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Summary

The main aim of this deliverable is development of models and algorithmic solutions for context-
aware multi-modal daily route planning problems for tourists visiting multiple points of interests
(POIs) optimized for mobile devices. Those route planning problems, collectively known as tourist
trip design problems (TTDP), involve deriving personalized recommendations for daily sightseeing
itineraries for tourists visiting any urban destination. We firstly tackle a simplistic variant of
TTDP considering constant travel times among POIs (i.e. exclusively walking transfers). Building
upon that, we then take into account time-dependent (i.e. multimodal) travel times in our TTDP
modeling. Our prototyped algorithms have been evaluated and tested upon both existing and new
test instances. We have also used validation scenarios comprising real POI sets compiled from the
Athens (Greece) area and calculated multimodal travel times based on the metropolitan transit
network of Athens.
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1 Introduction

This deliverable presents the research results obtained by the project partners in the first 20 months
of the project with respect to tourist route planning in urban areas. It describes the models and
algorithms developed so far for the problems relevant to WP3. It also demonstrates experimental
results aiming to assess the quality of the proposed solutions.

1.1 Objectives and scope of D3.5.2

The aim of WP3 is to provide novel methods for route planning in urban public transportation
networks, considering the environmental impact as a main optimization objective. The present
deliverable is the outcome of Task 3.5 “Algorithms for context-aware multi-modal daily routes
for tourists & their empirical assessment”. This task aims at developing models and algorithmic
solutions for context-aware multi-modal daily route planning problems for tourists visiting multiple
points of interests (POIs) optimized for mobile devices. Those route planning models tailored to
tourists are collectively known as tourist trip design problems (TTDP). In the context of Task 3.5,
we aim at developing models and algorithms outperforming the state-of-the-art techniques in terms
of computational time and quality of derived solutions.

1.2 The Tourist Trip Design Problem

A TTDP [52] refers to a route-planning problem for tourists interested in visiting multiple POIs.
TTDP solvers derive daily tourist tours i.e., ordered visits to POIs, which respect tourists’ con-
straints and POIs’ attributes. The main objective of the problem discussed is to select POIs that
match tourist preferences, thereby maximizing tourist satisfaction, while taking into account a mul-
titude of parameters and constraints (e.g., distances among POIs, visiting time required for each
POI, POIs visiting days/hours, entrance fees, weather conditions) and respecting the time available
for sightseeing in daily basis.

Different versions of TTDP have been studied in the literature. Herein, we deal with a version
of TTDP that considers the following input data:

• A set of candidate POIs, each associated with the following attributes: (i) a location (i.e.
geographical coordinates), (ii) time windows (TW) (i.e. opening hours for each day of the
week), (iii) a “profit” value, calculated as a weighted function of the objective and subjective
importance of the POI (subjectivity refers to the users’ individual preferences and interests
on specific POI categories) and (iv) a visiting time (i.e. the anticipated duration of visit of
a user at the POI ,derived from the average anticipated duration and the user’s potential
interest for that particular POI).

• The travel time among POIs; these may either be constant (i.e. considering exclusively
walking transfers) or time-dependent (i.e. considering multimodal tranfers).

• The number k of routes that must be generated, based upon the period of stay (number of
days) of the user at the tourist destination.

• The daily time budget B that a tourist wishes to spend on visiting sights; the overall daily
route duration (i.e. the sum of visiting times plus the overall travel time among visited POIs)
should be kept below B.

By solving the TTDP we expect to derive k routes (typically starting and ending at the tourist’s
accommodation location) each of length at most B, that maximize the overall collected profit (see
Figure 1). Therefore, a TTDP solution should feature POI recommendations that match tourist
preferences and near-optimal feasible route scheduling. The team orienteering problem with time
windows (TOPTW), introduced by P. Vansteenwegen [48], may serve as a basic model to formulate
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TTDP, when considering constant travel times among locations. In the TOPTW a set of locations
is given, each associated with a profit, a visiting time and a time window. Each location may be
visited only once, while the aim is to maximize the overall profit collected by a fixed number of
routes. The length of each route (time allowed for sightseeing within a single day) must not exceed
a given time budget.

Figure 1: Illustration of TTDP

In addition to the above-listed TTDP input data, in the context of eCOMPASS, TTDP’s mod-
eling is approached also considering (see Figure 2):

• a number of user-defined preferences and restrictions (e.g. tourist interests, period of visit,
accommodation location, daily time allowance for sightseeing, etc)

• multi-modal routing among POIs, i.e. tourists are assumed to use all modes of transport
available at the tourist destination, including public transportation, walking and bicycle.

• end users are assumed to be either web or mobile users; in addition to location, several
contextual parameters may be taken into account in recommending sub-optimal itineraries to
mobile users (e.g. day/time, weather conditions, traffic conditions, etc).

Clearly, TOPTW modeling captures several aspects of TTDP. Nevertheless, it overlooks the
time-dependency (i.e. multimodality) of urban transfers among tourist sites. The Time Dependent
TOPTW (TDTOPTW) is the problem that best matches TTDP requirements among all problems
found in the relevant algorithmic research literature, as it allows modeling transfers via urban
transit networks (in addition to walking and other available transportation modes).

In this deliverable we firstly tackle a simplistic variant of TTDP considering constant travel
times among POIs (i.e. exclusively walking transfers). In this context, we introduce two efficient
TOPTW heuristic algorithms deriving high-quality solutions, as evidenced from prototype testing
upon both existing and new test instances. Building upon those algorithms, we then proceed a step
further taking into account multimodal travel times in our TTDP modeling and introducing three
novel TDTOPTW algorithms. The latter have been validated on benchmarks comprising real POI
sets compiled from Athens (Greece) along with calculated multimodal travel times based on the
timetable of the metropolitan transit network of Athens.
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Figure 2: User groups, input data and recommended itineraries in TTDP

1.3 Structure of the Deliverable

The remainder of this document is organized as follows: Section 2 overviews algorithmic approaches
relevant to the TTDP. Section 3 introduces a model for TTDP based on TOPTW, analyzing and
evaluating two novel heuristic algorithmic approaches. Section 4 incorporates time dependency on
urban transfers, while discussing and testing three novel heuristic algorithms for TDTOPTW.
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2 Related work

The algorithmic and operational research literature features many route planning problem modeling
approaches, effectively simplified versions of the TTDP. One of the simplest problems that may
serve as a basic model for TTDP is the orienteering problem (OP) [49]. The OP is based on the
orienteering game, in which several locations with an associated score have to be visited within a
given time limit. Each location may be visited only once, while the aim is to maximize the overall
score collected on a single tour. The OP clearly relates to the TTDP: the OP locations are POIs
associated with a score (i.e. user satisfaction) and the goal is to maximize the score collected within
a given time budget (time allowed for sightseeing in a single day).

Extensions of the OP have been successfully applied to model the TTDP. The team orienteering
problem (TOP) extends the OP considering multiple routes (i.e. daily tourist itineraries). The
(T)OP with time windows (TOPTW) considers visits to locations within a predefined time window
(this allows modeling opening and closing hours of POIs). Several further generalizations exist that
allow even more detailed modeling of the TTDP, e.g. taking into account multiple user constraints
(MCTOPTW) such as the overall budget that may be spent for POI entrance fees.

Among the above, TOPTW is the most well-studied problem with respect to the TTDP as it
closely matches most of TTDPs modeling requirements. TOPTW is a special case of the Vehicle
Routing Problem with Profits (VRPP) and time windows [2, 22]. In VRPP visiting the whole set
of nodes is not compulsory; a profit is collected when visiting a node, while collecting the profits is
distributed over several vehicles with limited capacity.

TOPTW is NP-hard and APX-hard (e.g. see [26], [32], [22]). Exact solutions for TOPTW are
feasible for instances with very restricted number of locations (e.g. see the work by Z. Li and X. Hu
[36], which is used on networks of up to 30 nodes). Given the complexity of the problem, the main
body of TOPTW literature involves mainly heuristic algorithms based on simulated annealing [38],
local search [50] and ant colony system (ACS) [40].

Labadi et al. [29] proposed a local search heuristic algorithm for TOPTW based on a variable
neighborhood structure. In the local search routine the algorithm tries to replace a segment of
a path by nodes (not included in a path) offering more profit. For that, an assignment problem
related to the TOPTW is solved and based on that solution the algorithm decides which arcs to
select.

Lin et al. [38] proposed a heuristic algorithm for TOPTW based on simulated annealing. On
each iteration a neighbouring solution is obtained from the current solution by applying one of the
moves swap, insertion or inversion, with equal probability. A new solution is adopted provided
that it is more profitable than the current one; otherwise, the new solution might again replace the
current one with a probability inversely proportional to their difference in profits. After applying
the above procedure for a certain number of iterations the best solution found so far is further
improved by applying local search.

The ILS heuristic proposed by Vansteenwegen et al. [50] is the fastest known algorithm proposed
for TOPTW [49]. ILS defines an “insertion” and a “shake” step. The insertion step adds, one by
one, new visits to a route, ensuring that all subsequent visits (those scheduled after the insertion
place) remain feasible, i.e. they still satisfy their time window constraint. For each visit i that
can be inserted, the cheapest insertion cost is determined. For each of these visits the heuristic
calculates a ratio, which represents a measure of how profitable is to visit i versus the time delay
this visit incurs. Among them, the heuristic selects the one with the highest insertion ratio. The
shake step is used to escape from local optima. During this step, one or more visits are removed
in each route in search of non-included visits that may either decrease the route time length or
increase the overall collected profit.

Montemanni and Gambardella proposed an ACS algorithm [40] to derive solutions for a hi-
erarchical generalization of TOPTW, wherein more than the k required routes are constructed.
At the expense of the additional overhead, those additional fragments are used to perform ex-
changes/insertions so as to improve the quality of the k tours. The algorithm comprises two
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phases:

• Construction phase: Ants are sent out sequentially; when at node i, an ant chooses proba-
bilistically the next node j to visit (i.e. to include into the route) based on two factors:

– The pheromone trail τij (i.e. a measure on how good it has been in the past to include
arc (i, j) in the solution).

– The desirability nij , (a node j is more desirable when it is associated with high profit,
it is not far from i, and its time window is used in a suitable way).

• Local search: performed upon the solutions derived from construction phase, aiming at taking
them down to a local optimum.

ACS has been shown to obtain high quality results (that is, low average gap to the best known
solution) at the expense of prolonged execution time, practically prohibitive for online applications.
In [18] a modified ACS framework (Enhanced ACS) is presented and implemented for the TOPTW
to improve the results of ACS.

Labadi et al. [30], [31] recently proposed a method that combines the greedy randomized
adaptive search procedure (GRASP) with the evolutionary local search (ELS). GRASP generates
independent solutions (using some randomized heuristic) further improved by a local search pro-
cedure. ELS generates multiple copies of a starting solution (instead of a single copy generated in
ILS) using a random mutation (perturbation) and then applies a local search on each copy to yield
an improved solution. GRASP-ELS derives solutions of comparable quality and significantly less
computational effort to ACS. Compared to ILS, GRASP-ELS gives better quality solutions at the
expense of increased computational effort [31].

Tricoire et al. [47] deal with the Multi-Period Orienteering Problem with Multiple Time Win-
dows (MuPOPTW), a generalization of TOPTW, wherein each node may be assigned more than
one time window on a given day, while time windows may differ on different days. Both mandatory
and optional visits are considered. The motivation behind this modelling is to facilitate individ-
ual route planning of field workers and sales representatives. The authors developed two heuristic
algorithms for the MuPOPTW: a deterministic constructive heuristic which provides a starting
solution, and a stochastic local search algorithm, the Variable Neighbourhood Search (VNS), which
considers random exchanges between chains of nodes. Several further generalizations exist that
allow even more detailed modeling of the TTDP, e.g. taking into account multiple user constraints
(MCTOPTW) such as the overall budget that may be spent for POI entrance fees.

Vansteenwegen et al. [49] argue that a detailed comparison of TOPTW solution approaches
(i.e. ILS, ACS and the algorithm of Tricoire et al. [47]), is impossible since the respective authors
have used (slightly) different benchmark instances. Nevertheless, it can be concluded that ILS has
the advantage of being very fast, while ACS and the approach of Tricoire et al. [47] (2010) have
the advantage of obtaining higher quality solutions.

Notably, TOPTW does not consider time-dependency in calculating cost of edges, i.e. travelling
times among vertices. Time dependency is useful for modeling transfers among nodes through
multimodal public transportation, hence it is considered particularly relevant to the TTDP. Time-
dependent graphs have been used in almost all variants of the orienteering problems, from the basic
OP to the TOPTW.

Time Dependent OP (TDOP) was introduced by Formin and Lingas [17]. TDOP is MAX-SNP-
hard since a special case of TDOP, time-depenent maximum scheduling problem is MAX-SNP-hard
[46]. An exact algorithm for solving TDOP is given by Li et al [35] using a mixed integer program-
ming model and a pre-node optimal labeling algorithm based on the idea of dynamic programming.
Moreover, Li [34] proposes an exact algorithm for TDTOP based on dynamic programming princi-
ples. However, both algorithms are of exponential complexity, hence, not appropriate for real-time
applications, especially when considering complex transportation networks and relatively large POI
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datasets. Fomin and Lingas [17] give a (2 + ε) approximation algorithm for rooted and unrooted
TDOP (“which runs in polynomial time if the ratio R between the maximum and minimum travel-
ling time between any two sites is constant”). When considering unrooted TDOP its running time

is O(
(
2R2( 2+ε

ε )
)
! 2R2

ε n2R2( 2+ε
ε )+1), and for rooted TDOP its running time increases by the multi-

plicative factor O(Rnε ). (The key idea is derived from Spieksma’s algorithm [46] for Job Interval
Selection Problem). They use a divide-and-conquer approach. First the problem is split in smaller
ones. Exact solutions are found to each smaller problem and later combined (stitch) to obtain an
approximate solution.

