, they were given just the two
mentioned instances.

Figures 38 and 39 essentially show that all methods benefit when the similarity of the three
instances is high. However, notice that the arrival rate increases significantly especially for the
prediction by the similarity-based approach, but also for the ones by the norm-based estimators.
Also notice that the similarity-based approach outperforms all norm-based estimators when the
similarity is low, which is a reasonable behaviour: for a low similarity, the routes in first intersection
of the approximation set as well as the route that maximises the average departure time are too
much influenced by the noise of the training instances. The similarity-based approach, however, still
can let the approximation sets grow so that more stable solutions are contained. On the other hand,
if the similarity is high, then there is so few noise in the data that the similarity is maximised as
early as possible, which is reasonable. It also seems that there is only very little impact whether we
choose a random route from the intersection, or a route with a maximum number of realisations.

Of course the results of this experiment cannot directly be used for designing an algorithm, since
the testing instance is unknown. Nevertheless we believe that the results are interesting because
they demonstrate the power of the similarity-based approach.

3.5 Conclusions

The deliverable described a more efficient algorithm for generating all routes, described various
approaches for assessing the robustness of journeys and experimentally compared these algorithms
on real-world data from Zürich. We established a ranking of the different methods and showed that
it does not change substantially when the latest allowed arrival time tA changes (the probability to
arrive on time and the standard deviation on the arrival time change, though). For parametrisable
algorithms such as the Buffer-δ or the Mean-Risk-c methods, we observed a clear trade-off
between the departure time and the arrival rate. However, finding the right parameter is a highly
nontrivial choice. On the other hand, the similarity-based method presented in D3.4 does not need
parameter tuning and performs reasonably well when the training and the testing are similar enough.
At least for the Zürich network, a high similarity of testing and training instances is not always

D3.6: Page 42 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Low Similarity High Similarity

Arrival Rate
Standard

Arrival Rate
Standard

deviation deviation

Opt-TT 49.44% 61.44 64.95% 63.39

Buffer-1 55.67% 55.07 73.67% 52.84

Buffer-2 61.66% 52.59 79.30% 49.70

Buffer-3 69.02% 47.41 83.27% 40.09

Buffer-4 74.26% 45.09 86.01% 43.14

Buffer-5 78.30% 43.51 88.56% 40.81

Buffer-6 81.34% 39.38 90.96% 36.84

Buffer-7 84.20% 39.42 92.64% 34.95

Mean-Risk-Only2-1 80.24% 41.12 95.55% 28.78

Similarity-MRR 70.94% 42.18 93.71% 32.05

Similarity-Random 70.93% 42.18 93.71% 32.05

Norm-1-Only2 68.76% 41.74 92.85% 32.01

Norm-2-Only2 70.60% 41.68 93.64% 31.97

Norm-Inf-Only2 70.58% 41.98 93.70% 32.05

Figure 38: Comparison of the arrival rates and the standard deviation of the arrival time (in
minutes) for different methods. The latest allowed arrival time tA was set to 9:00. The second and
third column contain the results when the three least similar instances (average mutual maximum
similarity 16.79) were used, the forth and the fifth column contain the results when the three most
similar instances (average mutual minimum similarity 31.59) were used.

Low Similarity High Similarity

Arrival Rate
Standard

Arrival Rate
Standard

deviation deviation

Opt-TT 37.16% 10.99 52.66% 11.29

Buffer-1 41.83% 10.80 59.98% 11.38

Buffer-2 47.96% 10.45 66.39% 10.98

Buffer-3 55.54% 10.42 72.44% 11.21

Buffer-4 61.33% 10.39 77.10% 11.10

Buffer-5 66.17% 10.23 80.96% 11.46

Buffer-6 71.65% 10.34 85.04% 11.73

Buffer-7 75.46% 10.45 88.50% 11.88

Mean-Risk-Only2-1 79.38% 15.56 94.00% 19.02

Similarity-MRR 68.42% 13.32 91.22% 16.87

Similarity-Random 68.40% 13.32 91.22% 16.87

Norm-1-Only2 64.04% 13.33 90.11% 16.69

Norm-2-Only2 67.66% 13.32 91.24% 17.45

Norm-Inf-Only2 67.79% 13.33 91.22% 17.61

Figure 39: Comparison of the arrival rates and the standard deviation of the arrival time (in
minutes) for different methods. The latest allowed arrival time tA was set to 18:00. The second and
third column contain the results when the three least similar instances (average mutual maximum
similarity 13.28) were used, the forth and the fifth column contain the results when the three most
similar instances (average mutual minimum similarity 28.25) were used.

D3.6: Page 43 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

guaranteed. It would be interesting to compare the Zürich network to other networks to see whether
the observed behaviour comes from the method itself, or is an artefact of the data.

All algorithms have a reasonable running time when the Zürich network is used as input. However,
we notice that this network is rather small in comparison to networks of other cities. It is not a priori
clear whether the running time of the methods scales well. Since our methods require historic delay
data as input and such data is not easy to obtain, up to now we did not consider other networks.
Nevertheless we think that the fast running time of the methods on the Zürich network indicates
that the algorithms can also be applied in real-world scenarios for medium-sized networks other
than Zürich.

D3.6: Page 44 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

4 Final assessment of algorithms for context-aware multi-
modal daily routes for tourists

4.1 Brief overview of D3.5 algorithmic approaches

The main aim of the D3.5 (“Context-aware multi-modal daily routes for tourists and their empirical
assessment”) has been the development of models and algorithmic solutions for context-aware
multi-modal daily route planning problems for tourists visiting multiple points of interests (POIs),
optimized for mobile devices. Those route planning problems, known in the literature as tourist
trip design problems (TTDP), involve deriving personalized recommendations for daily sightseeing
itineraries for tourists visiting any urban destination.

In particular, a TTDP [33] refers to a route-planning problem for tourists interested in visiting
multiple POIs. TTDP solvers derive daily tourist tours, i. e., ordered visits to POIs, which respect
tourists’ constraints and POIs’ attributes. The main objective of the problem discussed is to select
POIs that match tourist preferences, thereby maximizing tourist satisfaction (“profit”), while taking
into account a multitude of parameters and constraints (e. g., distances among POIs, visiting time
required for each POI, POIs visiting days/hours, entrance fees, weather conditions) and respecting
the time available for sightseeing in daily basis.

The orienteering problem (OP) [64] serves as the baseline optimization problem for modeling
TTDP. The OP seeks for a tour that maximizes the total collected profit while maintaining the
travel cost under a given value. Clearly, the OP may be used to model the simplest version of the
TTDP wherein the POIs are associated with a profit (i. e., user satisfaction) and the goal is to
find a single tour that maximizes the profit collected within a given time budget (time allowed for
sightseeing in a single day). Extensions of the OP have been successfully applied to model more
complex versions of the single tour TTDP. The OP with Time Windows (OPTW) considers visits
to locations within a predefined time window (this allows modeling opening days/hours of POIs).
The Time-Dependent OP (TDOP) considers time dependency in the estimation of time required to
move from one location to another and therefore, it is suitable for modeling multi-modal transports
among POIs. The Team Orienteering Problem (TOP) is the extension of the OP to multiple tours.
The TOP with Time Windows (TOPTW) and the Time-Dependent TOPTW (TDTOPTW) have
been used to model different versions of the multiple tour TTDP.

In D3.5 we proposed algorithmic approaches that tackled variants of TTDP. First, we considered
multiple tours via POIs with specific opening days/hours, assuming constant travel times among
POIs (i. e., exclusively walking transfers). Hence, we modeled TTDP as a TOPTW problem and
designed two efficient algorithmic solutions to deal with it. Building upon that, we then additionally
took into account time-dependent (i. e., multimodal) travel times in our TTDP modeling. To treat
time dependency, we modeled TTDP as a TDTOPTW problem and implemented several algorithms
dealing with it. All our prototyped algorithms have been evaluated and tested upon both existing
and new test instances. We have also used validation scenarios comprising real POI sets compiled
from the Athens (Greece) area and calculated multimodal travel times based on the metropolitan
transit network of Athens. A more elaborate overview of the D3.5 algorithmic approaches is provided
in the sequel.

TOPTW algorithmic approaches. We presented CSCRatio and CSCRoutes, two cluster-based
approaches to the TTDP. The main incentive behind these approaches is to favor visits to topology
areas featuring high density of good candidate nodes. Furthermore, they both favor solutions with
reduced number of long transfers among nodes, which are associated with public transportation
transfers in typical urban settings (such transfers are costly, time consuming and usually less attractive
to tourists than short walking transfers). The comparison of CSCRatio over the ILS algorithm3

3ILS (Iterated Local Search) represents a fair compromise in terms of speed versus deriving routes of reasonable
quality (on average, less than 5% gap from the best known solution on publicly available test instances). Among the

D3.6: Page 45 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

[65] demonstrated that CSCRatio achieves higher quality solutions in comparable execution time
(especially when considering limited itinerary time budget), while also reducing the average number
of transfers. As regards the comparison of CSCRoutes over ILS, this confirmed the prevalence of
the former in situations where the reduction of inter-cluster transfers is of critical importance. The
lower number of transfers in CSCRoutes is achieved at the expense of slightly lower quality solutions.
Furthermore, CSCRoutes achieved the best performance results with respect to execution time,
compared to ILS and CSCRatio. Notably, the performance gap of the algorithms over ILS increased
when tested on realistic TTDP instances, wherein nodes typically feature wide, overlapping time
windows and are located nearby each other, while the daily time budget is 5-10h.

TDTOPTW algorithmic approaches. We proposed two cluster-based heuristics (the Time
Dependent CSCRoutes (TDCSCRoutes) and the SlackCSCRoutes) for solving the TDTOPTW
which make no assumption on periodic service schedules. The main design objectives of the two
algorithms are to derive high quality TDTOPTW solutions (maximizing tourist satisfaction), while
minimizing the number of transit transfers and executing fast enough to support online web and
mobile applications. The prototyped algorithms have been tested in terms of various performance
parameters (solutions quality, execution time, number of transit transfers, etc) upon real test
instances compiled from the wider area of Athens, Greece. The performance of the algorithms
has been compared against two variants that use precalculated average travel times (among the
individual time dependent, real travel times) between POIs, the AvgILS and the AvgCSCRoutes.
AvgILS refers to the average travel time approach proposed by Garcia et al. [32]. AvgCSCRoutes
uses CSCRoutes to construct routes based on pre-computed average travel times. With respect to
the overall collected profit, TDCSCRoutes has been shown to perform marginally better. On the
other hand, SlackCSCRoutes achieved a fair compromise among all the performance aspects. In
practical applications, comprising very large datasets, AvgCSCRoutes could be the most suitable
choice as it efficiently derives solutions of reasonably good quality. Nevertheless, its suitability largely
depends on the high frequency of public transit services, so that average travel times represent a
good guess.

In this deliverable, we build upon the algorithmic approaches summarized above. Our focus
has been to investigate increasingly complex TTDP formulations which capture realistic tourist
requirements, thereby further advancing the state of the art (among all known research prototypes
and commercial tools). The two main threads of our recent research in the framework of D3.6 are
based on the following observations:

• Users typically seek stop overs at affordable and conveniently located restaurants along their
tours. Existing algorithmic approaches (tour planning software tools) overlook this requirement
and derive itineraries exclusively comprising visits to attractions.