Abbaspour et al. [1] investigated a variant of Time Dependent OP with Time Windows
(TDOPTW) in urban areas, where the nodes are partitioned into the POIs (associated with profits
and time windows) and multimodal transportation stops which do not have profit. A genetic algo-
rithm is proposed for the problem that uses as a subroutine another genetic algorithm for solving
the shortest path problem between POIs.

The Time-Dependent TOP with Time Windows (TDTOPTW) is the problem that best matches
TTDP requirements among all problems and approaches surveyed in this section. TDTOPTW is
particularly complex as it adds time dependency of arcs to TOPTW. Zenker and Ludwig [53]
described a tourism-inspired problem that refers to TDTOPTW and presented ROSE, a mobile
application assisting pedestrians to locate events and locations, moving through public transport
connections. ROSE incorporates three main services: recommendation, route generation and navi-
gation. The authors identified the route planning problem to solve and they described it as a multi-
constrained destination recommendation with time windows using public transportation. However,
no algorithmic solution to this problem has been proposed.

The work of Garcia et al. [20, 21] is the first to address algorithmically the TDTOPTW ex-
tending previous work on TDOPTW [19]. The authors presented two different approaches to solve
TDTOPTW, both applied on real urban test instances (POIs and bus network of San Sebastian,
Spain). The first approach involves a pre-calculation step, computing the average travel times be-
tween all pairs of POIs (employing a time-dependent Dijkstra algorithm), allowing reducing the
TDTOPTW to a regular TOPTW, solved using the insertion phase part of ILS. In case that the
derived TOPTW solution is infeasible (due to violating the time windows of nodes included in the
solution), a number of visits are removed. The second approach introduces four additional variables
per vertex and is based on a fast evaluation of the possible insertion of an extra POI. The authors
argue that their algorithm is suitable for real-time applications, requiring slightly longer computa-
tional time than fast TOPTW algorithms (i.e. ILS) to derive sufficiently quality solutions. However,
the solutions yield using their second approach are not perturbed so as to reduce computational
overhead; hence, those solutions are sensitive to the quality of the insertion phase. Even more so,
the algorithm’s modeling is based on the simplified assumption of periodic service schedules; this
assumption, clearly, does not hold in realistic urban transportation networks, especially on non
fixed-rail services (e.g. buses) wherein arrival/departure times on intermediate stops is subject to
dynamic traffic fluctuations and several other non-predictable incidents. Herein, we propose an
algorithmic approach that alleviates this assumption and is applicable to realistic urban transit
networks. For a full overview of the relevant literature, the reader is referred to Section 4 of D3.1
“Multimodal tourist trip design problems”).
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3 Modeling the Tourist Trip Design Problem as a Team Ori-
enteering Problem with Time Windows

3.1 Introduction

The TTDP is typically dealt with online web and mobile applications with strict execution time
restrictions [45, 51]. Hence, only highly efficient heuristic approaches are eligible for TTDP solvers.
The most efficient known heuristic is based on Iterated Local Search (ILS) [50], offering a fair
compromise with respect to execution time versus deriving routes of reasonable quality. However,
ILS treats each POI separately, thereby commonly overlooking highly profitable areas of POIs
situated far from current location considering them too time-expensive to visit. ILS is also often
trapped in areas with isolated high-profit POIs, possibly leaving considerable amount of the overall
time budget unused. These issues are discussed in more detail in Section 3.3.

Herein, we introduce CSCRatio and CSCRoutes, two cluster-based algorithmic approaches to
the TTDP, which address the shortcomings of ILS. The main incentive behind our approaches is to
motivate visits to topology (plane) areas featuring high density of ‘good’ candidate vertices (these
areas are identified by a geographical clustering method performed offline); the aim is to improve the
quality of derived solutions while not sacrificing time efficiency. Furthermore, both our algorithms
favor solutions with reduced number of overly long transfers among vertices, which typically require
public transportation rides (these transfers are costly and usually less attractive to tourists than
short walking transfers).

The remainder of this section is organized as follows: Section 3.2 provides the mathematical
formulation of TOPTW, while Section 3.3 presents the ILS approach in more detail. Section 3.4
presents our novel cluster-based heuristics, while Section 3.5 discusses the experimental results
compiled from executing ILS as well as our algorithms on several test instances. Finally, Section
3.6 concludes this section.

3.2 Mathematical formulation

In TOPTW we are given a directed graph G = (V,A) where V = {1, ..., N} is the set of nodes
(POIs) and A is the set of links, an integer k, and a time budget Bi, i = 1, . . . , k. The main
attributes of each node are: the service or visiting time (visiti), the profit gained by visiting i
(profiti), and each day’s time window ([openim, closeim],m = 1, 2, . . . , k) (a POI may have different
time windows per day). Every link (i, j) ∈ A denotes the transportation link from i to j and is
assigned a travel cost travelij . The objective is to find k disjoint routes r1, r2, . . . , rk starting from
1 and ending at N , each with overall duration limited by the time budget Bi, i = 1, . . . , k (i.e. ri
has length at most Bi, i = 1, . . . , k) , that maximize the overall profit collected by visited POIs in
all routes.

Then TOPTW can be formulated as an integer programming problem as follows [50]:
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max

k∑
m=1

N−1∑
i=2

profitiyim, (1)

s.t.
k∑

m=1

N∑
j=2

x1jm =

k∑
m=1

N−1∑
i=1

xiNm = k, (2)

N−1∑
i=1

xirm =

N∑
j=2

xrjm = yrm, for all r = 2, . . . , N − 1,m = 1, . . . , k (3)

k∑
m=1

yrm ≤ 1, for all r = 2, . . . , N − 1, (4)

N−1∑
i=1

(visitiyim +

N∑
j=2

travelijxijm) ≤ Bm for all m = 1, . . . , k, (5)

startim + visiti + travelij − startjm ≤ C(1− xijm) for all i, j = 1, . . . , N,m = 1, . . . , k (6)

openim ≤ startim for all i = 1, . . . , N,m = 1, . . . , k (7)

startim ≤ closeim, i = 1, . . . , N,m = 1, . . . , k (8)

xijm, yim ∈ {0, 1}, for all i, j = 1, . . . , N, m = 1, . . . , k (9)

where xijm is equal to 1 if, in route m, i is followed by j, or equal to 0 otherwise, yim is equal to 1
if i is visited in route m or equal to 0 otherwise; startim is the start of the visit at node i in route
m and C is a large number (larger enough from the parameters of the problem).

The objective function (1) is to maximize the total profit of visited POIs. Constraint (2) ensures
that each of the k routes starts at node 1 and ends at node N . Constraint (3) ensures that each route
is connected. Constraint (4) guarantees that each node belongs to at most one route. Constraint
(5) indicates that the time budget is not violated. Constraint (6) ensures that the sequence of
starting times of visits at the nodes inside a route is feasible. Constraints (7, 8) indicate that the
start of a visit can only take place during the time window.

3.3 The ILS algorithm [50]

The ILS heuristic proposed by Vansteenwegen et al. [50] is the fastest known algorithm proposed
for TOPTW [49]. ILS defines an “insertion” and a “shake” step. At each insertion step ILS Insert
a node is inserted in a route, ensuring that all following nodes in the route remain feasible to visit,
i.e. their time window constraints are satisfied and the time budget is not violated. ILS modeling
involves two additional variables for each node i: (a) waiti defined as the waiting time in case the
arrival at i takes place before i’s opening time, and (b) maxShifti defined as the maximum time the
start of the visit of i can be delayed without making any visit of a POI in the route infeasible. If a
node p is inserted in a route t between i and j, let shiftp = travelip+waitp+visitp+travelpj−travelij
denote the time cost added to the overall route time due to the insertion of p. The node p can be
inserted in a route t between i and j if and only if startit +visiti + travelip ≤ closept and at the
same time shiftp ≤ waitj + maxShiftj .

For each node p not included in a route, its best possible insert position is determined by
computing the lowest insertion time cost (shift). For each of these possible insertions the heuristic
calculates the ratio

ratiop =
profit2

p

shiftp
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which represents a measure of how profitable is to visit p versus the time delay this visit incurs.
Among all candidate nodes, the heuristic selects for insertion the one with the highest ratio .

At the shake step (Shake) the algorithm tries to escape from local optimum by removing a
number of nodes in each route of the current solution, in search of non-included nodes that may
either decrease the route time length or increase the overall collected profit. The shake step takes
as input two integers: (a) the removeNumber that determines the number of the consecutive visits
to be removed from each route and (b) the startNumber that indicates where to start removing
nodes on each route of the current solution. If throughout the process, the end location is reached,
then the removal continues with the nodes following the start location.

The ILS algorithm ([50]) initializes the parameters startNumber and removeNumber of the
shake step to 1 and loops up to a specified number of times (150) as long as the profit of the best
solution is not improved. Inside the loop, the insertion step is applied until a local optimum is
reached. If the current solution’s profit is larger than the profit of the best solution, the current
solution is kept as the best solution and parameter removeNumber is reset to one. In the sequel,
the shake step is applied. After the application of the shake step, the values of its parameters
are adapted as follows: the value of startNumber is increased by the value of removeNumber and
the value of removeNumber is increased by one. If startNumber is greater than or equal to the
size of the smallest route in the current solution, then startNumber is decreased by this size. If
removeNumber equals to N

3k then it is reset to one. The pseudo code of the ILS algorithm is listed
below (Algorithm 1).

Algorithm 1 ILS (Vansteenwegen et al. [50])
maxIterations← 150
maxNumberToRemove← N

3k
startNumber← 1; removeNumber← 1; notImproved← 0
while notImproved < maxIterations do

while not local optimum do
ILS Insert

end while
if currentSolution.profit > bestSolution.profit then

bestSolution ← currentSolution
removeNumber ← 1
notImproved ← 0

else increase notImproved by 1
end if
Shake(removeNumber,startNumber)
increase startNumber by removeNumber
increase removeNumber by 1
if startNumber ≥ currentSolution.sizeOfSmallestRoute then

decrease startNumber by currentSolution.sizeOfSmallestRoute
end if
if removeNumber == maxNumberToRemove then

removeNumber ← 1
end if

end while
return bestSolution

The execution of the algorithm is demonstrated in Figure 3. Figure 3(a) illustrates the insertion
phase (for one route) when considering two non-included candidate nodes (k and l) for insertion.
Shiftk is minimized when k’s insertion between i and j is considered (Figure 3(b),(c),(d) illustrate
insertion options for k). Similarly, shiftl is minimized when l’s insertion between j and n is con-
sidered (Figure 3(e)). The candidate node finally selected is l, as ratiol > ratiok, namely node l is
found relatively more profitable to visit for the time cost it adds to the overall route time. During
the shake step, visit i is removed (Figure 3(f)) and replaced in the next insertion step by the
-originally not included- visit k (Figure 3(g)), found to have larger ratio value.

To the best of our knowledge, ILS is the fastest known algorithm for solving the TOPTW
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3: (a-e) ILS insertion phase; (f) ILS shake phase, (g) insertion of k. Circle sizes denote
nodes’ score.
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offering a fair compromise in terms of speed versus deriving routes of reasonable quality. However,
it presents the following weaknesses:

• During the insertion step, ILS may rule out candidate nodes with high profit value because
they are relatively time-expensive to reach (from nodes already included in routes). This is
also the case even when whole groups of high profit nodes are located within a restricted area
of the plane but far from the current route instance. In case that the route instance gradually
grows and converges towards the high profit nodes, those may be no longer feasible to insert
due to overall route time constraints. For instance, in Figure 4(a), ILS inserts i, l, j and k.
Although p and q have larger score value, they are not selected on the first four insertion steps
since they are associated with large shift values. On the next step, p and q can no longer be
inserted, since the insertion would violate the route feasibility constraint.

• In the insertion step, ILS may be attracted and include into the solution some high-score
nodes isolated from high-density topology areas. This may trap ILS and make it infeasible to
visit far located areas with “good” candidate nodes due to prohibitively large traveling time
(possibly leaving considerable amount of the overall time budget unused). For instance, in
Figure 4(b), the itinerary {1, p, q, r, s, n} would yield more profit and fully utilize the available
time budget, compared to the chosen solution {1, i, j, n}.

(a) (b)

Figure 4: Weakness of ILS

3.4 Cluster based TOPTW heuristics

Herein, we propose two heuristic algorithms, Cluster Search Cluster Ratio (CSCRatio) and Cluster
Search Cluster Routes (CSCRoutes), which address the aforementioned weaknesses of the ILS
algorithm. Both algorithms employ clustering to organize POIs into groups (clusters) based on
topological distance criteria. POIs at the same cluster are close to each other e.g., they are within
walking distance or they belong to the same area of the city. Having visited a high-profit POI
that belongs to certain cluster, our algorithms encourage visits to others POIs at the same cluster
because such visits reduce (a) the duration of the routes and (b) the number of transfers among
clusters. Note that a tourist apart from maximizing the total profit, may also prefer to minimize
inter-cluster tranfers as those are typically long and require usage of public transportation; such
transfers may add a considerable budget cost, while walking is usually a preferred option than using
the public transportation.

Both CSCRatio and CSCRoutes employ the global k-means algorithm [37, 3] to organize the
set of POIs into an appropriate (based on the network topology) number of clusters (numberOf-
Clusters). Global k-means is an effective global clustering approach, which minimizes the clustering
error and employs the k-means algorithm as a local search procedure. The algorithm obtains an
optimal solution for the clustering problem through applying a series of local searches using the
k-means algorithm. Once the clusters of POIs have been formed during an offline clustering phase,
a route initialization phase RouteInitPhase starts. During this phase one POI is inserted into
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each of the k initially empty routes. Each of the k inserted POIs comes from a different cluster,
i.e. no two inserted POIs belong to the same cluster. Since the number of clusters is usually
larger that k we need to decide which k clusters will be chosen in the route initialization phase.
Different approaches may be followed such as choosing the k clusters with the highest total profit,
or trying different sets of k high-profit clusters and run CSCRatio and CSCRoutes algorithms for
each such set searching for the best possible solution. Following the second approach, we consider a
listOfClusterSets list containing a specific number of different sets of k high-profit clusters. The list
may contain all k-combinations of the elements of a small set S with the most profitable clusters.
RouteInitPhase takes as argument a set of k clusters from listOfClusterSet and proceeds as fol-
lows: for each cluster Ci in the set, it finds the POI p ∈ Ci with the highest ratiop and inserts it into
one of the empty routes (Figure 5). By initializing each one of the k routes of the TOPTW solution
with a POI from different clusters the algorithms encourage searching different areas of the network
and avoid getting trapped at specific high-scored nodes. Then the algorithms combine an insertion
step and a shake step to escape from local optima as described in the following subsections.

Figure 5: Illustration of the RouteInitPhase

3.4.1 Cluster Search Cluster Ratio Algorithm

The CSCRatio algorithm introduces an insertion step CSCRatio Insert which takes into account
the clustering of the POIs by using a parameter clusterParameter ≥ 1. The higher the value of
clusterParameter, the more the insertion of a node p before or after a node that belongs to the
same cluster with p is favored. Specifically, the parameter clusterParameter is used to increase the
likelihood of inserting p between i and j if p belongs to the same cluster with either i or j. For
that, CSCRatio considers the variable shiftClusterp defined as

shiftClusterp =
shiftp

clusterParameter

in the case that cluster(p) coincides with cluster(i) or cluster(j), where cluster(l) denotes the cluster
where a node l belongs to. Otherwise, shiftClusterp = shiftp. Then the lowest insertion time cost
(shiftClusterp) , i.e. the best possible insert position for p, is determined. For each of those best

possible insertions the heuristic calculates ratiop =
profit2p

shiftClusterp
.

CSCRatio initializes the clusterParameter with the value of 1.3 in order to initially encourage
visits to be within the same clusters and decreases the value of clusterParameter by 0.1 every a
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quarter of maxIterations. At the last quarter the CSCRatio Insert step becomes the same as
ILS Insert. In this way, routes with a lot of POIs belonging to the same cluster are initially
favored, while as the number of iterations without improvement increases, the diversification given
by ILS is obtained.

The maximum value of the parameter removeNumber used in the shake step is allowed to be half
of the size of the largest route in the current solution and not N

3k as in ILS. In this way, execution
time is saved, since local optimum is reached in short time, if a small portion of the solution has
been removed. As a result, the number of iterations can be increased without increasing the overall
algorithm’s execution time. Therefore, CSCRatio may exercise a larger maxIterations value.

CSCRatio loops for a number of times equal to the size of the listOfClusterSets. Within the
loop, firstly all POIs included into the current solution’s routes are removed and the route initial-
ization phase is executed with argument a set of high-profit clusters taken (pop operation) from
the listOfClusterSets list. Secondly, the algorithm initializes the parameters startNumber and re-
moveNumber of Shake to 1 and the parameter clusterParameter of CSCRatio Insert as discussed
above, and executes an inner loop until there is no improvement of the best solution for maxIter-
ations successive iterations. The insertion step is iteratively applied within this loop until a local
optimum is reached. Lastly, the shake step is applied. The pseudo code of CSCRatio algorithm is
listed below (Algorithm 2).

Algorithm 2 CSCRatio(numberOfClusters,maxIterations)
run the global k-means algorithm with k=numberOfClusters
construct the list listOfClusterSets
it1← maxIterations

4
; it2← 2·maxIterations

4
; it3← 3·maxIterations

4
while listOfClusterSets is not empty do

remove all POIs visited in the currentSolution
theClusterSetIdToInsert ← listOfClusterSets.pop
RouteInitPhase(theClusterSetIdToInsert)
startNumber← 1; removeNumber← 1; notImproved← 0
while notImproved < maxIterations do

if notImproved < it2 then
if notImproved < it1 then clusterParameter ← 1.3
else clusterParameter ← 1.2
end if

else
if notImproved < it3 then clusterParameter ← 1.1
else clusterParameter ← 1.0
end if

end if
while not local optimum do

CSCRatio Insert(clusterParameter)
end while
if currentSolution.profit > bestSolution.profit then

bestSolution ← currentSolution ; removeNumber ← 1; notImproved ← 0
else increase notImproved by 1
end if
if removeNumber > currentSolution.sizeOfLargestTour

2
then removeNumber ← 1

end if
Shake(removeNumber,startNumber)
increase startNumber by removeNumber
increase removeNumber by 1
if startNumber ≥ currentSolution.sizeOfSmallestTour then

decrease startNumber by currentSolution.sizeOfSmallestTour
end if

end while
end while
return bestSolution

In order to reduce the search space (therefore, the execution time) of CSCRatio Insert, in
case that a non-included POI p is found infeasible to insert in any route, it is removed from the
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list of candidate POIs and added back, only after Shake has been applied. Figure 6 illustrates an
example solution obtained by CSCRatio.

Figure 6: Example of a CSCRatio solution

3.4.2 Cluster Search Cluster Routes Algorithm

Given a route t of a TOPTW solution, any maximal sub-route in t comprising a sequence of nodes
within the same cluster C is defined as a Cluster Route (CR) of t associated with cluster C and
denoted as CRtC . The length of CRtC may be any number between 1 and |C|. Note that a route t
of a TOPTW solution constructed by the ILS or CSCRatio algorithm may include more than one
cluster route CRtC for the same cluster C, i.e., a tour t may visit and leave cluster C more than
once. CSCRoutes algorithm is designed to construct routes that visit each cluster at most once, i.e.
if a cluster C has been visited in a route t it cannot be revisited in the same route and therefore, for
each cluster C there is only one cluster route in any route t associated with C. The only exception
allowed is when the start and the end node of a route t belong to the same cluster C ′. In this case,
a route t may start and end with nodes of cluster C ′, i.e. C ′ may be visited twice in the route t
and therefore, for a route t there might be two cluster routes CRtC′ .

The insertion step CSCRoutes Insert of the CSCRoutes algorithm does not allow the insertion
of a node p in a route t, if this insertion creates more than one cluster routes CRtC for some cluster C.
Therefore, a POI cannot be inserted at any position in the route t. In the sequel, the description of
insertion step CSCRoutes Insert is given, based on the following assumptions. Consider w.l.o.g.
that the start and end nodes in the TOTPW coincide (depot). If a route t contains two CR
associated with the cluster of the depot, then let CRtf be the first cluster route (starts at the depot)

in t, and CRtl be the last cluster route (ends at the depot) in t. Also, assume that for each POI p
ratiop is calculated as in ILS algorithm. Finally, consider for each route t, the list listOfClusters(t)
containing any cluster C for which there is a nonempty CRtC .

Given a candidate for insertion node p and a route t, CSCRoutes Insert distinguishes among
the following cases:

• cluster(p)=cluster(depot) and listOfClusters(t) contains only the cluster(depot). Then p can
be inserted anywhere in the route, since the insertion would not violate the CR constraints.

• cluster(p)=cluster(depot) and listOfClusters(t) contains more than one cluster. Then p can
be inserted anywhere in CRtf and in CRtl .
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• cluster(p) 6=cluster(depot) and listOfClusters(t) contains only cluster(depot), then the insertion
is feasible anywhere in t. If the insertion occurs, then a new CR will be created with p as its
only POI.

• cluster(p) 6=cluster(depot) and listOfClusters(t) contains two or more clusters but not cluster(p).
Then p can be inserted after the end of every CR in t. If the insertion occurs, then a new CR
will be created with p as its only POI.

• cluster(p) 6=cluster(depot) and listOfClusters(t) contains two or more clusters and also includes
cluster(p). Then p can be inserted anywhere in CRtcluster(p).

The pseudo code of CSCRoutes Insert (Algorithm 3) follows.

Algorithm 3 CSCRoutes Insert
for each candidate POI p do

clusterID←cluster(p)
for each route t do

if clusterID==cluster(depot) then
if listOfClusters(t) contains only cluster(depot) then

Search all possible insert positions in t for the least shiftp
else

Search all possible insert positions in CRt
f and CRt

l for the least shiftp
end if

else // clusterID 6=cluster(depot)
if listOfClusters(t) contains only cluster(depot) then

Search all possible insert positions in t for the least shiftp
else

if listOfClusters(t) doesn’t contain clusterID then
Search all possible positions in t that are the end of a CR, for the least shiftp

else Search all possible insert positions in CRt
clusterID for the least shiftp

end if
end if

end if
end for

end for
Insert the POI q with the highest ratio.
Update times, maxShifts and listOfClusters.

Note that similarly to the CSCRatio algorithm when a non-included POI p is infeasible to insert
in any route, then p is removed from the list of candidates and re-examined, only after Shake has
been applied.

Like CSCRatio algorithm, CSCRoutes executes a loop for a number of times equal to the size of
the listOfClusterSets. Within the loop, firstly, all POIs in the current solution’s routes are removed
and the route initialization phase is executed. Secondly, the algorithm initializes the parameters
startNumber and removeNumber of Shake to 1 and executes an inner loop up to a specific number
of times (maxIterations) while the profit of the best solution is not improved. Within this loop,
the insertion step CSCRoutes Insert is applied until a local optimum is reached. At the end, the
shake step is applied. The pseudo code of CSCRoutes Algorithm 4 is given below.

The CSCRoutes algorithm is likely to create solutions of lower quality than ILS (i.e. decreased
overall profit), especially in instances featuring tight time windows. However, it significantly reduces
the number of transfers among clusters and therefore it favors routes that include POIs of the same
cluster. In this way, walking transfers are preferred while overly long travel distances are minimized.
At the same time, the CSCRoutes is expected to perform better than ILS and CSCRatio with respect
to execution time, since CSCRoutes Insert is faster than ILS Insert and CSCRatio Insert
(this is because the number of possible insertion positions for any candidate node is much lower).
Figure 7 illustrates an example solution obtained by CSCRoutes.
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Algorithm 4 CSCRoutes(numberOfClusters,maxIterations)
run the global k-means algorithm with k=numberOfClusters
construct the list listOfClusterSets
while listOfClusterSets is not empty do

remove all POIs visited in the currentSolution
theClusterSetIdToInsert ← listOfClusterSets.pop
RouteInitPhase(theClusterSetIdToInsert)
startNumber← 1; removeNumber← 1; notImproved← 0
while notImproved < maxIterations do

while not local optimum do
CSCRoutes Insert

end while
if currentSolution.profit > bestSolution.profif then

bestSolution ← currentSolution ; removeNumber ← 1; notImproved ← 0
else increase notImproved by 1
end if
if removeNumber > currentSolution.sizeOfLargestTour

2
then removeNumber ← 1

end if
Shake(removeNumber,startNumber)
increase startNumber by removeNumber
increase removeNumber by 1
if startNumber ≥ currentSolution.sizeOfSmallestTour then

decrease startNumber by currentSolution.sizeOfSmallestTour
end if

end while
end while
return bestSolution

3.5 Experimental Results

3.5.1 Test instances

Montemanni and Gambardella [40] designed TOPTW instances based on previous OPTW instances
of Solomon [44] (data sets for vehicle routing problems with time windows: c10*, r10* and rc10*)
and Cordeau et al. [7] (10 multi-depot vehicle routing problems: pr1pr10). They also added 27
extra instances based on Solomon (c20*, r20* and rc20*) and 10 instances based on Cordeau et al.
(pr11pr20). Cordeau et al. instances have up to 288 customers and much wider time windows than
in Solomon’s problems. All the aforementioned instances involve one, two, three and four tours.
Optimal solutions are available for some of those test instances. Herein, we compare the performance
of our heuristics against the best-known algorithm suitable to real-time TTDP applications, i.e. ILS
[50].

The aforementioned instances allow a fair comparison of our proposed heuristics against pub-
lished results, yet, they do not represent suitable examples of real-life TTDP problems. In such
problems (a) POIs are typically associated with much wider, overlapping, multiple time windows
(e.g. Mon closed, Tue-Fri 08:30-16:00, Sat-Sun 09:00-18:00); (b) POIs’ locations are statistically
dependent, i.e. typical tourist destination topologies feature dense concentration of POIs at certain
areas, while isolated POIs are rare; (c) visiting time at a POI is typically correlated with its profit
value (e.g. POIs associated with high profit value are expected to take long to visit); (d) the time
available for sightseeing (daily time budget) is typically in the order of a few hours per day (in
contrast, Cordeau et al. and Solomon r2*/rc2* instances allow time budget up to 16.5 hours, while
Solomon c2* instances up to 56.5 hours, which is certainly unrealistic).