• (TD)(T)OP(TW) algorithmic approaches derive tours, essentially comprising successive visits
to vertices, i. e., public or supervised sites (e. g., squares, parks, museums, archaeological sites,
etc). This approach overlooks the emphasis of tourists on the actual route followed to reach
POIs. Most tourists particularly appreciate walking routes via zones of physical/scenic or
architectural/historical/cultural value. That is, most visitors would trade a fastest route via a
road segment with heavy car traffic for a longer, yet more attractive, route option. Notably,
tour planners that integrate “scenic routes” in their tour recommendations simplistically
consider the routes as points, modeling the scenic routes walking time similarly to POIs
visiting time. This implies that, the user is expected to start/end the scenic route on that
particular location within the allocated visiting time in order not to invalidate the remainder
of the tour.

The above discussed issues have been addressed in the following ways:

many existing TOPTW solvers, ILS has been known (until recently) to be the most suitable algorithmic approach for
TTDP problems, which have strict real-time requirements.

D3.6: Page 46 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

• We have extended our TDTOPTW algorithmic solutions so as to allow users to schedule
lunch/coffee breaks through recommending restaurants/cafes based on both their price range
and their location so as not to require long detours away from attraction areas.

• To allow modeling scenic routes, i. e., to assign profits to arcs in addition to vertices (“typical”
POIs) we have firstly investigated the Arc Orienteering Problem (AOP) and the Mixed
Orienteering Problem (MOP). AOP is a single route arc routing problem with profits where
arcs are associated with profits and travel times, while MOP is the extension of both the
OP and the AOP, where both nodes and arcs are associated with profit. We have obtained
approximation algorithms for both the AOP and the MOP, presented in this deliverable.
Thereafter, we investigated the Mixed Team Orienteering Problem with Time Windows
(MTOPTW), i. e., the extension of the MOP to multiple tours, which has not been studied so
far in the literature. Given the hardness of this problem and the real-time requirements of
TTDP, we have focused on (meta)heuristic approaches to tackle MTOPTW.

The remainder of this Section is structured as follows: Subsection 4.2 discusses extensions to our
TDTOPTW algorithmic solutions to allow incorporating lunch breaks in multimodal tour planning.
Subsection 4.3 presents our Approximation algorithms for the AOP and the MOP while Subsection
4.4 presents two metaheuristic algorithms for the MTOPTW and their empirical assessment upon
real data related to the city of Athens, Greece. Finally, Subsection 4.5 concludes this Section.

4.2 Incorporating lunch breaks in multimodal tour planning

Tourists commonly chose restaurants on the basis of hard/soft constraints and preferences (e. g.,
price range, cuisine, customer reviews, etc) and their location since they prefer not to considerably
deviate from their sightseeing routes. Given the numerous restaurant options typically in offer, the
selection of a suitable place for lunch break may be even more cumbersome than scheduling visits
to attractions. However, existing tourist tour planners exclusively consider visits to attractions
ignoring the need for lunch/rest breaks.

We address this issue by scheduling lunch breaks in affordable restaurants located nearby the
tourist tour. From a tour planning point of view, restaurants may be considered as a separate set of
POIs with identical profit; among these POIs it is compulsory to visit only one. The methodology
discussed in the sequel has been incorporated in our TDTOPTW SlackCSCRoutes algorithm.

Figure 40: Process of incorporating lunch breaks.

D3.6: Page 47 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

The route creation process starts with inserting a “dummy” node (see Figure 40a) with its time
window and visiting time properties provided by the user (the user indicates her/his preferred time
span and duration of lunch break). Thereafter, SlackCSCRoutes executes as normal, accommodating
visits to attractions prior/after the visit to the restaurant (see Figure 40b). It is noted that the travel
cost between the dummy node and an attraction is set equal to the shortest time dependent travel
cost between the attraction and a restaurant. At the end of the process, all available restaurants
within the specified budget are considered (see Figure 40c). The one requiring the shortest time to
reach is chosen to visit at the same position held by the dummy node (see Figure 40d). In the case
that the derived route is infeasible, nodes included in the route are iteratively removed (in profit
ascending order) until route feasibility is attained. The above discussed lunch scheduling logic has
been integrated in the mobile (Android) multimodal tourist tour planning application which has
been prototyped in the framework of WP5 of eCOMPASS (see Figure 41).

Figure 41: Screenshots taken from the eCOMPASS mobile (Android) multimodal tourist tor planning
application: (a) lunch break shown in list view (highlighted with different background color); (b)
lunch break shown in map view (indicated by different marker).

4.3 The Arc Orienteering Problem (AOP)

The Arc Orienteering Problem (AOP) is a single route arc routing problem with profits introduced
by Souffriau et al. in [62]. Given a directed graph G = (V,A) whose arcs are associated with
profits and travel times, two nodes s, l ∈ V , and a time budget B, the problem entails finding an
s − l walk of total length at most B so as to maximize the sum of the profits of the arcs visited
by the walk. Note that the profit of each arc in the walk is collected only at the first time it is
traversed. The AOP is the arc routing version of the Orienteering Problem (OP), an NP-hard
problem, named after a sport game called orienteering [39, 63]. In the OP the nodes (instead of
the arcs) are associated with profits and the goal is to find a walk from s to l with length at most
B such that the total profit of the visited nodes is maximized. The OP as well as its extension to
multiple routes, the Team Orienteering Problem (TOP), and many other extensions and variants

D3.6: Page 48 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

have been extensively studied in the literature. In the past decade a significant number of studies
have been conducted wherein approximation approaches, metaheuristics and exact methods have
been employed to tackle these problems (see [33] and [64]for a survey). One of the most common
application of the OP and its extensions is to model different versions of the Tourist Trip Design
Problem (TTDP) [66], a route-planning problem which deals with deriving near optimal routes for
tourists visiting a destination with several points of interest (POIs) each associated with a profit.

The AOP is applicable to TTDP variants whose modeling requires profits to be associated
with the arcs of the network as some links may be more beneficial to be traversed than others.
As an example we may consider the derivation of personalized bicycle trips. Based on the biker’s
personal interests, starting and ending point and the available time budget, a personalized trip
can be composed using arcs that better match the cyclist’s profile. Similarly, AOP solvers may
favor detours via riverside or pedestrian roads against shorter routes via high-traffic or unsafe zones
for tourists moving among POIs. The extension of the AOP to multiple routes, introduced by
Archetti et al. in [4] and named as Team Orienteering Arc Routing Problem (TOARP), may also
find applications to TTDP variants. For example, consider the selection of paths of higher scenic
value (among the many available between pairs of POIs) as well as the exclusion of paths including
environmentally burdened road segments in favor of longer detours through pedestrian zones.

Although numerous research works concern the OP as well as many extensions and variants
of the OP, there is very limited body of literature concerning AOP and TOARP. To the best of
our knowledge, this literature includes the work of Souffriau et al. [62] which uses the AOP to
model and provide a heuristic solution to the problem of planning cycle trips in the province of
East Flanders, the work of Archetti et al. in [4] that proposes a formulation of the problem and a
branch-and-cut algorithm and the work of Archetti et al. in [2] which introduces a metaheuristic
approach to TOARP.

The combination of the OP and the AOP is proposed in [64] under the name Mixed Orienteering
Problem (MOP). In the MOP, profits are associated with the nodes as well as with the arcs of the
graph. The problem is very interesting in the context of tourist trip planning as it can be used to
formulate TTDP variants where certain routes may be of tourist interest, in addition to attractions.
The only relevant research works concern the one-period Bus Touring Problem (BTP) [17], and the
Outdoor Activity Tour Suggestion Problem (OATSP) [50].

Herein we first overview related work (Subsection 4.3.1) and then we present approximation
algorithms for the AOP in directed and undirected graphs. Specifically, in Subsection 4.3.2 we give
an inapproximability result for the AOP and propose a polylogarithmic approximation algorithm for
the problem using the polylogarithmic approximation algorithm for the OP in [55]. In Subsection
4.3.3 we present a (6 + ε + o(1))−approximation algorithm for the AOP in undirected graphs
and a (4 + ε)−approximation algorithm for the unweighted version of the problem, using the
(2 + ε)−approximation algorithm for the unweighted OP in [16]. Finally, we obtain approximation
algorithms for the Mixed Orienteering Problem (MOP), the extension of both the OP and the AOP,
where both nodes and arcs are associated with profit.

4.3.1 Related work

Souffriau et al. in [62] use the AOP to model and solve the problem of planning cycle trips in the
province of East Flanders. Their solution approach is based on a Greedy Randomized Adaptive
Search Procedure (GRASP), while experimental results are based on instances generated from the
East Flanders network.

Archetti et al. in [4] propose a formulation for the AOP and study a relaxation of its associated
polyhedron. Also, they develop a branch-and-cut algorithm for solving the problem. Archetti et al.
in [2] propose a metaheuristic approach for the AOP. Experimental results show that the algorithm
gives an average percentage error with respect to the optimal solution which is lower than 1%.

The Undirected Capacitated Arc Routing Problem with Profits (UCARPP), the arc routing
counterpart of the capacitated TOP, is considered in [3]. In this problem a profit and a nonnegative

D3.6: Page 49 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

demand is associated with each arc and the objective is to determine a path for each available
vehicle in order to maximize the total collected profit, without violating the capacity and time
limit constraints of each vehicle. The authors consider an application where carriers can select
potential customers for transporting their goods. Another potential application is the creation of
personalized bicycle trips. An exact approach for solving the UCARPP along with several heuristics
were proposed in [3]. The problem was also studied by Zachariadis and Kiranoudis in [67] where a
local search procedure was given.

To the best of our knowledge, the only research works relevant to the MOP, concern the one-period
Bus Touring Problem (BTP) [17], and the Outdoor Activity Tour Suggestion Problem (OATSP)
[50]. In the BTP the objective is to maximize the total profit of the tour by selecting a subset of
nodes to be visited and arcs to be traveled both having associated profits, given a constraint on the
total touring time. The profit of recurrently visited nodes and arcs is only counted once. In [17] a
heuristic approach is employed to solve the BTP. The OATSP, introduced recently by Maervoet et
al. [50], involves finding attractive closed paths in a transportation network, tailored for a specific
outdoor activity mode such as hiking and mountain biking. Total path attractiveness is evaluated as
the sum of the average arc attractiveness and the profits of the nodes along the path. The problem
involves finding a closed path of maximal attractiveness given a target path length and tolerance.
That is, the OATSP requires a target path length instead of a maximal travel time required by the
BTP. This gives rise to a path length window constraint. In [50] an efficient heuristic solution to
the OATSP is presented.

To the best of our knowledge, no approximation algorithms for the AOP or the MOP have been
presented in the literature. On the other hand, there is a significant number of research works on
the approximability of the OP. As mentioned in the introduction, OP is NP-hard ([39], [46]) and it
also known to be APX-hard [9]. The basic idea for approximating the OP was presented by Blum
et al. in [9], [10] where the min-excess s− t path problem (given two nodes s, t and an integer k,
find an s− t path of minimum-excess 4 that visits at least k nodes) was defined. It was shown that
an approximation for the min-excess path problem implies an approximation for the OP. Then, the
min-excess path problem can be approximated using algorithms for the k-stroll problem (find a
minimum length s− t walk that visits at least k nodes). Blum et al. obtained a 4-approximation
algorithm for the OP in undirected graphs by using a (2 + ε)-approximation for the k-stroll path
problem. In fact, most subsequent approximation algorithms for OP follow the framework of [9],
[10] which reduces the OP to the k-stroll problem via the min-excess path problem. The best
known approximation algorithm for the OP in undirected graphs is due to Chekuri et al. [15]

who obtained a (2 + ε)-approximation algorithm with running time nO(1/ε2) by giving a bi-criteria
approximation for k-stroll problem with respect to the path length and the number of nodes visited.
Using the same approach, they also obtained an O(log2OPT) approximation algorithm for the OP
in directed graphs, where OPT denotes the number of nodes in an optimal solution. The best known
approximation algorithm for the OP in directed graphs is due to Nagarajan and Ravi [55]. They

gave an O(log2 n
log logn)-approximation algorithm for the OP in directed graphs employing a bi-criteria

approximation solution for k-stroll based on an LP approach.