Along this line, we have created 100 new TOPTW instances (t*) with the following charac-
teristics: the number of tours is 1-3; the number of vertices is 100-200, which is considered a
fair estimation of available POIs on medium-to-large scale urban tourist destinations; 80% of the
vertices are located around 1-10 virtual ‘centers’ (the distances of vertices from their randomly
assigned center follow a Gaussian distribution); a 20% of the vertices is set at a random location on
the plane; the profit associated with vertices is 1-100, while visiting time at any vertex is 1-120 min
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Figure 7: Example of a CSCRoutes solution

(visiting time is proportional to the profit); regarding time windows, we assume that 50% of the
vertices are open in 24h basis (e.g. squares, parks and landmarks non open to visitors), while the
remaining are closed either on weekends (15%) or one day per week, either Monday (15%), Tuesday
(10%) or Wednesday (10%) (during their opening days, the non-24h vertices are open 08:30-17:00);
the daily time budget is set to 10h (510-1210 min) in t1* and 5h (840-1140 min) in t2* instances.

Table 1: TOPTW Instances
Reference Based on # of instances N B Average TW k

Montemanni
et al. [40]

Solomon
(c1*, r1* and rc1*)

29 100
c1*:1236 c1*:321

1,2,3,4r1*:230 r1*:87
rc1*:240 rc1*:85

Cordeau et al.(pr01-10) 10 48-288 1000 135 1,2,3,4

Solomon
(c2*, r2* and rc2*)

27 100
c2*:3390 c2*:921

1,2,3,4r2*:1000 r2*:454
rc2*:960 rc2*:370

Cordeau et al.(pr11-20) 10 48-288 1000 269 1,2,3,4

Gavalas et al. [23]
t1* 50 100-200 600 1000 1,2,3
t2* 50 100-200 300 997 1,2,3

Table 1 overviews the available TOPTW test instances. For every set of instances, the cor-
responding reference is given, along with the name of the original instances the set is based on.
The number of instances, vertices (N) and tours (k) as well as the daily time budget (B) are also
presented.

The benchmark instances of Montemanni and Gambardella are available in http://www.mech.

kuleuven.be/en/cib/op/, while the t* instances are available in http://www2.aegean.gr/dgavalas/

public/op_instances/.

3.5.2 Results

All computations were carried out on a personal computer Intel Core i5 with 2.50 GHz processor
and 4 GB RAM. Our tests aim at comparing our proposed algorithms against the best known
real-time TOPTW approach (ILS), which yields high quality solutions, while being suitable for
real-time TTDP applications. Reported results compare ILS against CSCRatio and CSCRoutes
with respect to the following aspects: (a) overall collected profit, (b) number of transfers, namely
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links among far-located vertices (those are associated with pairs of vertices, each assigned to separate
cluster, based on our offline clustering procedure), and (c) execution (CPU) time required to derive
a solution. In addition to our proposed algorithms, ILS has been also implemented to reliably
measure the number of transfers of its respective solutions and ensure fair comparison with respect to
execution (CPU) time required to derive solutions; the overall collected profit values corresponding
to ILS are those published in [50]. Clearly, mostly preferred solutions are those associated with
high profit values (higher profit values denote higher quality solutions), low number of transfers
(transfers typically involve use of multi-modal transport, hence, they are considered less attractive
for tourists, as they are more expensive and less eco-friendly options than walking) and reduced
execution time (as this denotes improved suitability for real-time TTDP applications). All three
algorithms have been coded in C++. CSCRatio and CSCRoutes set the value of maxIterations

equal to 400

|listOfClusterSets| ·
k+1
2·k . ListOfClusterSets is implemented by adding

⌈
numberOfClusters

k

⌉
disjoint sets of k clusters which are randomly selected from the set of the clusters.

In Appendix A, we provide the analytical results and compare ILS, CSCRatio and CSCRoutes
based on the benchmark instances of Solomon (Tables 23, 25, 27 and 29) and Cordeau et al.
(Tables 24, 26, 28 and 30). We provide results for one (Tables 23 and 24), two (Tables 25 and
26), three (Tables 27 and 28) and four tours (Tables 29 and 30) over the same sets of instances.
The first two columns show the instance’s name and the number of clusters derived from our global
k-means clustering algorithm (the latter is proportional to the instances’ number of vertices, i.e.
N
10 ). The next three sets of column triads correspond to the results yield for ILS, CSCRatio and
CSCRoutes, respectively. Total collected profit, number of inter-cluster transfers and execution
time are reported for each algorithm.

The comparison results between ILS and CSCRatio for Solomon and Cordeau et al. instances
are summarized in Tables 2 and 3, respectively, for different number of tours. Positive gaps
denote predominance of our algorithm against ILS. The opposite (i.e. prevalence of ILS solution)
is signified by negative gap values. CSCRatio yields significantly higher profit values, especially for
instances with tight B and small number of tours (e.g. 0.79 in r1* and 2.04 in rc1*, for one tour,
in Table 2). This is because ILS is commonly trapped in isolated areas with few high profit nodes,
failing to explore remote areas with considerable numbers of fairly profited candidate vertices, due
to prohibitively large travelling time and the limited time budget (see relevant discussion in Section
3.3). The null (0) values mostly appearing in c2*, r2* and rc2* instances for 3 or 4 tours indicate
that both approaches derive the optimum solution since k and B are large enough to accommodate
all vertices into the solution. It should be noted that average profit gaps higher than one (1) unit
are considered as significant improvement, since ILS achieves average gap less than 1.8% from the
best known solution on these instances [50]. It is noted that the best known solution (in many
cases known to be the optimal solution) is calculated by the ant colony system of Montemanni
and Gambardella [40]; however, this algorithm requires prohibitively long time to derive solutions
(increased by a factor of more than 100 compared to ILS [49]), which makes it inappropriate for
online TTDP applications. As regards the number of transfers, CSCRatio clearly prevails, mainly
when B is prolonged (e.g. in c2*, r2* and rc2* instances), as it prioritizes the successive placement
of vertices assigned to the same cluster into the tours. On the other hand, ILS disregards the
geographic position of successive vertices, as long as they maximize the insertion ratio. ILS and
CSCRatio attain similar execution times in most cases, however the former clearly executes faster
when examining instances with both large B and k values (in those cases, it appears that the
CSCRatio shake step commonly yields slightly better solutions, thereby reinitializing new iteration
rounds in search of improved solutions and prolonging the execution time).

The comparison results between ILS and CSCRoutes for Solomon and Cordeau et al. instances
are summarized in Tables 4 and 5, respectively. The results indicate a trade-off between profit and
number of transfers. In particular, ILS yields better results with respect to profit as it inserts best
candidate nodes freely, irrespective of their cluster assignment. This is especially true when consid-
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ering instances which combine large B with tight time windows (e.g. r2*), whereby CSCRoutes fails
to use the time budget effectively, as it might get trapped within clusters, spending considerable
amounts of time waiting for the vertices’ opening time, while not allowed to ‘escape’ by visiting
neighbour cluster vertices. This disadvantage is mitigated when k increases, as high-profit vertices
are then more likely to be selected. On the other hand, CSCRoutes clearly surpasses ILS with
respect to the number of transfers due to its focal design objective to prohibit inter-cluster trans-
fers. CSCRoutes also attains shorter execution times (excluding the c2*, r2* and rc2* instances
for k=4), as it significantly reduces the search space in its insertion phase (i.e. in order to insert
a new vertex between a pair of vertices that belongs to the same cluster, it only examines vertices
assigned to the same cluster).

The comparison results between CSCRatio and CSCRoutes for Solomon and Cordeau et al. in-
stances are summarized in Tables 6 and 7, respectively, where negative values indicate prominence
of CSCRatio. As expected, CSCRatio obtains better results in terms of profit as it enables broader
exploration of the search space on its insertion phase. On the other hand, CSCRatio performs worse
with respect to the number of transfers (as it follows a more relaxed approach when considering
connecting vertices that belong to different clusters) and execution time (since it involves a broader
search space). The execution time gap increases in favor of CSCRoutes on instances with large B
values (e.g. c2*, r2* and rc2*) as their respective solutions accommodate higher numbers of ver-
tices, hence, the insertion iterations (which are much more time consuming in CSCRatio) increase
accordingly.

The analytical results obtained by ILS, CSCRatio and CSCRoutes on our new benchmark
instances (i.e. t1* and t2*) are illustrated in Tables 31 and 32, respectively (see Appendix A).
Table 8 compares ILS against CSCRatio. The latter achieves considerably higher profit gaps
compared to the previously examined instances, especially when considering instances featuring
tight time budgets (t2* instances). This agrees with the results compiled for c1*, r1* and rc1*
Solomon instances, which possess similar characteristics. This improvement is attributed to the
RouteInitPhase incorporated into both our proposed algorithms, which increases the likelihood of
initially inserting high-profit vertices located on far-reached clusters (such vertices are typically
overlooked by ILS itineraries due to the high travel time, hence low ratio). On the other hand, ILS
performs better as regards the number of transfers yield on t2* instances (CSCRatio commonly
explores areas far located from the depot, hence, it is forced to perform a number of inter-cluster
transfers to ‘connect’ those areas to the depot). Last, the two algorithms present comparable
execution times.

Table 9 compares ILS against CSCRoutes. ILS yields higher profit values in t1* instances,
however, the performance gap is decreased compared to the results reported on previous instances.
This is due to the wider and overlapping time windows chosen in t* instances, which diminishes
the wait time (until opening) and allows more effective use of the budget time by CSCRoutes.
CSCRoutes performs much better with respect to number of transfers and execution time. In-
terestingly, the results differ significantly on t2* instances, with CSCRoutes deriving solutions of
considerably higher quality at the expense of increased number of transfers. This is mainly due
to some outlier values (for instance, in t243 instance ILS collects far less profit but performs only
2 transfers as opposed to 4 transfers performed by CSCRoutes), which largely affect the average
value. In those instances, CSCRoutes is initialized inserting a far-located high-profit vertex and is
forced to traverse a number of intermediate clusters in order to ‘connect’ it to the depot vertex. It
is noted that CSCRoutes retains lead over ILS with regard to the execution time on t2* instances.

Last, Table 10 compares CSCRatio against CSCRoutes (negative values indicate prominence of
CSCRatio). The general picture is that CSCRatio prevails with respect to solutions’ quality, while
CSCRoutes yields improved results with regard to both the number of transfers involved and the
execution time measured.
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Table 2: Comparison between ILS and CSCRatio for Solomon instances
1 tour Gap(%) 2 tours Gap(%) 3 tours Gap(%) 4 tours Gap(%)

Name Profit Transf Time Profit Transf Time Profit Transf Time Profit Transf Time
c101 -3.13 -14.29 9.62 0 20 29.86 1.27 -10 55.97 1 14.81 40.19
c102 0 0 -34.74 0 -27.27 37.8 0 5 36.9 1.83 20.83 33.77
c103 0 0 -99.01 1.43 7.14 -33.44 0 15 18.91 0.87 10.71 -3.06
c104 5 22.22 -69.53 0 0 5.24 0 -6.67 -2.19 -1.64 -15.79 45.61
c105 0 -22.22 -25.77 0 0 24.31 1.19 23.08 35.28 2.91 11.54 57.69
c106 0 -12.5 -28.71 0 0 6.74 1.19 0 41.49 1.92 -4 21.35
c107 0 0 -36.54 0 0 14.8 0 0 59.08 0.91 13.04 -18.76
c108 0 0 -27.42 0 0 -4.01 1.11 -4.55 72.59 0 -4.35 38.27
c109 0 25 -54.95 1.41 0 -5.29 0 6.25 -2.97 -1.69 9.09 8.77

Average 0.21 -0.2 -40.78 0.32 -0.01 8.45 0.53 3.12 35.01 0.68 6.21 24.87
c201 2.38 12.5 33.09 1.43 12.5 24.84 0.57 22.86 -14.03 0 -12.5 -342.77
c202 0 14.29 39.87 0 20.69 -33.33 1.71 26.32 -21.54 0 24.56 -375.5
c203 0 26.32 10.88 0.7 10.71 -60.97 -0.57 20.45 -113.53 0 21.57 -380.2
c204 1.05 35.29 -53.55 -0.68 7.14 -38.06 0 30.23 -200.76 0 28.57 -434.13
c205 0 7.69 -17.24 0 0 38.69 0 7.69 -109.12 0 21.57 -386.87
c206 1.1 20 -22.43 2.08 11.76 -41.28 1.69 0 -183.09 0 32.73 -464.2
c207 2.2 29.41 8.51 1.38 27.27 -9.83 -1.1 -9.09 -67.2 0 26.42 -396.21
c208 0 7.14 -33.48 1.37 10.53 -25.47 0 0 -94.9 0 16.67 -408.04

Average 0.84 19.08 -4.29 0.79 12.58 -18.18 0.29 12.31 -100.52 0 19.95 -398.49
r101 0.55 -16.67 -4.92 3.94 16.67 31.11 -1.25 5.88 46.82 -0.5 5.26 71.46
r102 0 0 -9.91 -1.38 -9.09 12.07 -2.19 -14.29 23.28 -0.12 9.09 34.62
r103 1.75 14.29 -64.36 0.19 7.69 -11.99 0 6.67 37.59 1.14 0 -3.71
r104 1.35 33.33 -42.74 0.74 0 -14.74 0.26 -15.38 45.43 1.06 30.43 28.16
r105 0 0 32.59 2.79 0 32.14 -2.13 15.79 64.62 2.45 8.33 0.74
r106 0 0 -18.52 -0.95 0 37.71 -2.09 0 32.15 1.26 0 -14.09
r107 2.08 28.57 -62 -0.95 9.09 6.63 -0.54 0 33.33 -1.62 9.52 -3.54
r108 3.7 0 -10 1.28 18.18 -11.88 0.51 0 58.48 -1.53 -5.88 8.5
r109 0 0 9.68 1.61 -9.09 31.38 -0.29 0 55.41 0.92 -22.22 19.86
r110 0 0 7.64 -1.36 11.11 39.34 0.98 0 22.48 1.03 9.09 22.23
r111 0 0 -24.03 0.56 0 46.12 0 0 36.03 -1.18 0 56.83
r112 0 0 -62.28 4.47 10 19.12 -0.13 0 15.54 1.06 -11.11 42.13

Average 0.79 4.96 -20.74 0.91 4.55 18.08 -0.57 -0.11 39.26 0.33 2.71 21.93
r201 -0.25 17.86 30.75 -1.54 14.81 -55.01 0.28 12.31 -72.45 0 6.67 -278.91
r202 1.25 22.22 32.23 2.52 6.38 -34.55 0 1.69 -128.43 0 10.77 -384.12
r203 0.31 0 45.26 -0.36 13.04 -79.61 0 14.29 -279.19 0 6.67 -476.06
r204 -1.49 30.43 -51.82 -0.14 15.79 -157.17 0 28.57 -450.16 0 29.82 -765.66
r205 -2.79 0 43.87 -0.37 2.5 -52.25 0 4.76 -237.99 0 8.7 -514.29
r206 0 -4.76 -30.53 0.36 6.82 -150.67 0 -3.85 -355.99 0 3.23 -606.39
r207 2.02 4.76 -39.54 0.42 8.33 -167.69 0 7.94 -393.71 0 19.4 -755.38
r208 1.31 0 5.71 0 16.28 -265.57 0 20.41 -441.42 0 36.73 -1066.17
r209 -0.65 -4.55 -36.4 1.86 16.67 -82.42 0 1.89 -301.95 0 16.95 -690.19
r210 1.25 12.5 13.78 1.32 2.38 -57.16 0 8.93 -319.31 0 6.06 -502.22
r211 0.2 29.17 -67.03 1.13 5.41 -216.01 0 21.43 -378.73 0 8.93 -650

Average 0.11 9.78 -4.88 0.47 9.86 -119.83 0.03 10.76 -305.39 0 13.99 -608.13
rc101 0 0 16.13 0 0 70.36 1.66 25 60.14 -1.89 18.75 68.31
rc102 0 0 16.24 -1.21 -14.29 31.27 -0.43 15.38 66.95 -0.34 31.58 55.43
rc103 -0.75 33.33 -15 -0.58 -14.29 4.73 2.14 -9.09 34.21 1.9 13.33 20.66
rc104 1.35 20 -60.24 1.59 11.11 32.64 -0.73 0 25.47 0.49 -14.29 50.34
rc105 10.41 0 19.83 4.14 0 44.65 -0.92 0 37.78 -1.78 6.25 32.7
rc106 4.6 20 23.39 5.02 27.27 35.53 0.74 0 28.96 -0.92 12.5 20.02
rc107 0.73 0 11.29 -0.19 11.11 47.13 0.94 -7.14 18.26 -0.21 0 48.56
rc108 0 0 -20.19 -1.83 9.09 23.71 3.04 14.29 5.52 -1 -28.57 61.56

Average 2.04 9.17 -1.07 0.87 3.75 36.25 0.81 4.81 34.66 -0.47 4.94 44.7
rc201 -0.38 0 34.13 2.91 9.76 -3.01 1.54 0 -86.41 0 -3.17 -265.81
rc202 4.76 26.32 28.74 -1.78 -8.82 4.17 -0.12 15.52 -130.42 0 14.93 -335.38
rc203 -0.42 -38.46 1.45 -0.7 8.57 -53.43 0 -2.38 -214.86 0 22.22 -457.84
rc204 -0.81 21.43 -29.11 0.6 0 -120.95 0 4.76 -338.29 0 18.37 -658.21
rc205 0.6 11.76 22.87 -1.3 5.56 10.92 0.06 9.26 -143.26 0 5.08 -328.85
rc206 1.05 5.26 -4.99 -1.2 0 -57.07 0.76 -9.3 -208.54 0 -10.17 -417.29
rc207 -0.11 11.76 13.95 -1.5 -6.9 -73.88 0.35 -17.95 -138.03 0 -7.02 -417.67
rc208 -1.06 5.88 27.9 0.25 6.45 -13.68 0 3.92 -312.53 0 3.64 -447.81

Average 0.45 5.49 11.87 -0.34 1.83 -38.37 0.32 0.48 -196.54 0 5.49 -416.11
Total Av. 0.7 7.77 -11.03 0.53 5.5 -21.2 0.17 5.11 -83.43 0.11 8.67 -220.74
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Table 3: Comparison between ILS and CSCRatio for Cordeau et al. instances
1 tour Gap(%) 2 tours Gap(%) 3 tours Gap(%) 4 tours Gap(%)

Name Profit Transf Time Profit Transf Time Profit Transf Time Profit Transf Time
pr01 0 0 29.36 4.67 -18.18 -24.22 -2.68 40 -111.9 1.55 0 -312.5
pr02 1.04 -60 43.13 1.36 -50 40.23 -1.89 9.52 11.76 0.59 13.04 -61.46
pr03 2.34 -22.22 13.12 -0.14 -23.53 11.22 -1.16 10.34 31.5 1.64 3.7 13.51
pr04 3.8 50 46.19 -3.59 0 45.24 0.5 -3.23 66.99 0.07 7.5 52.46
pr05 -4.17 14.29 35.3 3.56 28.13 28.13 1.92 -7.69 27.89 0.3 12.5 69.42
pr06 2.97 -23.08 28.13 -3.31 0 50.56 -1.67 20.93 68.55 0.88 4 39.94
pr07 0 16.67 -10 0.54 -42.86 28.67 1.12 -23.08 48.22 -0.71 -5.26 -32.11
pr08 -3.67 28.57 48.94 -1.63 10.53 36.74 -0.65 -3.7 27.92 0.39 8.11 -0.04
pr09 1.52 20 27.45 -5.88 -18.18 53.4 5.16 6.9 54.44 3.22 -6.98 34.49
pr10 -2.04 -7.69 24.45 5.38 0 44.56 -1.83 -7.89 57.65 0.17 10.71 23.16
pr11 3.03 -60 28.68 -3.87 0 -40.65 0.47 15.38 -185.53 0 0 -310.53
pr12 0.7 0 17.46 0 -60 3.9 2.77 15.79 -69.58 1.25 8.7 -126.41
pr13 -0.67 -14.29 10.5 5.55 -21.43 33.7 -0.1 -10 12.7 -0.63 -3.03 35.27
pr14 4.77 33.33 8.28 1.95 22.73 30.3 3.59 -10.34 28.39 3.6 -8.82 29.97
pr15 -0.31 -5.88 23.51 -2.22 3.45 49.42 -0.74 5.56 20.69 -0.72 21.15 15.28
pr16 3.22 -10 69.25 -3.06 7.69 37.99 1.56 19.44 31.56 -1.01 -2.5 28.02
pr17 0.87 22.22 21.46 -0.64 9.09 57.43 -1.86 35 -61.05 -0.9 18.18 -112.71
pr18 9.19 -20 51.16 1.71 -61.54 -9.29 -2.75 -9.09 14.2 2.37 -3.57 14.58
pr19 2.2 11.11 34.75 -5.86 14.29 35.75 7.51 -7.41 17.18 4.87 12.82 16.61
pr20 4.39 12.5 31.45 5.11 0 34.26 -1.25 -6.45 57.24 1.14 2.13 34.64

Average 1.46 -0.72 29.13 -0.02 -9.99 27.37 0.4 4.5 7.44 0.9 4.62 -27.42
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Table 4: Comparison between ILS and CSCRoutes for Solomon instances
1 tour Gap(%) 2 tours Gap(%) 3 tours Gap(%) 4 tours Gap(%)

Name Profit Transf Time Profit Transf Time Profit Transf Time Profit Transf Time
c101 -6.25 28.57 11.54 -6.78 46.67 49.28 -1.27 25 56.25 -4 44.44 32.31
c102 0 0 -16.84 0 0 46.34 -1.12 25 18.52 -0.92 29.17 42.28
c103 -2.56 0 -57.43 0 14.29 -1.64 -2.08 20 30.83 -0.87 35.71 16.05
c104 2.5 22.22 -60.16 -1.33 14.29 23.6 0.99 6.67 20.83 0.82 10.53 43.64
c105 -2.94 22.22 -2.06 -6.25 25 31.94 -1.19 38.46 41.3 -0.97 23.08 68.78
c106 -2.94 25 -22.77 -3.23 29.41 14.54 -1.19 30.43 42.28 -0.96 12 18.67
c107 0 25 -8.65 -7.46 15.38 39.47 -2.22 21.05 68.78 -1.82 17.39 1.27
c108 -2.7 25 -4.03 -4.48 43.75 34.11 -2.22 40.91 74.29 -1.82 -4.35 33.16
c109 0 25 -29.73 -2.82 10 23.54 1.05 6.25 -9.35 -1.69 13.64 24.64

Average -1.65 19.22 -21.13 -3.59 22.09 29.02 -1.03 23.75 38.19 -1.36 20.18 31.2
c201 0 37.5 70.89 2.14 37.5 66.37 0 37.14 47.45 0 20 -147.8
c202 -2.2 35.71 81.28 0.7 37.93 55.9 0 28.95 42.13 0 43.86 -145.03
c203 -4.26 47.37 76.72 0.7 46.43 52.95 -0.57 47.73 0.17 0 43.14 -164.69
c204 2.11 41.18 57.19 0 46.43 56.85 0.56 48.84 -24.38 0 46.43 -180.89
c205 -1.11 23.08 58.87 -0.69 5.56 72.81 1.13 19.23 -12.42 0 35.29 -170.71
c206 -1.1 33.33 54.65 2.08 17.65 51.25 1.69 4.76 -10.59 0 41.82 -206.61
c207 1.1 41.18 67.42 1.38 36.36 53.25 -1.66 9.09 26.74 0 37.74 -179.31
c208 -1.08 28.57 56.59 0 15.79 54.16 0 9.52 14.38 0 33.33 -168.53

Average -0.82 35.99 65.45 0.79 30.46 57.94 0.14 25.66 10.44 0 37.7 -170.45
r101 -1.1 16.67 -14.75 -1.52 41.67 40.56 -6.86 35.29 48.09 -4.16 31.58 69.16
r102 -1.4 16.67 6.31 -1.38 18.18 40 -2.77 7.14 37.8 -1.61 31.82 44.35
r103 1.05 14.29 -25.74 -1.75 38.46 11.64 -1.67 20 58.43 -2.28 36.36 30.05
r104 2.02 16.67 -29.06 -1.86 0 17.05 -2.48 15.38 57.12 -1.7 26.09 37.6
r105 -3.64 40 37.04 -1.86 30 39.29 -2.79 42.11 65.22 -3.13 33.33 38.14
r106 -4.78 16.67 -7.41 -4.54 16.67 51.58 -2.78 0 23.74 -2.87 15 15.09
r107 0.35 14.29 -19 -1.13 9.09 24.1 -0.4 7.14 41.85 -2.16 23.81 22.89
r108 2.02 0 14.12 0.55 18.18 10.72 -2.66 7.14 67.95 -2.34 0 24.46
r109 -6.16 57.14 23.39 -3.61 36.36 53.99 -3.15 25 70.72 -1.39 11.11 26.57
r110 0 0 24.31 -1.75 22.22 43.96 -0.56 18.75 29.25 -0.34 31.82 29.77
r111 0.68 33.33 7.75 0.56 0 64.13 -0.79 14.29 50.48 -3.21 20 70.77
r112 -3.39 50 -15.79 3.11 30 40.34 -1.58 7.14 41.54 -0.64 5.56 54.05

Average -1.2 22.98 0.1 -1.27 21.74 36.45 -2.37 16.62 49.35 -2.15 22.21 38.58
r201 -39.59 64.29 83.78 -29.81 64.81 67.9 -16.9 55.38 39.03 -8.16 52 -139.7
r202 -10.45 62.96 83.32 -12.2 57.45 53.19 -6.86 54.24 2.91 -4.53 43.08 -127.94
r203 -6.73 54.55 87.03 -9.73 56.52 22.87 -4.87 52.38 -78.93 -0.14 46.67 -209.51
r204 -2.33 56.52 67.99 -5.28 50 -12.74 -0.96 57.14 -146.3 0 47.37 -319.7
r205 -30.83 64.29 90.08 -16.67 50 54.76 -3.7 53.97 -60.78 -0.48 53.62 -227.41
r206 -14.76 52.38 70.61 -7.64 54.55 31.33 -2.06 48.08 -132.93 0 41.94 -405.02
r207 -11.66 52.38 67.17 -3.5 58.33 -28.91 -0.34 57.14 -105.66 0 49.25 -331.18
r208 -0.75 41.18 80.51 -2.67 53.49 -30.92 0 51.02 -135.92 0 42.86 -558.65
r209 -22.57 54.55 68.7 -11.75 60.42 54.02 -3.36 47.17 -66.85 0 42.37 -306.54
r210 -15.14 58.33 82.33 -6.15 52.38 49.18 -2.61 50 -76.08 0 51.52 -178.15
r211 -15.44 58.33 62.36 -7.45 51.35 15.85 0 51.79 -92.7 0 39.29 -325.27