4.3.2 Approximation algorithms for the AOP

In this Subsection we first obtain an inapproximability result for the AOP. Then, we propose an
approximation algorithm for the problem.

The OP in directed graphs is reduced to the AOP. Given an OP instance an AOP instance
is created as follows: Assign zero profit to each arc and for each node u add a node u′, the arcs
(u, u′), (u′, u) of zero travel cost and pu

2 profit and remove u’s profit. Then, an OP solution yields
an equal length and at least the same profit AOP solution and vice versa. Using the results in [39]
and [10], we get the following theorem.

4The excess of an s− t path is the difference of the path length from the length of the shortest s− t path.

D3.6: Page 50 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Theorem 1. The AOP is NP-hard and hard to approximate within 1481
1480 .

Theorem 2. An f(n)−approximation algorithm for the OP in directed graphs, where n is the
number of nodes, yields an f(m+ 2)−approximation algorithm for the AOP, where m is the number
of arcs.

Proof. Given an instance of the AOP (G = (V,A), t, p, B), |A| = m, we construct an instance of the
OP in the directed network N = (V ′, A′) with V ′ = {s, l} ∪ {(u, v) : (u, v) ∈ A}, |V ′| = n′ = m+ 2,
and A′ = {(s, (s, u)), ((v, l), l) : (s, u), (v, l) ∈ A} ∪ {((u, v), (v, w)) : (u, v), (v, w) ∈ A}. The travel

times of the arcs in N are defined as follows: t′((u,v),(v,w)) =
t(u,v)+t(v,w)

2 , t′(s,(s,u)) =
t(s,u)

2 and

t′((v,l),l) =
t(v,l)

2 . The profit of each node (u, v) equals to p′(u,v) = p(u,v) and B′ = B. Then, a solution
of the AOP instance yields a solution of the OP instance of equal total profit and length and vice
versa.

The theorem yields a O(log2m
log logm)−approximation algorithm for the AOP, applying Nagarajan

and Ravi’s algorithm [55] to the metric closure of the constructed OP instance and transforming the
solution to an AOP solution.

4.3.3 Approximation Algorithms for the AOP in Undirected Graphs

In this Subsection we study the AOP in undirected graphs. Similarly to the previous section the
problem is NP-hard and hard to approximate within 1481

1480 via a reduction from the OP in undirected
graphs. We obtain a constant factor approximation algorithm for the problem by reducing it to the
Unweighted OP (UOP) in undirected graphs, the restriction of the OP with nodes of unit profit.
First, we reduce the AOP to the special case with polynomially bounded positive integer profits
using a similar technique with [16, 45].

Lemma 3. A ρ−approximation algorithm for the AOP in undirected graphs with polynomially
bounded positive integer profits yields a (ρ+o(1))− approximation algorithm for the AOP in undirected
graphs.

Proof. Given an AOP instance I = (G = (V,E), t, p, B), we construct an instance I ′ = (G′ =
(V ′, E′), t, p′, B) with polynomially bounded positive integer profits. First, we guess the edge
of highest profit (pmax) in the optimal walk and remove all higher profit edges. Then, we set

p′e = bn
3pe
pmax
c+ 1 for each edge e. A feasible walk W , consisting of the distinct edges e1, e2, . . . , ek

has profit profit(W) =
k∑
j=1

pej in I and profit′(W) =
k∑
j=1

p′ej >
n3profit(W)

pmax
in I ′. Hence, OPT′ >

n3

pmax
OPT, where OPT(OPT′) is the optimum in I(I ′). On the other hand, profit′(W) =

k∑
j=1

p′ej ≤

k∑
j=1

(
n3pej
pmax

+ 1) =⇒ n3

pmax
profit(W) ≥ profit′(W) − m ≥ profit′(W) − mOPT

pmax
, so profit(W) ≥

pmax

n3 profit′(W) − m
n3 OPT. Then, a ρ−approximation solution W of I ′ has profit′(W) ≥ OPT′

ρ , so

profit(W) ≥ 1
ρ
pmax

n3 OPT′ − m
n3 OPT > (1

ρ −
m
n3)OPT.

Theorem 4. A ρ-approximation algorithm for the UOP in undirected graphs yields a 3ρ-approximation
algorithm for the AOP in undirected graphs with polynomially bounded positive integer profits.

Proof. Given an AOP instance, each edge e such that the shortest path from s to l passing through e
exceeds the time budget is removed from the graph. Then, we construct an UOP instance by splitting
each edge {u, v} into puv + 1 edges as follows: Each node of the AOP instance is a node of the UOP
instance (basic node) and for each edge {u, v} of the AOP instance, the UOP instance includes
the auxiliary nodes {u, v}1, {u, v}2, · · · , {u, v}puv and the edges {u, {u, v}1}, {{u, v}1, {u, v}2}, · · · ,

D3.6: Page 51 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

{{u, v}puv−1, {u, v}puv}, {{u, v}puv , v}. The travel times of {u, {u, v}1} and {{u, v}puv , v} are set

to
t{u,v}

2 , while the travel time of the remaining edges is zero. The time budget of the UOP instance
is set equal to the time budget of the AOP instance.

An AOP solution yields an equal length UOP solution of at least the same profit by replac-
ing each edge {u, v} by the segment (u, {u, v}1, · · · , {u, v}puv , v). On the other hand, we will
show that any UOP solution yields an AOP solution of at least a third of the former’s profit
(pAOP ≥ pUOP

3). A sequence of nodes (u, {u, v}1, {u, v}2, · · · , {u, v}puv , v) is called an appropriate
segment, i. e., a segment representing the traversal of the edge {u, v} in the AOP instance, while
(u, {u, v}1, · · · , {u, v}i−1, {u, v}i, {u, v}i−1 · · · , {u, v}1, u) is called an inappropriate segment, i. e.,
a segment representing the partial traversal of the edge {u, v} of the AOP instance. For each
inappropriate segment we consider that i = puv, otherwise we may extend it to the equal length and
higher profit segment with i = puv.

In an UOP solution, if pAS(pIS) is the profit gained by the appropriate (resp., inappropriate)
segments, then pUOP = pAS + pIS. Note that pAS equals to the number of visited basic nodes
plus the number of auxiliary nodes visited in the appropriate segments while pIS equals to the
number of auxiliary nodes visited in the inappropriate segments, since any basic node visited in an
inappropriate segment has already been counted in pAS. If all segments are appropriate, an AOP
solution is obtained replacing the segments by their representing edges. This yields an AOP solution
of pAOP >

pUOP

2 , since pUOP equals to pAOP plus the number of visited basic nodes, apart from s, l.
Hence, pUOP is less than pAOP plus the number of traversed edges, i. e., pUOP < 2pAOP.

If however inappropriate segments exist, let IS = {s1, s2, . . . , sk} be the set of inappropriate
segments of the UOP solution. Let also p1, p2, . . . , pk be the profits collected by traversing them

(
k∑
i=1

pi = pIS), assuming w.l.o.g that p1 ≥ p2 ≥ · · · ≥ pk and t1, t2, . . . , tk be the travel times

associated with them. If p1 ≥ pUOP

3 , then an AOP solution of pAOP ≥ pUOP

3 is obtained returning
the shortest path from s to l passing through the edge represented by s1.

Otherwise, we shall replace some of the inappropriate segments by their representing edge
traversed in both directions, i. e., the inappropriate segment

(u, {u, v}1, · · · , {u, v}puv−1, {u, v}puv , {u, v}puv−1, · · · , {u, v}1, u)

shall be replaced by the sequence of nodes (u, v, u) in the AOP instance. A subset RS of IS, with∑
sj∈RS

2tj ≤
k∑
i=1

ti =
∑
sj∈IS

tj will be called a replaceable subset, i. e., replacing the appropriate segments

by their representing edges and the segments in the replaceable set by their representing edges
traversed in both directions, we obtain a feasible AOP solution. RS is a maximal replaceable subset, if
inserting a segment (sm /∈ RS) into the set would violate the time constraint, i. e.,

∑
sj∈RS

2tj + 2tm >

k∑
i=1

ti. Consider a maximal replaceable subset MRS of segments. We distinguish between the

following cases: (i) pMRS ≥ pIS
3 or pAS + pMRS ≥ 2pUOP

3 , where pMRS is the total profit of segments
in MRS. Then an AOP solution is obtained consisting of the edges represented by the appropriate
segments (contributing at least pAS

2 profit) and the sequences that replace the segments in MRS

(contributing pMRS profit), with profit at least pAS+pIS
3 = pUOP

3 or greater than pAS+pMRS

2 ≥ pUOP

3 ,
hence pAOP ≥ pUOP

3 . (ii) The set of inappropriate segments MRSc = IS\MRS has pMRSc >
pUOP

3 .
Note that MRSc contains at least two segments, otherwise p1 ≥ pMRSc >

pUOP

3 , a contradiction.

Furthermore, pMRSc >
2pIS

3 , hence removing the lowest profit segment sm ∈ MRSc, MRSc\{sm}

has profit pMRSc\{sm} ≥
pMRSc

2 > pIS
3 . Since

∑
sj∈MRS

2tj + 2tm >
k∑
i=1

ti then
∑

sj∈MRSc\{sm}
2tj <

k∑
i=1

ti,

hence MRSc\{sm} is replaceable. Then, we apply the same technique with (i) using MRSc\{sm}
instead of MRS, obtaining an AOP solution of pAOP >

pUOP

3 .

D3.6: Page 52 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Using Lemma 3, Theorem 4 and the (2 + ε)−approximation algorithm for the UOP by Chekuri
et al. [16] we obtain a (6 + ε+ o(1))−approximation algorithm for the AOP in undirected graphs

with execution time nO(1
ε2

).
The unweighted AOP (UAOP) is the special case of the AOP with edges of unit profit.

Similarly to Theorem 4, a ρ−approximation algorithm for the UOP in undirected graphs yields a
2ρ−approximation algorithm for the UAOP in undirected graphs. If the optimal UAOP solution
contains less than ρ+ 2 nodes, it is found by exhaustive search since ρ is a constant. Otherwise,
OPTUOP ≥ OPTUAOP + ρ. Then, an UOP solution of pUOP ≥ OPTUOP

ρ yields an UAOP solution

of pUAOP ≥ pUOP−1
2 ≥ OPTUAOP

2ρ by replacing its appropriate and its half shortest inappropriate

segments. Using Chekuri et al.’s algorithm [16] we obtain a (4 + ε)−approximation algorithm.
The Mixed Orienteering Problem (MOP) [17, 64] extends both the OP and the AOP, assigning

profit to both nodes and arcs. The MOP is reduced to the AOP in a similar way with the reduction
from the OP to the AOP, retaining though the arcs’ profit. As a result, any approximation algorithm
for the AOP yields an approximation algorithm for the MOP.