Average -15.48 56.34 76.72 -10.26 55.39 25.14 -3.79 52.57 -77.66 -1.21 46.36 -284.46
rc101 0 0 15.05 -1.87 -14.29 74.31 1.66 25 63.51 -2.27 31.25 60.02
rc102 2.7 20 30.77 0.61 0 58.59 -0.86 7.69 70.55 -2.95 26.32 69.49
rc103 0.38 33.33 5 0 -14.29 30.18 -2.41 0 52.76 -1.69 13.33 47.83
rc104 1.35 20 -32.53 -1.77 22.22 42.41 -2.19 9.09 23.87 -0.49 7.14 59.38
rc105 9.05 0 25.86 -5.23 25 48.62 -3.06 18.18 44.35 -3.21 12.5 43.32
rc106 4.6 20 30.65 1.31 27.27 55.84 -1.18 15.38 34.79 -2.52 18.75 38.79
rc107 -4.74 20 17.74 -5.44 22.22 47.75 -2.82 21.43 49.28 0.53 20 45.6
rc108 -4.86 20 -6.73 -2.01 27.27 44.33 0.79 21.43 4.27 -2.3 -14.29 58.44

Average 1.06 16.67 10.73 -1.8 11.93 50.25 -1.26 14.78 42.92 -1.86 14.38 52.86
rc201 -17.18 47.37 79.25 -20.77 53.66 64.05 -15.45 49.06 24.09 -7.95 46.03 -96.49
rc202 -2.04 47.37 78.35 -18.96 47.06 65.69 -13.11 55.17 -7.38 -4.87 49.25 -197.95
rc203 -6.15 23.08 77.27 -13.29 45.71 53.19 -6.5 40.48 -99.32 -0.29 47.62 -318.82
rc204 0.36 28.57 67.25 -2.96 26.92 28.29 -1.33 38.1 -81.14 0 32.65 -312.44
rc205 -18.45 41.18 75.53 -24.33 52.78 68.4 -17.06 48.15 8.32 -7.6 47.46 -97.8
rc206 -12.67 47.37 74.12 -11.3 41.18 26.22 -7.32 39.53 -25.62 0 47.46 -184.07
rc207 -13.5 41.18 77.12 -6.79 34.48 44.67 -4.9 38.46 -11.15 -0.35 47.37 -242
rc208 -6.36 41.18 79.28 -1.43 38.71 58.32 0 47.06 -127.86 0 43.64 -171.04

Average -9.5 39.66 76.02 -12.48 42.56 51.1 -8.21 44.5 -40.01 -2.63 45.19 -202.58
Total Av. -4.88 32.27 33.44 -4.79 31.22 40.17 -2.75 29.84 3.37 -1.56 31 -88.33
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Table 5: Comparison between ILS and CSCRoutes for Cordeau et al. instances
1 tour Gap(%) 2 tours Gap(%) 3 tours Gap(%) 4 tours Gap(%)

Name Profit Transf Time Profit Transf Time Profit Transf Time Profit Transf Time
pr01 -22.37 50 59.63 -7.22 45.45 34.38 -2.68 55 -114.29 0.78 41.18 -181.94
pr02 -2.86 20 69.81 -4.39 25 69.25 -8.68 42.86 49.06 -6.61 30.43 -2.35
pr03 -9.11 33.33 53.06 -11.06 35.29 64.99 -6.24 41.38 50.56 -6.45 22.22 57.31
pr04 -4.92 61.11 73.15 -7.65 20 73.01 -4.1 22.58 74.99 -7.51 32.5 60.25
pr05 -22.57 50 71.09 -9.2 46.88 71.55 -3.54 46.15 59.72 -4.62 30.36 81.3
pr06 -12.27 30.77 57.81 -12.84 29.17 72.77 -11.34 34.88 81.05 -8.96 36 47.46
pr07 0 16.67 34.17 0 -14.29 67.54 -2.81 23.08 70.49 -4.76 36.84 -17.2
pr08 -14.25 28.57 73.33 -9.3 47.37 69.1 -11.28 25.93 67.15 -5.37 37.84 55.52
pr09 -4.12 50 55.77 -13.61 40.91 71.57 -6.73 34.48 78.62 -2.67 30.23 59.31
pr10 -8.72 46.15 60 -7.17 30.77 69.16 -10.93 18.42 76.99 -9.43 30.36 58.24
pr11 -2.73 40 36.76 -2.58 40 12.9 -2.37 30.77 -73.68 0 23.53 -266.67
pr12 -5.34 40 60.28 -5.64 40 42.75 -0.33 47.37 33.6 1.44 30.43 -6.7
pr13 -6.44 14.29 50.21 -0.92 42.86 65.54 -5.93 25 55.44 -8.39 36.36 64.39
pr14 -3.53 11.11 58.34 -6.27 22.73 63.12 1.09 24.14 57.72 -4.38 26.47 65.48
pr15 -6.9 47.06 73.29 -12.88 51.72 76.36 -4.17 41.67 54.74 -8.8 53.85 49.81
pr16 -6.08 40 85.91 -16.31 46.15 70.75 -8.32 36.11 55.66 -7.89 35 63.86
pr17 -4.34 55.56 62.35 -4.81 36.36 72.83 -3.34 40 1.74 -1.8 40.91 -38.83
pr18 -14.82 40 77.1 -9.92 15.38 57.47 -9.87 22.73 53.61 -2.51 17.86 45.15
pr19 -2.4 11.11 62.51 -10.47 42.86 68.54 0.24 22.22 51.83 -4.68 30.77 46.52
pr20 -8.42 25 69.14 -10.04 37.5 65.28 -7.4 16.13 72.49 -3.36 25.53 50.09

Average -8.11 35.54 62.19 -8.11 34.11 62.94 -5.44 32.55 42.87 -4.8 32.43 14.55
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Table 6: Comparison between CSCRatio and CSCRoutes for Solomon instances
1 tour Gap(%) 2 tours Gap(%) 3 tours Gap(%) 4 tours Gap(%)

Name Profit Transf Time Profit Transf Time Profit Transf Time Profit Transf Time
c101 -3.23 37.5 2.13 -6.78 33.33 27.69 -2.5 31.82 0.65 -4.95 34.78 -13.16
c102 0 0 13.28 0 21.43 13.73 -1.12 21.05 -29.12 -2.7 10.53 12.84
c103 -2.56 0 20.9 -1.41 7.69 23.83 -2.08 5.88 14.7 -1.72 28 18.55
c104 -2.38 0 5.53 -1.33 14.29 19.37 0.99 12.5 22.53 2.5 22.73 -3.61
c105 -2.94 36.36 18.85 -6.25 25 10.09 -2.35 20 9.3 -3.77 13.04 26.21
c106 -2.94 33.33 4.62 -3.23 29.41 8.37 -2.35 30.43 1.34 -2.83 15.38 -3.41
c107 0 25 20.42 -7.46 15.38 28.96 -2.22 21.05 23.71 -2.7 5 16.86
c108 -2.7 25 18.35 -4.48 43.75 36.66 -3.3 43.48 6.23 -1.82 0 -8.29
c109 0 0 16.28 -4.17 10 27.39 1.05 0 -6.2 0 5 17.4

Average -1.86 17.47 13.37 -3.9 22.25 21.79 -1.54 20.69 4.79 -2 14.94 7.04
c201 -2.33 28.57 56.49 0.7 28.57 55.25 -0.57 18.52 53.91 0 28.89 44.03
c202 -2.2 25 68.87 0.7 21.74 66.92 -1.69 3.57 52.39 0 25.58 48.47
c203 -4.26 28.57 73.88 0 40 70.77 0 34.29 53.25 0 27.5 44.88
c204 1.04 9.09 72.12 0.69 42.31 68.75 0.56 26.67 58.64 0 25 47.41
c205 -1.11 16.67 64.92 -0.69 5.56 55.65 1.13 12.5 46.24 0 17.5 44.4
c206 -2.17 16.67 62.96 0 6.67 65.49 0 4.76 60.93 0 13.51 45.66
c207 -1.08 16.67 64.39 0 12.5 57.43 -0.56 16.67 56.19 0 15.38 43.71
c208 -1.08 23.08 67.48 -1.35 5.88 63.46 0 9.52 56.07 0 20 47.14

Average -1.65 20.54 66.39 0.01 20.4 62.97 -0.14 15.81 54.7 0 21.67 45.71
r101 -1.64 28.57 -9.38 -5.25 30 13.71 -5.68 31.25 2.4 -3.68 27.78 -8.06
r102 -1.4 16.67 14.75 0 25 31.76 -0.6 18.75 18.93 -1.49 25 14.87
r103 -0.69 0 23.49 -1.95 33.33 21.1 -1.67 14.29 33.39 -3.38 36.36 32.55
r104 0.66 -25 9.58 -2.58 0 27.71 -2.74 26.67 21.42 -2.73 -6.25 13.14
r105 -3.64 40 6.59 -4.52 30 10.53 -0.67 31.25 1.7 -5.44 27.27 37.69
r106 -4.78 16.67 9.38 -3.63 16.67 22.27 -0.71 0 -12.41 -4.09 15 25.58
r107 -1.7 -20 26.54 -0.19 0 18.71 0.13 7.14 12.78 -0.55 15.79 25.52
r108 -1.62 0 21.93 -0.72 0 20.21 -3.15 7.14 22.8 -0.83 5.56 17.45
r109 -6.16 57.14 15.18 -5.14 41.67 32.95 -2.87 25 34.34 -2.29 27.27 8.37
r110 0 0 18.05 -0.39 12.5 7.61 -1.53 18.75 8.74 -1.37 25 9.69
r111 0.68 33.33 25.63 0 0 33.44 -0.79 14.29 22.59 -2.06 20 32.29
r112 -3.39 50 28.65 -1.3 22.22 26.24 -1.45 7.14 30.79 -1.69 15 20.6

Average -1.97 16.45 15.87 -2.14 17.62 22.19 -1.81 16.81 16.46 -2.47 19.48 19.14
r201 -39.44 56.52 76.58 -28.71 58.7 79.29 -17.14 49.12 64.64 -8.16 48.57 36.74
r202 -11.56 52.38 75.38 -14.36 54.55 65.21 -6.86 53.45 57.5 -4.53 36.21 52.92
r203 -7.02 54.55 76.31 -9.4 50 57.06 -4.87 44.44 52.81 -0.14 42.86 46.27
r204 -0.85 37.5 78.91 -5.15 40.63 56.16 -0.96 40 55.23 0 25 51.52
r205 -28.84 64.29 82.33 -16.35 48.72 70.29 -3.7 51.67 52.43 -0.48 49.21 46.7
r206 -14.76 54.55 77.49 -7.97 51.22 72.61 -2.06 50 48.92 0 40 28.51
r207 -13.41 50 76.48 -3.91 54.55 51.84 -0.34 53.45 58.34 0 37.04 49.59
r208 -2.03 41.18 79.33 -2.67 44.44 64.19 0 38.46 56.43 0 9.68 43.52
r209 -22.07 56.52 77.05 -13.36 52.5 74.79 -3.36 46.15 58.49 0 30.61 48.55
r210 -16.19 52.38 79.51 -7.38 51.22 67.66 -2.61 45.1 58.01 0 48.39 53.81
r211 -15.61 41.18 77.47 -8.48 48.57 73.37 0 38.64 59.75 0 33.33 43.3

Average -15.62 51 77.89 -10.7 50.46 66.59 -3.81 46.41 56.6 -1.21 36.45 45.58
rc101 0 0 -1.28 -1.87 -14.29 13.33 0 0 8.47 -0.39 15.38 -26.15
rc102 2.7 20 17.35 1.84 12.5 39.75 -0.43 -9.09 10.89 -2.62 -7.69 31.54
rc103 1.14 0 17.39 0.58 0 26.72 -4.46 8.33 28.2 -3.52 0 34.24
rc104 0 0 17.29 -3.31 12.5 14.51 -1.47 9.09 -2.15 -0.98 18.75 18.19
rc105 -1.23 0 7.53 -9 25 7.18 -2.16 18.18 10.56 -1.45 6.67 15.79
rc106 0 0 9.47 -3.53 0 31.5 -1.9 15.38 8.21 -1.62 7.14 23.47
rc107 -5.43 20 7.27 -5.25 12.5 1.16 -3.72 26.67 37.94 0.74 20 -5.76
rc108 -4.86 20 11.2 -0.19 20 27.03 -2.18 8.33 -1.32 -1.32 11.11 -8.14

Average -0.96 7.5 10.78 -2.59 8.53 20.15 -2.04 9.61 12.6 -1.4 8.92 10.4
rc201 -16.86 47.37 68.49 -23.01 48.65 65.1 -16.73 49.06 59.28 -7.95 47.69 46.29
rc202 -6.49 28.57 69.61 -17.49 51.35 64.19 -13 46.94 53.4 -4.87 40.35 31.56
rc203 -5.75 44.44 76.93 -12.68 40.63 69.49 -6.5 41.86 36.7 -0.29 32.65 24.92
rc204 1.17 9.09 74.64 -3.54 26.92 67.54 -1.33 35 58.67 0 17.5 45.6
rc205 -18.93 33.33 68.28 -23.33 50 64.53 -17.11 42.86 62.31 -7.6 44.64 53.88
rc206 -13.58 44.44 75.35 -10.22 41.18 53.03 -8.02 44.68 59.28 0 52.31 45.09
rc207 -13.41 33.33 73.41 -5.37 38.71 68.18 -5.24 47.83 53.31 -0.35 50.82 33.93
rc208 -5.36 37.5 71.27 -1.68 34.48 63.33 0 44.9 44.77 0 41.51 50.52

Average -9.9 34.76 72.25 -12.17 41.49 64.42 -8.49 44.14 53.47 -2.63 40.93 41.47
Total Av. -5.58 25.32 42.19 -5.3 27.32 42.41 -2.91 25.98 32.67 -1.66 23.95 28.13
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Table 7: Comparison between CSCRatio and CSCRoutes for Cordeau et al. instances
1 tour Gap(%) 2 tours Gap(%) 3 tours Gap(%) 4 tours Gap(%)