4.4 The Mixed Team Orienteering Problem with TimeWindows (MTOPTW)

In this Subsection we introduce the Mixed Team Orienteering Problem with Time Windows
(MTOPTW), i. e., the extension of the MOP to multiple tours, and present the first algorithmic
approaches to tackle it. The problem can be used to formulate realistic TTDP variants whose
modeling requires multiple tourist tours, profits to be associated to both POIs (nodes of the network)
and routes (arcs of the network) as certain routes may be more interesting to be traversed than
others, while both POIs and routes are associated with visiting/traversing time windows. We define
the problem on windy graphs as follows: Consider a complete windy undirected graph G = (V,E),
where V = {u1, u2, . . . , uN} denotes the vertex set and E the edge set. A travel cost is assigned
to each link between two vertices, i. e., each ordered pair of vertices (u, v) has a travel cost Tu,v
which might be different from Tv,u. Each vertex u is associated with a visit duration Tu, while
visiting a vertex u (or traversing an edge {u, v}) offers a profit Pu (respectively, Pu,v). Each vertex
u (edge {u, v}) is associated with an opening time Odu (respectively, Odu,v) and a closing time Cdu
(respectively, Cdu,v) for each different day of the week d ∈ {0, 1, . . . , 6}, The visit at a vertex u (or
the traversal of an edge {u, v}) at a specific day d can only start after its opening time and end
before its closing time. Furthermore, an integer K is given denoting the number of the walks that
will be constructed, and for each walk Wi a starting vertex sli and an ending vertex eli are given,
i = 0, 1, . . . ,K − 1 as well as a starting time sti and an ending time eti, i = 0, 1, . . . ,K − 1.

A feasible solution of the MTOPTW consists of K walks W0,W1, . . . ,WK−1 with Wi =
(wi0, w

i
1, . . . , w

i
li−1) such that wi0 = sli, w

i
li−1 = eli, the arrival time at sli equals to sti, the

arrival time at eli is at most eti, and the visit at each vertex wim (the traversal of each edge
{wim, wim+1}) satisfies its time window, i. e., the visit (traversal) starts after its opening time and
ends before closing time. The profit of the solution is equal to the sum of the profits of the visited
vertices and the traversed edges. If a vertex is visited (or an edge is traversed) more than once, its
profit is counted only once. The goal of the MTOPTW is to construct the feasible solution of the
highest profit.

Without loss of generality we may assume that each vertex u with Pu > 0 is not connected with an
edge of positive profit, i. e., there is no v such that Pu,v > 0, otherwise we introduce a dummy vertex
u′, that is a clone of u, with Pu′ = Pu and the same attributes with u (i. e., the same time windows
and costs for it and its adjacent edges) and remove the profit from u. Similarly, we may assume that
for each edge {u, v} with Pu,v > 0 there is no node w such that Pu,w > 0 or Pw,v > 0. Based on
these assumptions, we may only consider the feasible solutions that are sequences of profitable (i. e.,
with positive profit) nodes and edges. We will denote a profitable node and a profitable edge as a
profitable piece. Then, we may represent a walk of the solution as Wi = (pi0, p

i
1, . . . , p

i
mi−1), with

pi0 = sli, p
i
mi−1 = eli and pij , j = 1, 2, . . . ,mi − 2 the included profitable pieces in walk Wi. We shall

D3.6: Page 53 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

denote this representation of the walk as the piece representation, while the representation of the
walk as a sequence of nodes shall be denoted as the node representation. For example the walk Wi

in Figure 42 consists of the starting/ending locations as well as the nodes u, v and w from which
only u has a positive profit. Apart from u, the edge (v, w) is also associated with profit, hence the
profitable pieces of Wi are the node u and the edge (v, w). Therefore, the node representation of
the walk is Wi = (sli, u, v, w, eli) while its piece representation is Wi = (pi0, p

i
1, p

i
2, p

i
3) with pi1 = u

and pi2 = (v, w).

sli u v w eli

Figure 42: Illustration of the representation of a walk. Profitable pieces are colored green.

In this Subsection we propose two metaheuristic algorithms for the MTOPTW. Specifically, in
4.4.1 an Iterated Local Search metaheuristic, similar to the one presented by Vansteenwegen et al.
[65] for the TOPTW, is given. In 4.4.2 we present a Simulated Annealing metaheuristic for the
problem. The experimental results compiled from executing the two algorithms are given in 4.4.3.

4.4.1 Iterated Local Search Metaheuristic for the MTOPTW

The Iterated Local Search [11, 49] is a metaheuristic method widely used in combinatorial optimiza-
tion problems in order to search the solution space extensively. The intuition of this metaheuristic is
to iteratively reach a local optimum solution by applying local search and then perturb the solution.
The solution is perturbed in order to escape from the local optimum and reach a different local
optimum in the next iteration. In this way a lot of local optimum solutions are found, hence the
method is expected to produce better results than a simple local search method.

The neighborhood structure used in the inner local search procedure of the presented method is
the InsertPiece. Considering a feasible solution of an instance of the MTOPTW, a neighboring
solution is obtained by inserting a non-included profitable piece between two consecutive nodes of
the walk. Equivalently, the InsertPiece neighborhood contains all the solutions that are obtained
by inserting a non-included profitable piece between two consecutive nodes of the walk that are not
connected with a profitable edge.

For example in Figure 43 we consider the neighboring solutions of the single walk solution
with node representation Wi = (sli, u, v, w, eli). We consider that there are only two non-included
profitable pieces, the edge {y, z} and the node x. Figures 43(a) – 43(f) show the neighboring
solutions that are produced by inserting the edge {y, z} between two consecutive nodes of the walk.
Figures 43(a) and 43(b) depict the two solutions obtained by inserting {y, z} between sli and u,
the former with direction from y to z and the latter from z to y. Similarly, Figures 43(c) and 43(d)
depict the insertion of {y, z} between u and {v, w}, while Figures 43(e) and 43(f) present the
solution obtained by inserting {y, z} after {v, w}. As far as the non-included node x is considered,
the neighboring solutions are depicted in Figures 43(g), 43(h) and 43(i), where the insertion after
sli, u and {v, w} is considered, respectively. Note, that neither {y, z} nor x can be inserted between
v and w, since {v, w} is a profitable edge.

Inspired by Vansteenwegen et al.’s [65] article, each included node in a walk of the solution is
associated with its arrival (arrive), starting (start) and leaving (leave) time, as well as the maximum
time the arrival at the node can take place (maxArrive), such that the walk remains feasible.
Considering the walk Wi = (wi0, w

i
1, . . . , w

i
li−1) in its node representation, that takes place in day d,

the time attributes of each included node are given by the recursive formulas:

arrive(wi0) = start(wi0) = leave(wi0) = sti and for each k = 0, 1, . . . , li − 2
arrive(wik+1) = max(leave(wik),Od

wik,w
i
k+1

) + Twik,wk+1
,

start(wik+1) = max(arrive(wik+1),Od
wik+1

) and leave(wik+1) = start(wik+1) + Twik+1
.

D3.6: Page 54 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

sli u v w eli

y z

sli u v w eli

z y

(a) (b)

sli u v w eli

y z

sli u v w eli

z y

(c) (d)

sli u v w eli

y z

sli u v w eli

z y

(e) (f)

sli u v w eli

x

sli u v w eli

x

(g) (h)

sli u v w eli

x

(i)

Figure 43: Illustration of the InsertPiece Neighborhood

D3.6: Page 55 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

The maxArrive time of the nodes is calculated recursively from the ending location to the start
as follows:

maxArrive(wili−1) = eti and for each k = li − 2, li − 3, . . . , 1, 0

maxArrive(wik) = min(Cd
wik
, Cd

wik,w
i
k+1
− Twik ,maxArrive(wik+1) −Twik − Twik,wk+1

).

Using the previously introduced time attributes of the included nodes, checking if the insertion
of a non-included profitable piece after an included piece (inclPiece) in a walk Wi is feasible requires
constant time, i. e., time independent of the size of the walk. To see this, consider that the included
piece’s last node is wik, i. e., the included piece is either the node wik or the edge (wik−1, w

i
k) and

that the walk takes place at day d. In case that the candidate non-included profitable piece is the
edge {y, z}, we have to examine both directions, i. e., from y to z and from z to y. The insertion of
{y, z} with the direction from y to z after an included piece with last node wik (see Figure 44(a)) is
feasible if and only if the following conditions are satisfied:

1. leave(wik) ≤ Cd
wik,y

2. the arrival time at y is at most Cdy

3. the leaving time from y is at most Cdy,z

4. the arrival time at z is at most Cdz

5. the leaving time from z is at most Cd
z,wik+1

6. the new arrival time at wik+1 is at most maxArrive(wik+1)

If the insertion is feasible, the difference between the new arrival time at wik+1 and the former
one will be considered as the time shifted and is denoted as shift((y, z),inclPiece).

The pseudo code of a procedure that checks the feasibility of the insertion of the edge (y, z) after
an included piece (inclPiece) with last node wik follows (Algorithm 2).

In a similar way, we may check if the insertion of a non-included profitable node x is feasible after
an included piece, just by skipping the time window feasibility of the second node, i. e., the node x
can be inserted after wik (see Figure 44(b)) if and only if the following conditions are satisfied:

1. leave(wik) ≤ Cd
wik,x

2. the arrival time at x is at most Cdx

3. the leaving time from x is at most Cd
x,wik+1

4. the new arrival time at wik+1 is at most maxArrive(wik+1)

Similarly to the case of a candidate profitable edge, shift(x,inclPiece) denotes the difference
between the new arrival time at wik+1 and the former one.

sli wi
k wi

k+1 eli

y z

sli wi
k wi

k+1 eli

x

(a) (b)

Figure 44: Illustration of insertion’s feasibility

D3.6: Page 56 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Algorithm 2: Insertion Feasibility of the edge (y, z) after inclPiece with last node wik

1 feasibleInsertion ← false; shift ← 0

2 if leave(wik) > Cd
wik,y

then

3 return feasibleInsertion;shift
4 end

5 firstArrive ← max(leave(wik),Od
wik,y

) + Twik,y

6 if firstArrive > Cdy then
7 return feasibleInsertion;shift
8 end

9 firstLeave ← max(firstArrive,Ody) + Ty
10 if firstLeave > Cdy,z then
11 return feasibleInsertion;shift
12 end

13 secondArrive ← max(firstLeave,Ody,z) + Ty,z
14 if secondArrive > Cdz then
15 return feasibleInsertion;shift
16 end

17 secondLeave ← max(secondArrive,Odz) + Tz
18 if secondLeave > Cd

z,wik+1
then

19 return feasibleInsertion;shift
20 end

21 newArrive ← max(secondLeave,Od
z,wik+1

) + Tz,wik+1

22 if newArrive ≤ maxArrive(wik+1) then
23 feasibleInsertion ← true
24 shift ← newArrive − arrive(wik+1)

25 end
26 return feasibleInsertion;shift

D3.6: Page 57 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

The local search move applied by the ILS algorithm is the insertBestPieceIn method. This
method takes as a parameter the id of a walk (walkId). Then, the “best” non-included profitable
piece is inserted in walk with id walkId, in the position of the lowest shift. If pieces with shift
≤ 0 exist, then we consider as the “best” non-included profitable piece the one with the highest
profit. Otherwise, we consider as the “best” non-included profitable piece the one with the highest
ratio profit

shift . In more detail, the method considers all candidate non-included profitable pieces. For
each candidate piece, every possible insert position is examined, i. e., the insertion between every
consecutive pair of included pieces, and the position of the lowest shift is stored. When all candidate
pieces and possible insertion positions have been examined, the best insertion takes place as follows:
if there exist some candidate piece with shift ≤ 0, then the candidate piece of highest score and
of lowest shift ≤ 0 is inserted in its best position and the time attributes of all inserted nodes
are recalculated. Otherwise, if the insertion of a candidate piece was feasible, then the node of
the highest ratio profit

shift is inserted and the time attributes are updated. The pseudocode of the
insertBestPieceIn method is listed below (Algorithm 3).