Name Profit Transf Time Profit Transf Time Profit Transf Time Profit Transf Time
pr01 -22.37 50 42.86 -11.36 53.85 47.17 0 25 -1.12 -0.76 41.18 31.65
pr02 -3.86 50 46.92 -5.68 50 48.56 -6.92 36.84 42.27 -7.16 20 36.61
pr03 -11.2 45.45 45.97 -10.94 47.62 60.57 -5.13 34.62 27.82 -7.96 19.23 50.64
pr04 -8.41 22.22 50.11 -4.21 20 50.71 -4.58 25 24.23 -7.57 27.03 16.39
pr05 -19.2 41.67 55.32 -12.32 26.09 60.42 -5.35 50 44.14 -4.91 20.41 38.86
pr06 -14.8 43.75 41.3 -9.85 29.17 44.92 -9.83 17.65 39.73 -9.76 33.33 12.52
pr07 0 0 40.15 -0.54 20 54.49 -3.88 37.5 43.01 -4.08 40 11.28
pr08 -10.99 0 47.77 -7.79 41.18 51.15 -10.7 28.57 54.43 -5.74 32.35 55.54
pr09 -5.56 37.5 39.03 -8.21 50 38.99 -11.31 29.63 53.08 -5.71 34.78 37.88
pr10 -6.82 50 47.05 -11.91 30.77 44.38 -9.27 24.39 45.67 -9.58 22 45.65
pr11 -5.59 62.5 11.34 1.34 40 38.07 -2.83 18.18 39.17 0 23.53 10.68
pr12 -5.99 40 51.88 -5.64 62.5 40.42 -3.02 37.5 60.84 0.19 23.81 52.87
pr13 -5.82 25 44.37 -6.13 52.94 48.02 -5.84 31.82 48.96 -7.81 38.24 44.99
pr14 -7.92 -33.33 54.59 -8.06 0 47.08 -2.42 31.25 40.95 -7.71 32.43 50.71
pr15 -6.6 50 65.07 -10.9 50 53.26 -3.45 38.24 42.93 -8.14 41.46 40.76
pr16 -9.01 45.45 54.19 -13.66 41.67 52.83 -9.73 20.69 35.22 -6.95 36.59 49.79
pr17 -5.16 42.86 52.06 -4.19 30 36.18 -1.51 7.69 38.99 -0.91 27.78 34.73
pr18 -21.99 50 53.12 -11.43 47.62 61.08 -7.33 29.17 45.93 -4.77 20.69 35.79
pr19 -4.51 0 42.55 -4.89 33.33 51.03 -6.76 27.59 41.84 -9.11 20.59 35.87
pr20 -12.27 14.29 54.98 -14.41 37.5 47.19 -6.22 21.21 35.66 -4.45 23.91 23.63

Average -9.4 31.87 47.03 -8.04 38.21 48.83 -5.8 28.63 40.19 -5.64 28.97 35.84
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Table 8: Comparison between ILS and CSCRatio for new instances
t1 t2

Name
Profit

Gap(%)
Transfer
Gap(%)

Time
Gap(%)

Name
Profit

Gap(%)
Transfer
Gap(%)

Time
Gap(%)

t101 0 11.11 9.74 t201 2.19 0 -40.79
t102 -1.17 -10 -52.61 t202 0 0 -8.82
t103 2.16 -30 2.89 t203 2.87 -33.33 -79.1
t104 1.49 -11.11 9.71 t204 0 -66.67 17.65
t105 -1.15 12.5 -16.72 t205 -2.91 0 75.05
t106 1.03 0 -37.82 t206 0.51 -133.33 22.17
t107 -3.56 20 35.88 t207 0 0 -13.48
t108 -0.42 6.25 28.01 t208 8.64 0 -53.33
t109 -1.53 12.5 13.92 t209 1.98 0 45.35
t110 1.24 -7.14 24.23 t210 0.21 18.18 51.47
t111 -1.1 6.67 31.87 t211 0.21 -14.29 46.8
t112 -0.88 7.14 -29.86 t212 1.08 -25 34.01
t113 -2.38 10.53 39.55 t213 0.4 -27.27 21.94
t114 1.93 0 -22.46 t214 3.87 -33.33 25.53
t115 0.28 -16.67 -18.06 t215 0.24 -10 16.55
t116 0.12 -7.14 -41.73 t216 -0.22 9.09 40.5
t117 -1.33 33.33 12 t217 0 12.5 70.52
t118 -0.61 30.43 -19.2 t218 0 0 -38
t119 -1.81 16 -39.49 t219 1.9 -36.36 16.16
t120 -0.88 -6.67 32.77 t220 3.89 20 59.97
t121 4.95 25 -59.27 t221 2.5 10 9.52
t122 0.21 0 40.21 t222 0 -20 12.31
t123 1.49 -40 -37.25 t223 18.03 -100 -143.08
t124 7.36 -40 -87.22 t224 1 -20 44.16
t125 -0.6 36.84 5.13 t225 1.47 7.14 60.07
t126 0.24 -20 -8.5 t226 -1.05 0 35.62
t127 -0.2 13.33 27.77 t227 0 0 -36.99
t128 -0.54 0 -1.65 t228 -1.12 0 14.16
t129 2.31 14.29 -25.1 t229 0 0 -27.64
t130 -0.99 16.67 -23.22 t230 -0.69 -57.14 16.48
t131 1.75 -28.57 -23.29 t231 0.6 0 -19.01
t132 -0.95 30 -2.41 t232 2.49 26.67 50.95
t133 0.75 -41.67 38.78 t233 16.11 -20 -29.46
t134 1.24 0 40.31 t234 2.66 0 40.77
t135 -5.22 0 54.44 t235 2.48 -8.33 21.79
t136 0.79 -37.5 -24.56 t236 -0.57 0 -44.05
t137 -2.68 -11.11 22.01 t237 0.85 10 48.74
t138 -1.55 5.26 12.53 t238 -0.76 0 33.65
t139 3.5 0 4.79 t239 0.2 20 54.73
t140 4.23 27.78 -58.05 t240 3.7 -33.33 -3.83
t141 3.04 -15.38 -2.71 t241 1.18 -33.33 -104.17
t142 -0.59 25 -30.72 t242 0 0 -2.25
t143 0.73 0 -74.8 t243 14.71 -150 -76.62
t144 -3.93 -7.14 20.54 t244 0 11.11 -23.86
t145 3.64 33.33 -47.45 t245 2.75 0 19.05
t146 0.78 15.38 10.21 t246 -0.44 27.27 16.24
t147 2.32 6.67 38.51 t247 2.02 10 36.43
t148 1.5 0 -65.23 t248 4.94 0 13.18
t149 -0.65 23.81 40.58 t249 1.62 -20 52.32
t150 -0.41 0 -10.69 t250 0.5 0 36.96

Average 0.28 2.19 -5.27 Average 2 -13.2 8.33
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Table 9: Comparison between ILS and CSCRoutes for new instances
t1 t2

Name
Profit

Gap(%)
Transfer
Gap(%)

Time
Gap(%)

Name
Profit

Gap(%)
Transfer
Gap(%)

Time
Gap(%)

t101 -3.1 22.22 37.08 t201 -3.28 33.33 -34.21
t102 -0.78 -10 23.27 t202 0 0 -8.82
t103 1.4 -20 31.52 t203 2.3 33.33 -41.79
t104 0.27 0 39.68 t204 0 0 10.46
t105 0 0 -14.89 t205 -0.45 0 67.76
t106 -0.26 0 18.91 t206 0 -100 5.19
t107 -1.78 6.67 44.15 t207 15.52 -50 -24.72
t108 0.14 0 39.22 t208 8.64 0 -74.44
t109 -4.04 0 46.24 t209 -1.98 30.77 52.48
t110 0.25 -7.14 15.66 t210 3.33 18.18 38.67
t111 -0.73 0 37.67 t211 0.42 0 34.28
t112 2.63 0 -17.16 t212 -0.22 -25 40.61
t113 -3.02 10.53 54.56 t213 -1.61 18.18 17.45
t114 -2.36 -14.29 17.07 t214 2.26 0 34.47
t115 -2.27 -8.33 43 t215 0 -20 11.19
t116 -0.12 21.43 -14.74 t216 1.08 0 45.33
t117 2.21 11.11 29.52 t217 -0.22 12.5 58.34
t118 0 8.7 -6.87 t218 0 -100 -40
t119 -0.34 20 -27.83 t219 2.11 -9.09 9.07
t120 -2.05 6.67 64.23 t220 -1.5 0 68.75
t121 0.94 50 -9.6 t221 0 40 -2.54
t122 0.43 50 67.78 t222 -1.77 -10 15.19
t123 1.24 -60 -18.62 t223 25.14 -50 -149.23
t124 8.28 20 -23.33 t224 0.75 0 47.68
t125 0.26 26.32 32.29 t225 1.1 14.29 47.94
t126 -1.21 20 29.25 t226 1.58 7.14 28.84
t127 -1.27 6.67 46.96 t227 0 0 -57.53
t128 -4.41 -4.55 36.16 t228 -1.3 0 22.91
t129 2.08 0 0 t229 -2.25 25 -43.09
t130 -5.91 33.33 -7.01 t230 -1.04 -14.29 -9.66
t131 -8.75 0 18.32 t231 -1.81 0 19.48
t132 -0.48 30 7.85 t232 0.57 13.33 49.96
t133 0.75 -16.67 52.69 t233 18.33 -40 -45.54
t134 1.73 12.5 37.54 t234 3.07 -25 51.13
t135 -2.67 0 61.21 t235 -0.41 8.33 8.12
t136 -1.32 -25 9.21 t236 0 0 -57.14
t137 -4.47 11.11 36.56 t237 1.27 0 48.53
t138 -1.31 5.26 11.35 t238 1.33 12.5 39.95
t139 2.06 15 33.54 t239 0 13.33 46.33
t140 1.11 27.78 14.29 t240 8.42 -33.33 -26.78
t141 0.83 -7.69 35.84 t241 1.18 0 -135.42
t142 -1.6 8.33 24.21 t242 0 0 6.74
t143 0.73 -12.5 -49.21 t243 18.24 -100 -93.51
t144 -4.46 7.14 42.64 t244 0.3 22.22 -3.98
t145 1.96 33.33 22.96 t245 -2.06 -40 -8.33
t146 0.13 -7.69 38.96 t246 -0.66 18.18 20.44
t147 0.65 -33.33 39.36 t247 -0.22 10 27.49
t148 1.5 0 2.34 t248 4.49 -7.69 33.16
t149 1.12 28.57 41.35 t249 -1.39 40 51.27
t150 0 0 16.35 t250 -4 28.57 26.81

Average -0.52 5.31 22.23 Average 1.91 -4.5 4.59
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Table 10: Comparison between CSCRatio and CSCRoutes for new instances
t1 t2

Name
Profit

Gap(%)
Transfer
Gap(%)

Time
Gap(%)

Name
Profit

Gap(%)
Transfer
Gap(%)

Time
Gap(%)

t101 -3.1 12.5 30.29 t201 -5.35 33.33 4.67
t102 0.39 0 49.72 t202 0 0 0
t103 -0.75 7.69 29.48 t203 -0.56 50 20.83
t104 -1.2 10 33.2 t204 0 40 -8.73
t105 1.17 -14.29 1.56 t205 2.53 0 -29.21
t106 -1.27 0 41.16 t206 -0.51 14.29 -21.82
t107 1.84 -16.67 12.91 t207 15.52 -50 -9.9
t108 0.56 -6.67 15.56 t208 0 0 -13.77
t109 -2.55 -14.29 37.55 t209 -3.88 30.77 13.04
t110 -0.98 0 -11.31 t210 3.11 0 -26.38
t111 0.37 -7.14 8.51 t211 0.21 12.5 -23.53
t112 3.53 -7.69 9.78 t212 -1.29 0 10
t113 -0.66 0 24.82 t213 -2 35.71 -5.75
t114 -4.2 -14.29 32.27 t214 -1.55 25 12.01
t115 -2.54 7.14 51.72 t215 -0.24 -9.09 -6.42
t116 -0.24 26.67 19.05 t216 1.3 -10 8.12
t117 3.59 -33.33 19.91 t217 -0.22 0 -41.32
t118 0.62 -31.25 10.34 t218 0 -100 -1.45
t119 1.49 4.76 8.36 t219 0.21 20 -8.46
t120 -1.18 12.5 46.8 t220 -5.19 -25 21.94
t121 -3.82 33.33 31.19 t221 -2.44 33.33 -13.33
t122 0.21 50 46.1 t222 -1.77 8.33 3.29
t123 -0.24 -14.29 13.57 t223 6.02 25 -2.53
t124 0.86 42.86 34.12 t224 -0.25 16.67 6.31
t125 0.86 -16.67 28.62 t225 -0.36 7.69 -30.4
t126 -1.45 33.33 34.8 t226 2.66 7.14 -10.53
t127 -1.08 -7.69 26.56 t227 0 0 -15
t128 -3.89 -4.55 37.2 t228 -0.19 0 10.19
t129 -0.23 -16.67 20.06 t229 -2.25 25 -12.1
t130 -4.98 20 13.16 t230 -0.35 27.27 -31.29
t131 -10.32 22.22 33.75 t231 -2.4 0 32.35
t132 0.48 0 10.02 t232 -1.87 -18.18 -2.02
t133 0 17.65 22.72 t233 1.91 -16.67 -12.41
t134 0.49 12.5 -4.64 t234 0.4 -25 17.49
t135 2.69 0 14.87 t235 -2.82 15.38 -17.49
t136 -2.1 9.09 27.11 t236 0.57 0 -9.09
t137 -1.84 20 18.66 t237 0.42 -11.11 -0.41
t138 0.25 0 -1.35 t238 2.11 12.5 9.48
t139 -1.39 15 30.2 t239 -0.2 -8.33 -18.55
t140 -3 0 45.77 t240 4.55 0 -22.11
t141 -2.14 6.67 37.54 t241 0 25 -15.31
t142 -1.02 -22.22 42.02 t242 0 0 8.79
t143 0 -12.5 14.64 t243 3.08 20 -9.56
t144 -0.55 13.33 27.81 t244 0.3 12.5 16.06
t145 -1.62 0 47.75 t245 -4.68 -40 -33.82
t146 -0.65 -27.27 32.02 t246 -0.22 -12.5 5.01
t147 -1.63 -42.86 1.38 t247 -2.2 0 -14.05
t148 0 0 40.9 t248 -0.43 -7.69 23.01
t149 1.78 6.25 1.3 t249 -2.97 50 -2.21
t150 0.41 0 24.43 t250 -4.48 28.57 -16.09

Average -0.78 1.46 24.48 Average -0.12 4.85 -5.25
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3.6 Conclusions

We introduced CSCRatio and CSCRoutes, two cluster-based approaches to the TTDP. The main
design objectives of the two algorithms address the main shortcomings of the best known so far
real-time TTDP algorithm, ILS. The main incentive behind our approaches is to favor visits to
topology areas featuring high density of good candidate vertices. Furthermore, they both favor
solutions with reduced number of long transfers among vertices, which are associated with public
transportation transfers in typical urban settings (such transfers are costly, time consuming and
usually less attractive to tourists than short walking transfers).