Algorithm 3: insertBestPieceIn (walkId)

1 for each non-included candidate profitable piece candPiece do
2 tempBestShift ←∞
3 tempBestIncluded ← ∅
4 for each included piece incPiece in walk with id walkId do
5 if the insertion of candPiece after incPiece is feasible then
6 if shift(candPiece, incPiece) < tempBestShift then
7 tempBestShift ← shift(candPiece, incPiece)
8 tempBestIncluded ← incPiece

9 end

10 end

11 end

12 end
13 if ∃ candidate profitable piece with tempBestShift ≤ 0 then
14 insert the candidate piece of the highest profit after its tempBestIncluded piece
15 Update the times of all the nodes in walk with id walkId

16 else
17 if ∃ candidate profitable piece with tempBestShift <∞ then

18 insert the candidate with the highest profit
tempBestShift after its tempBestIncluded piece

19 Update the times of all the nodes in walk with id walkId

20 end

21 end

The ILS algorithm escapes from the current local optimum applying the perturb method. In
this method a randomly selected chain of consecutive pieces is removed from each walk of the
solution. In a more detailed analysis, for each walk of the solution the number of pieces that will be
removed (numberOfRemoved) is chosen randomly. Then, the starting position of the removed pieces
(startRem) is selected randomly in the range [1,mi − 1− numberOfRemoved] where mi denotes the
number of pieces included in the walk. Finally, the numberOfRemoved consecutive pieces starting
from the position startRem are removed from the walk and the times associated to all the nodes of
the walk are recalculated. The pseudocode of the method follows (Algorithm 4).

The ILS algorithm loops for a number of iterations (numberOfIterations) that is given as a
parameter. Inside the loop, the list walkIdsToInsert is initialized containing all the ids of the
constructed walks, i. e., the ids in the range [0,K − 1]. Then, an inner loop is executed as long as
the walkIdsToInsert is not empty. Inside the inner loop, each walk with id in the walkIdsToInsert is

D3.6: Page 58 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Algorithm 4: perturb

1 for each walk Wi do
2 mi ← the number of included profitable pieces in Wi

3 numberOfRemoved ← a random number in the range [0,mi]
4 startRem ← a number randomly created in the range [1,mi − 1− numberOfRemoved]
5 endRem ← startRem + numberOfRemoved −1
6 remove all included profitable pieces from startRem (pistartRem) to endRem (piendRem)
7 update the times of all the nodes in Wi

8 end

considered and the best insertion for this walk is applied. If no insertion was feasible, then the id of
this walk is removed from the walkIdsToInsert. When the inner loop is over, the current solution is
considered. If its profit is the largest found so far, the current solution becomes the best found and
its profit becomes the best profit (bestProfit) found during the method. The last step inside the
loop is the perturb step. When the first loop is over, the best found solution as well as the best
found profit are returned. The pseudocode of the ILS algorithm follows (Algorithm 5).

Algorithm 5: ILS

1 for numberOfIterations iterations do
2 walkIdsToInsert ← [0, 1, . . . ,K − 1]
3 iteratorOfWalkIdsToInsert ← iterator of walkIdsToInsert
4 while walkIdsToInsert is not empty do
5 walkId ← the value of iteratorOfWalkIdsToInsert
6 insertBestPieceIn(walkId)
7 if insertion did not happen then
8 remove walkId from walkIdsToInsert
9 end

10 iteratorOfWalkIdsToInsert ← next of iteratorOfWalkIdsToInsert

11 end
12 if profit > bestProfit then
13 bestProfit ← profit
14 bestSolution ← solution

15 end
16 perturb()

17 end
18 return bestSolution;bestProfit

4.4.2 A Simulated Annealing Metaheuristic for the MTOPTW

The Simulated Annealing [44, 14, 11] is a metaheuristic method that escapes from a local optimum
by allowing moves that result in inferior solutions. An initial local optimum solution is usually
constructed. Then, moves that result in inferior solutions are allowed with a probability that is high
in the early stages of the algorithm, in order to search the space in more depth. This probability
is reduced along the execution of the method until it becomes negligible in order to allow only
improving solutions and find new (possibly better) local optima. In the general scheme of the
Simulated Annealing an auxiliary parameter is used, the temperature (T). The likelihood of inferior
resulting moves is usually a function inversely proportional to T and proportional to the decrease of
the solution’s value, i. e., it may be exp(∆P

T), where ∆P is the difference of the value of the resulting

D3.6: Page 59 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

solution from the initial. The temperature is initially set to the maximum temperature which is high
enough to allow moves to worse solutions with high probability, and is decreased after a number
of iterations. The temperature is usually decreased, multiplied by a cooling factor after a number
(coolingIterations) of iterations. In order to add diversification, we may allow a lot of schemes, i. e.,
when the temperature becomes too low, we may reinitialize it to the maximum temperature and
start a new scheme again.

In our setting the initial solution of the Simulated Annealing procedure will be obtained from the
SimultaneousWalkConstruction procedure. The SimultaneousWalkConstruction produces
the same solution with the ILS algorithm executed for 1 iteration. In the SimultaneousWalkCon-
struction the list of ids of walks is considered. Then, while the list is not empty, each walk id is
obtained and the best profitable piece is inserted in the walk with this id. If no insertion was feasible,
this id is removed from the list. When, the list of walk ids becomes empty, or equivalently, no
insertion is feasible anymore in a walk, the method returns the solution obtained. The pseudocode
of the SimultaneousWalkConstruction procedure follows (Algorithm 6).

Algorithm 6: SimultaneousWalkConstruction

1 walkIdsToInsert ← [0, 1, . . . ,K − 1]
2 iteratorOfWalkIdsToInsert ← iterator of walkIdsToInsert
3 while walkIdsToInsert is not empty do
4 walkId ← the value of iteratorOfWalkIdsToInsert
5 insertBestPieceIn(walkId)
6 if insertion did not happen then
7 remove walkId from walkIdsToInsert
8 end
9 iteratorOfWalkIdsToInsert ← next of iteratorOfWalkIdsToInsert

10 end
11 return solution

In the Simulated Annealing procedure, apart from the InsertPiece Neighborhood we also
consider the Replace neighborhood. The Replace neighborhood of a feasible MTOPTW solution
consists of all the solutions that can be obtained by replacing an included profitable piece in a
walk by a non-included profitable piece. For example, in Figure 45 the neighboring solutions of the
walk with node representation Wi = (sli, u, v, w, eli) in the Replace neighborhood are presented,
considering that the only non-included profitable pieces are the edge {y, z} and the node x. Figures
45(a) and 45(b) depict the replacement of u by the edge {y, z}, considering both directions that the
edge can be traversed, i. e., from y to z and from z to y, respectively. Similarly, Figures 45(c) and
45(d) depict the replacement of {v, w} by the edge {y, z}, while Figures 45(e) and 45(f) depict the
replacement of u and {v, w} by the non-included profitable node x, respectively.

Note that the replacement of an included profitable piece pik by a non-included one candPiece, is
equivalent to the removal of pik followed by the insertion of candPiece between pik−1 and pik+1.

The Simulated Annealing procedure takes into account five parameters: the number of schemes
(numberOfSchemes), the maximum temperature (maxTemperature), the number of iterations
executed in each scheme (schemeIterations), the cooling factor (coolingFactor) and the iterations
needed in order to update the temperature (coolingIterations). The initial solution of the Simulated
Annealing procedure is obtained by the SimultaneousWalkConstruction method (Algorithm 6).
Then, the Simulated Annealing method loops for numberOfSchemes schemes. In each scheme, the
temperature (T) initially becomes equal to the maxTemperature and an inner loop is executed
for schemeIterations iterations. In the inner loop, a non-included profitable piece (candPiece) is
randomly selected as well as a walk and an included piece (inclPiece). Then, if candPiece can
be inserted after inclPiece without removing any included piece, the insertion takes place. If the

D3.6: Page 60 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

sli u v w eli

y z

sli u v w eli

z y

(a) (b)

sli u v w eli

y z

sli u v w eli

z y

(c) (d)

sli u v w eli

x

sli u v w eli

x

(e) (f)

Figure 45: Illustration of Replace Neighborhood

insertion wasn’t feasible, then the replacement of the inclPiece by candPiece is examined. If the
replacement is feasible, then a randomly computed real number (prob) is obtained in the range
[0, 1] and if prob < exp(diff

T), where diff is the difference of profits of candPiece and inclPiece, then
candPiece replaces inclPiece. If either the insertion or the replacement results in a solution with the
highest profit found, then the solution and its profit are stored as the bestSolution and bestProfit,
respectively. Furthermore, if the inner loop has been executed for coolingIterations iterations since
the last time the temperature was updated, then the temperature T gets the value T · coolingFactor.
When, the first loop is completed, the algorithm returns the best solution and profit found. The
pseudocode of the Simulated Annealing algorithm is listed in the sequel (Algorithm 7).

In order to have an effective algorithm, the parameters applied to the algorithm have to depend
on the particular solution. In our setting we want to allow a small portion of the local optimum
solution to change. For this reason we want the temperature to decrease after a portion of the
included profitable pieces of the solution. This is important, because if we allow the coolIterations to
be much greater than the size of the solution we may end up with a very different solution, when the
temperature is high. On the other hand, if we consider coolIterations to be negligible compared to
the solution’s size, the solution won’t escape from the local optimum. For this reason, we introduce a
Solution Based Simulated Annealing (SBSA) that executes the Simulated Annealing with parameters
dependending on the initial solution. Based on this goal, new parameters are introduced, namely
the parameters coolItFactor and schemeItFactor. Furthermore, the number of profitable pieces
in the initial solution (profPieces) is determined at the beginning of the method. The parameter
coolItFactor is used to obtain a reasonable amount of cooling iterations, i. e., the coolIterations
is set equal to profPieces · coolItFactor. The schemeItFactor is used to compute a reasonable
number of iterations per scheme that will be a multiple of the cooling iterations, i. e., the schemeIt
is set equal to the coolIteration · schemeItFactor. Finally, one more parameter is introduced, the
numberOfIterations, that denotes the total number of iterations that will be executed during the
SBSA. Based on this, the numSchemes is set equal to numberOfIterations

schemeIt . The maxTemperature and
coolingFactor parameters of the Simulated Annealing are solution independent. Then, we use the
parameters previously obtained for executing the Simulated Annealing. The pseudocode of the
SBSA is given in Algorithm 8.

D3.6: Page 61 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

Algorithm 7: Simulated Annealing

1 solution ← SimultaneousWalkConstruction
2 for numberOfSchemes iterations do
3 T ← maxTemperature
4 for 1 ≤ itForScheme ≤ schemeIterations do
5 candPiece ← a non-included profitable piece randomly selected
6 wId ← a random number in [0, 1, . . . ,K − 1]
7 inclPiece ← a randomly selected included profitable piece or the starting location of

WwId

8 tryReplace ← true
9 if the insertion of candPiece after inclPiece is feasible then

10 insert candPiece after inclPiece
11 tryReplace ← false

12 end
13 if candPiece can replace inclPiece and tryReplace then
14 diff ← profit of candPiece minus profit of inclPiece
15 prob← a random real in the range [0, 1]

16 if prob < exp(diff
T) then

17 replace incPiece by candPiece
18 end

19 end
20 if profit > bestProfit then
21 bestProfit ← profit
22 bestSolution ← solution

23 end
24 if itForScheme mod coolingIterations = 0 then
25 T ← T · coolingFactor
26 end

27 end

28 end
29 return bestSolution;bestProfit

Algorithm 8: Solution Based Simulated Annealing (SBSA)

1 solution ← SimultaneousWalkConstruction
2 profPieces ← the total number of profitable pieces included in solution
3 coolIteration ← profPieces · coolItFactor
4 schemeIt ← coolIteration · schemeItFactor

5 numSchemes ← numberOfIterations
schemeIt

6 return Simulated Annealing with the parameters previously obtained

D3.6: Page 62 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

4.4.3 Assessment upon real data

Test Instances
To evaluate and compare the proposed algorithms, we have created test instances containing

data related to the city of Athens, Greece. Our topology contains 18 scenic routes and 136 points of
interest (POIs) that have been compiled from various tourist portals 5 and web services offering
open APIs 6. We have also included 100 hotels in our topology. The hotels are used as starting and
ending locations of daily tourist walks. The travel costs between the locations of the topology were
calculated using the OpenTripPlanner project 7.

The attributes of the POIs(time windows, visiting times and profits) are chosen as follows:

• 20% of POIs are open all day long in both weekdays and weekends, i. e., their time window is
0-1439, while they have profit and visiting time between 15 -30.

• 20% of the POIs have time windows 540 - 960 for weekdays and are closed in weekends, while
their profit and visiting time is between 30 - 60.

• 20% of POIs have time windows 540 - 960 for weekdays and weekends, while their profit is
between 70 - 100 and the visiting time is between 60 - 120.

• 20% of POIs have time windows 840 - 1140 for weekdays and weekends, while their profit and
visiting time is between 30 - 60.

• 20% of POIs have time windows 480 - 780 for weekdays and are closed in weekends, while
their profit is between 30 - 60.

The attributes of the scenic routes (time windows and profits) are chosen as follows:

• 25% of them are open all day long (their time windows is between 0 - 1439) for each day of
the week.

• 25% of them have time windows 540 - 960 for weekdays and weekends.

• 25% of scenic routes have time windows 480 - 840 for weekdays and weekends.

• 25% of the scenic routes have time windows 540 - 960 for weekdays and are closed in weekends.

• All scenic routes have profit between 10 and 50.

Solutions of 1, 2, 3 and 4 walks are required. For each number of walks, 100 test instances
are considered, each with starting/ending location one of the hotels. In more detail, pref100 -
pref199 preferences are asking for solutions of 1 walk, while pref2*(pref200-pref299), pref3*(pref300-
pref399) and pref4*(pref400-pref499) are asking for 2, 3 and 4 walks, respectively. Considering the
starting/ending time of each walk in an instance, we assign the starting time to a randomly chosen
time between 480 - 600, while we assign a randomly chosen number between 840 - 1080 to the
ending time. Note, that for instances requiring more than 1 walk, different walks have the same
starting/ending location, however they usually have different starting/ending times.

Results
All computations were carried out on a personal computer Intel Core i3 with 2.30 GHz processor

and 4 GB RAM. Our tests aim at comparing the presented ILS and SBSA algorithm. The algorithms
are compared with respect to the obtained profit and the execution time. Mostly preferred solutions
are those associated with high profit values (higher profit values denote higher quality solutions)

5http://www.tripadvisor.com/, http://index.pois.gr/
6https://developers.google.com/places/documentation/
7http://www.opentripplanner.org/

D3.6: Page 63 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

and reduced execution time (as this denotes improved suitability for real-time applications). Both
algorithms have been coded in C++.

The numberOfIterations parameter in ILS takes the values 100, 200, 400 and 800 and the
corresponding results are reported as ILS 100, ILS 200, ILS 400 and ILS 800. Considering the
SBSA algorithm the parameters maxTemperature and coolingFactor are always set equal to 10 and
0.5, respectively, while the parameters numberOfIterations, coolItFactor and schemeItFactor are
associated with the values numberOfIterations= 0.5 and 1 million, the coolItFactor takes the values
0.8, 0.5 and 0.25 and the schemeItFactor takes the values 8 and 10. The results of the SBSA with
specified values for the parameters numberOfIterations, coolItFactor and schemeItFactor are indicated
as SBSA numberOfIterations coolItFactor schemeItFactor; for example, for numberOfIterations
equal to 0.5 million, coolItFactor equal to 0.8 and schemeItFactor equal to 8 the results obtained
are indicated with SBSA 0.5M 0.8 8.

The algorithms have been employed upon the test instances described previously. Since, they
are both randomized, each algorithm is executed 5 times for each instance. Table 9 illustrates the
experimental results compiled from the executed algorithms for each value of the parameters. The
results obtained are averaged with respect to the number of requested walks. In more detail, each
algorithm with its associated parameter values is shown in the first column. The next four pairs
of columns present the experimental results obtained for instances requesting 1, 2, 3 and 4 walks,
respectively. Each pair of columns shows the average profit obtained and the average execution time
of each algorithm for the 5 executions of each instance asking for a specific number of walks. So,
the average profit and execution time (in ms) for instances requesting 1 walk (pref100 - pref199)
are given in the first pair of columns of Table 9, while the average results obtained for 2(pref200
- pref299), 3(pref300 - pref399) and 4(pref400 - pref499) walks are given in the second, third and
fourth pair of columns of Table 9, respectively.

Table 9: Experimental Results
1 walk 2 walks 3 walks 4 walks

Algorithm Profit Time(ms) Profit Time(ms) Profit Time(ms) Profit Time(ms)
ILS 100 816.698 295.728 1359.972 340.59 1865.546 387.194 2286.534 402.608
ILS 200 821.578 590.264 1365.354 678.658 1872.24 771.248 2291.818 803.022
ILS 400 823.754 1179.93 1368.992 1354.696 1876.248 1542.638 2296.038 1604.118
ILS 800 826.342 2353.616 1375.468 2708.656 1880.298 3080.624 2299.984 3203.474

SBSA 0.5M 0.8 8 818.59 271.05 1333.24 275.958 1815.88 278.432 2233.714 279.096
SBSA 0.5M 0.5 8 818.16 271.778 1332.56 276.204 1816.134 278.806 2233.43 279.62
SBSA 0.5M 0.25 8 819.644 272.708 1333.426 277.302 1816.378 279.238 2233.71 279.954
SBSA 0.5M 0.8 10 820.736 268.846 1335.488 274.206 1818.05 276.85 2236.38 277.52
SBSA 0.5M 0.5 10 820.58 269.698 1334.888 274.414 1819.804 276.796 2235.72 277.838
SBSA 0.5M 0.25 10 818.574 271.284 1334.864 275.728 1819.41 277.968 2235.454 278.124

SBSA 1M 0.8 8 821.072 525.35 1333.036 534.368 1815.194 537.652 2234.246 538.258
SBSA 1M 0.5 8 820.6 526.03 1334.716 535.174 1815.97 538.54 2234.072 538.6
SBSA 1M 0.25 8 820.324 530.034 1334.178 536.93 1815.918 539.41 2233.732 539.794
SBSA 1M 0.8 10 820.066 522.626 1336.474 531.182 1818.038 534.66 2235.464 535.366
SBSA 1M 0.5 10 820.944 523.026 1336.128 531.81 1819.59 534.704 2237.192 535.798
SBSA 1M 0.25 10 820.3 527.324 1335.462 533.492 1820.054 536.534 2236.73 537.258

Based on the experimental results, we can easily conclude that increasing the algorithms’
execution time, i. e., increasing the allowed number of iterations, improves slightly the solutions’
quality. To see this, consider the ILS algorithm. The obtained average profit from 200 iterations is
better the corresponding profit obtained from 100 iterations less than 0.7% for all number of walks,
while the execution time is doubled. The same statement holds when comparing the results for 400
and 200 iterations as well as for 800 and 400 iterations. As far as the SBSA algorithm is considered,
the profit obtained by one million iterations exceeds the profit obtained by half a million iterations
by at most 0.5% for each walk, while the execution time is twice the one in the case of half a million
iterations.

As far as the parameters coolItFactor and schemeItFactor are concerned, the results indicate that

D3.6: Page 64 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

the parameter coolItFactor does not significantly influence the output of SBSA algorithm. For exam-
ple, for half a million iterations and schemeItFactor equal to 10 the difference of SBSA 0.5M 0.8 10’s
profit and SBSA 0.5M 0.25 10’s profit is less than 0.27% and this is the biggest difference, when the
rest of the parameters are the same. Apart from coolItFactor, schemeItFactor seems to influence
the results slightly more, however the difference in profit is always less than 0.5%.

The comparison results between ILS and SBSA indicate that ILS obtains higher quality solutions
in more execution time. The solutions obtained for the case of one walk by both ILS and SBSA are of
similar profit, i. e., the ILS 100 produces slightly lower quality solutions than all the SBSA algorithms,
while ILS 200, ILS 400, ILS 800 produce marginally better solutions, however in prolonged execution
time. When, two or more walks are considered, ILS prevails over SBSA even with 100 iterations. For
example, ILS 100’s profit for two walks is higher than the profit obtained by any SBSA algorithm by
at least 1.7%, while for three and four walks the average solutions’ profit is at least 2.47% and 2.19%
higher than the profit obtained by any SBSA algorithm. However, ILS requires more execution
time than SBSA. ILS’ execution time increases when the number of walks is increased, without
modifying the number of iterations. This happens because in the perturbation step ILS removes a
chain of included pieces from each walk. This results in increased execution time when the required
number of walks is large, since reaching local optimum requires inserting pieces to all the walks.
On the other hand, the execution time of the SBSA algorithm does not depend on the number of
the constructed walks, but only on the number of iterations. This happens because in each step of
SBSA, only one walk is mutated, hence the execution time is independent of the number of walks.

4.5 Conclusions

Our work on tourist tour planning in the framework of D3.6 has been towards tackling incrementally
complex TTDP formulations, addressing realistic tourist requirements. Along this line, our research
output has been twofold. Firstly, we extended our TDTOPTW algorithmic approaches (as presented
in D3.5) so as to allow scheduling lunch breaks at appropriately located restaurants. Secondly, we
investigated the AOP and MOP problems which allow incorporating scenic routes (in addition to
point POIs) in our tour planning logic. We also investigated the MTOPTW problem and proposed
novel efficient metaheuristics to tackle it.

We presented the first approximation algorithms for AOP in directed and undirected graphs.
Specifically, we proposed a polylogarithmic approximation algorithm for the problem in directed
graphs, a (6 + ε + o(1))−approximation algorithm for the AOP in undirected graphs and a (4 +
ε)−approximation algorithm for the unweighted version of the problem. Moreover, we obtained
approximation algorithms for the MOP, the extension of both the OP and the AOP, where both
nodes and arcs are associated with profit. In the sequel, we introduced the MTOPTW , i. e., the
extension of the MOP to multiple tours. The problem can be used to formulate realistic TTDP
variants whose modeling requires multiple tourist tours, profits to be associated to both POIs (nodes
of the network) and routes (arcs of the network) as certain routes may be more interesting to be
traversed than others, while both POIs and routes are associated with visiting/traversing time
windows. We proposed the first algorithmic approaches to tackle the MTOPTW: an Iterated Local
Search metaheuristic and a Simulated Annealing metaheuristic. The main design objectives for
both algorithms were to derive high quality solutions (maximizing the profit gained by visiting the
POIs and traversing the routes) while executing fast enough to support online web and mobile
applications. We evaluated and compared the proposed algorithms on test instances based on real
data related to the city of Athens, Greece.

D3.6: Page 65 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

5 Discussion and Final Remarks

Multimodal public transport routing. Following the submission of D3.3 and D3.4, (M21
of eCOMPASS onwards), we continued our research investigating new algorithmic approaches in
multimodal route planning. In this deliverable, we have complemented our algorithms with multi-core
and SIMD parallelization techniques. Furthermore, we have adapted our multimodal multi-criteria
route planning prototype to Berlin data sources. We delivered eco-friendliness assessment based on
substantiated CO2 consumption estimates. The multi-criteria optimization approach enables us to
present the user several good alternative travel plans, highlighting eco-friendly travel choices while
also supplying more traditional results. While we have learned from our user study in beginning of
the eCOMPASS project that users would vastly prefer quick journeys over eco-friendly journeys, we
are confident that by increasing eco-awareness (by showing the different trade-offs between quick
and less consuming journeys), we enable end-users to establish more eco-friendly traveling styles.

The algorithms using methods from stochasticity and machine learning have been implemented
and extensively tested on the network of Zürich. At least for that network, the running time was
fast and we were able to compute journeys that arrive on time with a high probability. However,
these algorithms compute their predictions using historic delay data, which is not available for the
network of Berlin. This is the reason why these algorithms were not included in the prototyped
implementations of eCompass. Moreover, the network of Berlin is substantially larger than the
network of Zürich, and it is not clear whether the running time of the proposed algorithms scales
well.

The success of our approaches has been demonstrated by our extensive experimental evaluation
in Deliverables D3.3, D3.4, and D3.6, as well as by the use of our prototyped implementations for
the applications developed in the framework of WP 5 and piloted in Berlin, Germany (see D5.3).

Outside of the main focus, we also did a preliminary investigation on integrating car-sharing into
public transportation services. So far, we have considered only simple models and provided initial
algorithm-theoretical investigations. For the details on our work we refer to [12]. The problems in
this area deserve further study. We mainly focused on car sharing as an isolated problem, to gain a
better understanding of the challenges that arise. However, the clear and necessary next steps are
to study solutions that explicitly combine public transportation with car sharing. We believe that
the car sharing service has the potential to offer the missing flexibility to public transportation, and
thus further promote environmentally friendly means of transportation.

Multimodal tourist tour planning. In Deliverable D3.5 we introduced novel TOPTW and
TDTOPTW algorithmic solutions addressing the basic requirements of TTDP applications. Our
TDTOPTW metaheuristics approaches allow modeling multimodal transfers among POIs, hence,
they better fit eCOMPASS purposes than TOPTW approaches. The main design objectives for our
TDTOPTW algorithms have been to derive high quality TDTOPTW solutions (maximizing tourist
satisfaction), while minimizing the number of transit transfers and executing fast enough to support
online web and mobile applications. Our metaheuristics have been shown to perform better with
respect to solutions quality compared to baseline approaches considering precalculated average travel
times (for moving from a POI to another by public transit), especially when considering relatively
large datasets (i. e., large number of POIs) and low frequency of public transit services (then, the
average travel time approximation is not good enough). The high efficiency of our TDTOPTW
metaheuristics (execution time well below 1 sec in most usage scenarios) has been evidenced by
both our extensive experimentation with realistic datasets (see D3.5 - Section 4.5.2) and the use of
the prototyped web and mobile client applications developed in the framework of WP5 and piloted
in Berlin, Germany (see D5.3). Hence, we have completely succeeded with respect to the aims
originally set for our eCOMPASS tourist tour planning product.

Following the submission of D3.5, (M21 of eCOMPASS onwards), we continued our research
investigating new algorithmic approaches in tourist tour planning. Our effort has been directed

D3.6: Page 66 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

towards increasingly elaborate and complex TTDP formulations, trying to address further realistic
requirements of tourists. Along this line, our main threads of research in M21-M36 of the project
have tackled the following issues: (a) we extended our TDTOPTW SlackCSCRoutes algorithm so
as to cater for scheduling lunch breaks through recommending affordable restaurants conveniently
located along the tourist tour; (b) we investigated approaches which allow incorporating scenic
routes into recommended tours; along this line we looked at AOP and MOP problems (obtaining
approximation algorithms) and also developed two novel efficient metaheuristics to tackle MTOPTW.

MTOPTW solutions are appropriate to highlight the appeal of natural, cultural, architectural and
historical assets of tourist destinations. Thus, we argue that MTOPTW captures the requirements of
tourist destination visitors better than any other relevant approach found today in the TTDP-related
literature. Extensions to our mobile (Android) tour planning application (see D5.3) are currently
underway to bind it to the MTOPTW web service.

It should be noted that, aside the promotion of scenic assets in tourist destinations, our MTOPTW
algorithms may be used to discourage access to dangerous areas through penalizing the attractiveness
of dangerous road segments (e. g., assigning low or negative profit). Note that the profit may be
time-dependent, e. g., to allow the designation of areas that may be dangerous only in the night
time. Moreover, our algorithms could be easily extended to allow tour planning on a larger scale,
e. g., to highlight scenic routes for drivers which could be desirable for road trips.

Admittedly, all the algorithmic solutions developed for tourist tour planning have not directly
targeted CO2 reduction per se. Namely, the CO2 emissions derived from tourists transfers have
not been regarded as an optimization criterion. Besides, the precalculated multimodal travel
profiles (i.e. the time-dependent travel times among POIs) are derived using the fastest option
among those discussed in D3.3 (although this could be easily substituted by the eco-friendliest
option). The main intuition in our approach has been to improve the accessibility and mitigate the
complexity of public transit networks, as perceived by tourists. Along this line, our solutions aim at
facilitating the use of public transit, which the tourists would be reluctant to use otherwise. Also,
the precomputed multimodal travel profiles only consider public transit and walking transportation
modalities, excluding the option of private cars or taxis, thereby being inherently eco-friendly.
However, an indication of the CO2 emission savings (compared to the CO2 emissions incident in the
respective car transfers) of recommended walking or public transit transfers (separately for each leg
of the tour or collectively for the while trip) could be displayed in future releases of our tourist tour
planning web/mobile application products.

Certainly, our TTDP modeling could be refined so as to capture additional aspects of realistic
tourist needs. The investigation of those aspects has not been possible within the time frame of
eCOMPASS, hence, they will be considered in our future research:

• Consider cases that users deviate from their tour schedule so as to automatically adapt the
remainder of their tour. Similarly, tour updates could be triggered in the occasion of transit
services delays due to traffic congestion or unexpected incidents.

• Take into account the accessibility status of walking routes, transit services and POIs so as to
derive tours accessible by individuals with motoring disabilities.

• Provide a ’standalone’ version of eCOMPASS mobile application (i. e., requiring no Internet
connection) to save roaming charges; to address this issue, besides integrating city map data
into the application executable, the algorithmic solutions derived in WP 3 would be modified
(e. g., reduce iterations searching for improved solutions) to execute fast on slower machines
without compromising much the quality of derived solutions.

Final Remarks. This deliverable concludes our investigation in WP 3 into deriving optimized
urban routes using public means of transportation targeting residents and tourists. We have
researched novel methods for environment friendly routes in urban public transportation networks.

D3.6: Page 67 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

We have developed mathematical sound models for various (context-aware) route planning scenarios
arising in the field of urban human mobility for city residents, commuters and tourists. We have
provided several new algorithmic methods for multimodal routes in urban transportation with respect
to multiple criteria and high robustness. All WP 3 approaches have had prototype implementation
and extensive experimental evaluation on the performance and quality of derived results.

In particular, in this deliverable D3.6, we have assessed the success of the algorithmic solutions
developed within WP3 upon real public transportation network data, discussing necessary modi-
fications with respect to Deliverable D3.3.1, D3.3.2, D3.4.1, D3.4.2, D3.5.1, and D3.5.2 solutions,
identifying the most applicable and technically most robust solutions. Our algorithmic solutions
have considerably advanced the state of the art and allow for faster, more precise and eco-friendly
route and tourist trip planning. These solutions were further integrated by WP 5 partners and
successfully piloted in Berlin within the scope of WP 6.

Acknowledgement

We wish to thank the Athens Urban Transport Organisation (OASA), the Verkehrsverbund Berlin-
Brandenburg (VBB), the Verkehrsbetriebe Zürich (VBZ) for providing real-world transportation
data and useful information about the network structure. We especially thank VBZ for providing
historic transit delay data.

References

[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Hierarchical
hub labelings for shortest paths. In Proceedings of the 20th Annual European Symposium on
Algorithms (ESA’12), volume 7501 of Lecture Notes in Computer Science, pages 24–35. Springer,
2012.

[2] C. Archetti, A. Corberan, I. Plana, J.M. Sanchis, and Speranza M.G. A matheuristic for
the team orienteering arc routing problem. Working paper, Department of Economics and
Management, University of Brescia, 2013.

[3] C. Archetti, D. Feillet, A. Hertz, and M. G. Speranza. The undirected capacitated arc routing
problem with profits. Computers & Operations Research, 37(11):1860 – 1869, 2010.

[4] C. Archetti, M. G. Speranza, A. Corberan, J. M. Sanchis, and I. Plana. The team orienteering
arc routing problem. Transportation Science, 0(0):null, 0.

[5] Hannah Bast. Car or public transport – two worlds. In Efficient Algorithms, volume 5760 of
Lecture Notes in Computer Science, pages 355–367. Springer, 2009.

[6] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Proceedings of the 18th Annual European Symposium on Algorithms
(ESA’10), volume 6346 of Lecture Notes in Computer Science, pages 290–301. Springer, 2010.

[7] Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller–Hannemann. Ac-
celerating time-dependent multi-criteria timetable information is harder than expected. In
Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’09), OpenAccess Series in Informatics (OASIcs), 2009.

[8] Annabell Berger, Martin Grimmer, and Matthias Müller–Hannemann. Fully dynamic speed-up
techniques for multi-criteria shortest path searches in time-dependent networks. In Proceedings
of the 9th International Symposium on Experimental Algorithms (SEA’10), volume 6049 of
Lecture Notes in Computer Science, pages 35–46. Springer, May 2010.

D3.6: Page 68 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

[9] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation
algorithms for orienteering and discounted-reward tsp. In Proceedings of the 44th Annual IEEE
Symposium on the Foundations of Computer Science, pages 46 –55, 2003.

[10] A. Blum, S. Chawla, D. R. Karger, Lane T., A. Meyerson, and M. Minkoff. Approximation
algorithms for orienteering and discounted-reward tsp. SIAM J. Comput., 37(2):653–670, 2007.

[11] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Comput. Surv., 35:268–308, September 2003.

[12] Katerina Böhmová, Yann Disser, Matús Mihalák, and Peter Widmayer. Interval selection
with machine-dependent intervals. In Algorithms and Data Structures - 13th International
Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages
170–181, 2013.

[13] Joachim M. Buhmann, Matús Mihalák, Rastislav Srámek, and Peter Widmayer. Robust
optimization in the presence of uncertainty. In Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 505–514, 2013.

[14] V. Cerny. Thermodynamical approach to the traveling salesman problem: An efficient simulation
algorithm. Journal of Optimization Theory and Applications, 45(1):41–51, 1985.

[15] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and related problems.
In Proceedings of the 19th Annual ACM-SIAM symposium on Discrete Algorithms, SODA ’08,
pages 661–670, 2008.

[16] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and related problems.
ACM Trans. Algorithms, 8(3):23:1–23:27, 2012.

[17] R. Deitch and S.P. Ladany. The one-period bus touring problem: Solved by an effective heuristic
for the orienteering tour problem and improvement algorithm. European Journal of Operational
Research, 127(1):69 – 77, 2000.

[18] Daniel Delling. Time-dependent SHARC-routing. Algorithmica, 60(1):60–94, May 2011.

[19] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning. In Proceedings of the 10th International Symposium on Experimental Algorithms
(SEA’11), volume 6630 of Lecture Notes in Computer Science, pages 376–387. Springer, 2011.

[20] Daniel Delling, Bastian Katz, and Thomas Pajor. Parallel computation of best connections in
public transportation networks. ACM Journal of Experimental Algorithmics, 17(4):4.1–4.26,
July 2012.

[21] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating multi-modal route plan-
ning by access-nodes. In Proceedings of the 17th Annual European Symposium on Algorithms
(ESA’09), volume 5757 of Lecture Notes in Computer Science, pages 587–598. Springer, Septem-
ber 2009.

[22] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public transit routing. In
Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX’12),
pages 130–140. SIAM, 2012.

[23] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering route
planning algorithms. In Algorithmics of Large and Complex Networks, volume 5515 of Lecture
Notes in Computer Science, pages 117–139. Springer, 2009.

D3.6: Page 69 of 72

FP7-ICT-2011-7 288094 - eCOMPASS

[24] Daniel Delling and Dorothea Wagner. Pareto paths with SHARC. In Proceedings of the 8th
International Symposium on Experimental Algorithms (SEA’09), volume 5526 of Lecture Notes
in Computer Science, pages 125–136. Springer, June 2009.

[25] Daniel Delling and Renato F. Werneck. Faster customization of road networks. In Proceedings
of the 12th International Symposium on Experimental Algorithms (SEA’13), volume 7933 of
Lecture Notes in Computer Science, pages 30–42. Springer, 2013.

[26] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and fast
transit routing. In Proceedings of the 12th International Symposium on Experimental Algorithms
(SEA’13), volume 7933 of Lecture Notes in Computer Science, pages 43–54. Springer, 2013.

[27] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-constrained multi-modal route
planning. In Proceedings of the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12), pages 118–129. SIAM, 2012.

[28] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[29] Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-criteria shortest paths in
time-dependent train networks. In Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 347–361. Springer, June
2008.

[30] Andrew Ensor and Felipe Lillo. Partial order approach to compute shortest paths in multimodal
networks. Technical report, http://arxiv.org/abs/1112.3366v1, 2011.

[31] Marco Farina and Paolo Amato. A fuzzy definition of “optimality” for many-criteria optimization
problems. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 34(3):315–326, 2004.

[32] A. Garcia, P. Vansteenwegen, O. Arbelaitz, W. Souffriau, and M. T. Linaza. Integrating public
transportation in personalised electronic tourist guides. Computers & Operations Research,
40(3):758 – 774, 2013.

[33] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou. A survey on algorithmic
approaches for solving tourist trip design problems. J. of Heuristics, 20(3):291–328, 2014.

[34] Robert Geisberger. Contraction of timetable networks with realistic transfers. In Proceedings
of the 9th International Symposium on Experimental Algorithms (SEA’10), volume 6049 of
Lecture Notes in Computer Science, pages 71–82. Springer, May 2010.

[35] Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route planning with flexible objective
functions. In Proceedings of the 12th Workshop on Algorithm Engineering and Experiments
(ALENEX’10), pages 124–137. SIAM, 2010.

[36] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In Proceedings of the 7th Workshop
on Experimental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science,
pages 319–333. Springer, June 2008.

[37] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
August 2012.

[38] General Transit Feed. https://developers.google.com/transit/gtfs/, 2010.

D3.6: Page 70 of 72

https://developers.google.com/transit/gtfs/

FP7-ICT-2011-7 288094 - eCOMPASS

[39] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics
(NRL), 34(3):307–318, 1987.

[40] HaCon - Ingenieurgesellschaft mbH. http://www.hacon.de, 1984.

[41] Pierre Hansen. Bricriteria path problems. In Multiple Criteria Decision Making – Theory and
Application –, pages 109–127. Springer, 1979.

[42] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast point-to-point
shortest path computations with arc-flags. In The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, volume 74 of DIMACS Book, pages 41–72. American Mathematical
Society, 2009.

[43] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering multilevel overlay graphs for
shortest-path queries. ACM Journal of Experimental Algorithmics, 13(2.5):1–26, December
2008.

[44] S. Kirkpatrick, D. Jr. Gelatt, and M.P. Vecchi. Optimization by simmulated annealing. Science,
pages 671–680, 1983.

[45] N. J. Korula. Approximation algorithms for network design and orienteering. PhD thesis,
University of Illinois at Urbana-Champaign, 2010.

[46] G. Laporte and S. Martello. The selective travelling salesman problem. Discrete Applied
Mathematics, 26(2-3):193 – 207, 1990.

[47] Dominique LaSalle and George Karypis. Multi-threaded graph partitioning. In 27th International
Parallel and Distributed Processing Symposium (IPDPS’13). IEEE Computer Society, 2013.

[48] Sejoon Lim, Christian Sommer, Evdokia Nikolova, and Daniela Rus. Practical route planning
under delay uncertainty: Stochastic shortest path queries. In Robotics: Science and Systems
VIII, University of Sydney, Sydney, NSW, Australia, July 9-13, 2012, 2012.

[49] Helena Lourenco, Olivier Martin, and Thomas Stützle. Iterated local search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in
Operations Research & Management Science, pages 320–353. Springer New York, 2003.

[50] J. Maervoet, P. Brackman, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe. Tour
suggestion for outdoor activities. In Proceedings of the 12th International Symposium on Web
and Wireless Geographical Information Systems (W2GIS’13), volume 7820 of LNCS, pages
54–63, 2013.

[51] Metropolitan Transportation Authority of the State of New York. http://www.mta.info/,
1966.

[52] Matthias Müller–Hannemann and Mathias Schnee. Finding all attractive train connections by
multi-criteria pareto search. In Algorithmic Methods for Railway Optimization, volume 4359 of
Lecture Notes in Computer Science, pages 246–263. Springer, 2007.

[53] Matthias Müller–Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Timetable information: Models and algorithms. In Algorithmic Methods for Railway Op-
timization, volume 4359 of Lecture Notes in Computer Science, pages 67–90. Springer, 2007.

[54] Matthias Müller–Hannemann and Karsten Weihe. Pareto shortest paths is often feasible in
practice. In Proceedings of the 5th International Workshop on Algorithm Engineering (WAE’01),
volume 2141 of Lecture Notes in Computer Science, pages 185–197. Springer, 2001.

D3.6: Page 71 of 72

http://www.hacon.de
http://www.mta.info/

FP7-ICT-2011-7 288094 - eCOMPASS

[55] V. Nagarajan and R. Ravi. The directed orienteering problem. Algorithmica, 60:1017–1030,
August 2011.

[56] PTV AG – Planung Transport Verkehr. http://www.ptv.de, 1979.

[57] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient models
for timetable information in public transportation systems. ACM Journal of Experimental
Algorithmics, 12(2.4):1–39, 2008.

[58] Peter Sanders. Algorithm engineering – an attempt at a definition. In Efficient Algorithms,
volume 5760 of Lecture Notes in Computer Science, pages 321–340. Springer, 2009.

[59] Peter Sanders and Dorothea Wagner. Algorithm engineering. Informatik Spektrum, 36(2):187–
190, April 2013.

[60] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-line: An empirical
case study from public railroad transport. ACM Journal of Experimental Algorithmics, 5(12):1–
23, 2000.

[61] Christian Sommer. Shortest-path queries in static networks, 2012. submitted. Preprint available
at http://www.sommer.jp/spq-survey.htm.

[62] W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, and D. Van Oudheusden. The planning of
cycle trips in the province of east flanders. Omega, 39(2):209 – 213, 2011.

[63] T. Tsiligirides. Heuristic methods applied to orienteering. The Journal of the Operational
Research Society, 35(9):797–809, 1984.

[64] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden. The orienteering problem: A survey.
European Journal of Operational Research, 209(1):1 – 10, 2011.

[65] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van Oudheusden. Iterated local
search for the team orienteering problem with time windows. Computers & Operations Research,
36:3281–3290, 2009.

[66] P. Vansteenwegen and D. Van Oudheusden. The mobile tourist guide: An or opportunity.
Operational Research Insight, 20(3):21–27, 2007.

[67] E.E. Zachariadis and C.T. Kiranoudis. Local search for the undirected capacitated arc routing
problem with profits. European Journal of Operational Research, 210(2):358 – 367, 2011.

[68] Lotfi A. Zadeh. Fuzzy logic. IEEE Computer, 21(4):83–93, 1988.

D3.6: Page 72 of 72

http://www.sommer.jp/spq-survey.htm

	Introduction
	Final assessment of robust multimodal route planning algorithms
	Brief overview of D3.3 algorithmic approaches
	Extensions and New Solutions
	Network decomposition and parallelization for faster public transit routing
	Additional experimental details for user-constrained multimodal route planning
	Assessment on the multimodal transportation network of Berlin

	Conclusions

	Final assessment of multimodal route planning algorithms using methods from stochasticity and machine learning
	Brief overview of D3.4 algorithmic approaches
	New Improved Algorithm for Enumeration of all Solutions
	Additional Methods for Assessing Robustness of Solutions
	A Mean-Risk Model
	Norm-Based Approaches

	Experimental Results
	Experiments on Synthetic Data
	Description of the Data
	Modelling Challenges
	Compared Methods and Used Instances
	General Results
	Results over the Day
	Influence of the Test Instance
	Maximising the Similarity

	Conclusions

	Final assessment of algorithms for context-aware multimodal daily routes for tourists
	Brief overview of D3.5 algorithmic approaches
	Incorporating lunch breaks in multimodal tour planning
	The Arc Orienteering Problem (AOP)
	Related work
	Approximation algorithms for the AOP
	Approximation Algorithms for the AOP in Undirected Graphs

	The Mixed Team Orienteering Problem with Time Windows (MTOPTW)
	Iterated Local Search Metaheuristic for the MTOPTW
	A Simulated Annealing Metaheuristic for the MTOPTW
	Assessment upon real data

	Conclusions

	Discussion and Final Remarks