The comparison of CSCRatio over the best known real-time TTDP algorithm (ILS) demon-
strated that CSCRatio achieves higher quality solutions in comparable execution time (especially
when considering limited itinerary time budget), while also reducing the average number of trans-
fers. As regards the comparison of CSCRoutes over ILS, this confirmed the prevalence of the former
in situations where the reduction of inter-cluster transfers is of critical importance. The transfers
gap though is achieved at the expense of slightly lower quality solutions. Furthermore, CSCRoutes
achieves the best performance results with respect to execution time, compared to ILS and CSCRa-
tio. Notably, the performance gap of our algorithms over ILS increases when tested on realistic
TTDP instances, wherein vertices typically feature wide, overlapping time windows and are located
nearby each other, while the daily time budget is 5-10h.

Based on the above findings, our two cluster-based heuristics may be thought of as complemen-
tary TTDP algorithmic options. We argue that the choice among CSCRatio and CSCRoutes (when
considering real-world online TTDP applications) should be determined by user-stated preferences.
For instance, a user willing to partially trade the quality of derived solutions with itineraries more
meaningful to most tourists (i.e. mostly walking between successive POI visits, rather than public
transportation transfers) should opt for the CSCRoutes algorithm.
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4 Modeling the Tourist Trip Design Problem as a Time-
Dependent Team Orienteering Problem with Time Win-
dows

4.1 Introduction

Tourists visiting urban destinations typically deal with the challenge of making a feasible plan in
order to visit the most interesting attractions (POIs) in their available time span. The filtering
of most important POIs (amongst the many available) and their time-sequencing along the tourist
itineraries is a particularly cumbersome task [6, 45].

The situation is further complicated when considering the complexity of metropolitan transit
networks commonly used by tourists to move from a POI to another, whenever walking is not an
option, due to distance constraints. Tourists are typically unfamiliar with and intimidated by the
nuances of the public transit systems in their destination areas [41], thereby making transit transfers
a complicated exercise. Tourists are especially reluctant in using bus networks as they feel they do
not have the acquired local knowledge to negotiate them efficiently, while also running the risk of
leaving the tourism space and entering a terra incognita, should they use a wrong service or take a
wrong direction [33].

An interesting aspect highlighted by field studies is that tourists are ‘outcome’ oriented and seek
to maximize time spent at a place by minimizing transit time. Unlike commuters, most tourists
would trade a time-efficient transit transfer in favor of a more indirect, scenic or roundabout walking
route that offers more opportunities for amorphous exploration and discovery [39]. Many tourists
opt for public transportation when pedestrian walking is long enough to challenge their strength
and endurance. Even then, any delays incurred on stops (waiting to board on the next transiting
service) are highly undesirable, given the limited time budget spent on the tourist destination [33].

The above discussion underlines the need for ICT tools (i.e. TTDP solvers), to assist the way
arounds of tourist transfers among POIs, either walking or using public transit. Notably, most algo-
rithmic approaches addressing TTDP assume constant travel times among POIs (this is equally true
for our cluster-based TOPTW algorithms introduced in Section 3.4), i.e. they consider exclusively
walking transfers. Such approaches overlook the real aspects of tourist movement patterns which
entail the use of public transportation to cover overly long distances within tourist areas [33]. The
only approach that deviates from this unrealistic TTDP viewpoint is the one proposed by Garcia
et al. [21] which integrates the option for multimodal transit transfers in the TTDP modeling.
However, the proposed algorithm design is based on the simplified assumption of periodic service
schedules; the latter, clearly, is not valid in realistic complex transportation networks, wherein ar-
rival/departure frequencies typically vary within the services operational periods while deviations
from planned service time schedules commonly occur due to non-predictable events. Moreover, this
algorithm only considers predefined start/end locations for tourist routes.

Herein, we propose two novel heuristic algorithmic approaches, the Time Dependent CSCRoutes
(TDCSCRoutes) and the SlackCSCRoutes, which address the above described shortcomings of
existing approaches to TTDP. The main incentive behind our approaches is to motivate visits
to topology areas featuring high density of ‘good’ (i.e. highly profitable) candidate vertices, while
taking into account time dependency (i.e. multimodality) in calculating travel times from one vertex
to another; the aim is to derive high quality routes (i.e. maximizing the total collected profit) and
minimize the time delays incurred in transit stops, while not sacrificing the time efficiency required
for online applications.

Both heuristics involve a precalculation phase, wherein POIs are grouped in disjoint clusters,
based on geographical criteria; thus, any pair of POIs that belong to the same cluster is likely to be
within walking distance. This phase also involves the offline calculation of time-dependent travel
times among a fixed set of nodes, based on provided transit timetable data. The nodes’ set comprises
POIs and accommodation locations; the latter are considered as potential start/end locations of
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the daily tourist itineraries. In the online phase, TDCSCRoutes and SlackCSCRoutes take a local
and a global criterion, respectively, for inserting POIs along the recommended routes. The two
algorithms favor solutions with increased number of walking over public transit transfers (the latter
are considered costly and typically less attractive to tourists than short walking transfers). We also
propose extensions on our algorithms that tackle the ‘Generalized TTDP’, which involves arbitrary
(i.e. determined at query time) rather than fixed start/end locations for derived tourist itineraries.

In addition to TDCSCRoutes and SlackCSCRoutes, we have also implemented another algo-
rithm (AvgCSCRoutes) which uses average (rather than time dependent) travel times among POIs.
That way, AvgCSCRoutes effectively reduces TDTOPTW to TOPTW. Having obtained a TOPTW
solution, AvgCSCRoutes employes two further steps to ensure route feasibility and improve the so-
lution’s quality.

Our prototyped algorithms have been tested in terms of various performance parameters (so-
lutions quality, execution time, percentage of transit transfers over total transfers, etc) upon real
test instances (i.e. set of POIs and accommodation facilities) compiled from the wider area of
Athens, Greece; the calculation of time dependent travel times has been carried out over the Athens
metropolitan transit network. The performance of our algorithms has been compared against a
time dependent extension of ILS as well as two variants that use precalculated average travel times
(among the individual time dependent, real travel times) between POIs.

The remainder of this Section is organized as follows: Section 4.2 presents our novel cluster-
based heuristics, while Section 4.3 details our approach in solving the Generalized TTDP. Section
4.4 describes a method used for preprocessing multimodal travel time distances among POIs. Sec-
tion 4.5 discusses the experimental results compiled from executing our algorithms upon real test
instances. Finally, Section 4.6 concludes our work and suggests directions for future work.

4.2 TDTOPTW heuristics

TDTOPTW is an extension of TOPTW integrating public transportation, i.e., time dependent
travel costs among nodes. Hence, we use the same mathematical notation, as introduced in Section
3.2. In TDTOPTW, every link (u, v) ∈ E (where E is the set of edges in the directed graph
G = (V,E)) denotes the transportation link from u to v and is assigned a travel time. The
objective is to find k disjoint routes each starting from a starting location s ∈ N and ending at a
location t ∈ N , each with overall duration limited by the time budget Br, that maximize the overall
profit collected by visited POIs in all routes. TDTOPTW is an extension of TOPTW where the
travel time from a location u ∈ V to a location v ∈ V (as well as the arrival time at v) depends on
the leave time from u and the chosen transportation mode (e.g on foot or public transportation).

Figure 8 depicts a typical tourist route from a start to an end location via a series of POIs,
each associated with a time window and a required time to visit. Each transit transfer among
two locations is subject to a delay (e.g. t3 - t2 when leaving from pi to pj). Such delays do not
occur when taking the walking transfer option rather than public transit (e.g. transfer from pk to
tr). Each visit is also likely to be delayed if the tourist arrives at a POI before its opening hour
(e.g. waiting of t5 - t4 prior to start visiting pi). A TDTOPTW solver should minimize the overall
delays incident along the routes and and exploit the time saved in order to accommodate visits to
additional POIs.

Figure 9 illustrates the arrival time at a POI pj for a tourist that has previously visited pi.
Delays incurred to embark on the next service may vary, i.e. we make no assumption of periodic
service schedules. Also, when considering certain departure times (e.g. between t0 and t1) walking
might be a preferable option than waiting for the next transit service.

In TDTOPTW we assume that the starting and ending locations may be different for different
routes. Therefore, sr, tr ∈ V denote the starting, terminal location respectively of the r−th route,
and str, etr denote the starting, ending time respectively of the r−th route, r = 1, 2, . . . ,m.

The proposed TDCSCRoutes and SlackCSCRoutes algorithms modify the CSCRoutes algo-
rithm for TOPTW (see Section 3.4.2) to handle time dependent travel times among different
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Figure 8: Illustration of a tourist route (blue dashed line) from sr to tr via POIs pi, pj and pk.
Green dashed arrows indicate available multimodal transfer options among POIs.

Figure 9: Arrival time walking and using public transportation
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locations/POIs. Recall that CSCRoutes is a cluster-based heuristic that achieves best performance
results with respect to execution time compared to the best known so far real-time TOPTW algo-
rithm, ILS [50].

The algorithms introduced in this section, employ an insertion step which takes into account
the fact that for each pair of locations u and v the travel time from u to v may vary (a tourist
can choose between walking and using public transport), and the waiting time for public transport
depends on the time the tourist arrives at u. In Subsection 4.2.1 we present the feasibility criterion
for inserting a POI p in a route r in the case of time dependent travel costs. In the following three
subsections we describe three algorithmic approaches for solving the TDTOPTW problem namely,
the TDCSCRoutes algorithm, the SlackCSCRoutes algorithm and the AvgCSCRoutes algorithm.

4.2.1 Time dependent insertion feasibility

In order to have the time dependent travel cost between all pairs of locations, for each (u, v),
u, v ∈ V we precalculate the walking time from u to v (might be ∞, when too far to walk) and a
set Suv containing schedule information of the public transportation system connecting u and v.
Specifically, Suv contains all the non-dominated pairs (depuvi , travuvi ), i = 1, 2, . . . , |Suv| in ascending
order of depuvi , where depuvi is a departure time and travuvi is the corresponding travel time of a
service of public transport connecting u and v. We consider that a pair (depuvi , travuvi ) dominates
a pair (depuvj , travuvj ) if depuvi + travuvi ≤ depuvj + travuvj and depuvi > depuvj . Note that departing
from u at time t where depuvi < t ≤ depuvi+1, will result in arriving at v either at the same time
as if departing at depuvi+1, or at time t plus the walking time from u to v. More specifically, the
arrival time at v will be equal to the earliest of the times depuvi+1 +travuvi+1 and t+walkingu,v, where
walkingu,v is the walking time from u to v. To determine all the non-dominated pairs in Suv we
employ the algorithm of Dibbelt et al. [13].

For a specified time t, the departure time from u to v at t using public transport, deptimeu,v(t),
is defined as the earliest possible departure time from u to v, i.e.,

deptimeu,v(t) = min
i
{depuvi |(depuvi , travuvi ) ∈ Suv and t ≤ depuvi } (10)

Then, the travel time from u to v at t using public transport, travtimeu,v(t), is such that
(deptimeu,v(t), travtimeu,v(t)) ∈ Suv, and the departure delay at time t due to the use of public
transport, is delayu,v(t) = deptimeu,v(t) − t. For instance, in Figure 10, deptimeu,v(t1) = depuv1 .
Therefore, the total travelling cost from u to v at a specified time t, travellingu,v(t), is

travellingu,v(t) = min{walkingu,v,delayu,v(t) + travtimeu,v(t)} (11)

For a POI pi in a route r the following variables are defined:

• waiti, denoting the waiting time at pi before its time window starts; waiti = max(0, openir −
arrivei).

• starti, denoting the starting time of the visit at pi; starti = arrivei + waiti.

• leavei, denoting the time the visit at pi completes, i.e., the departure time from pi; leavei =
starti + visiti.

• arrivei, denoting the arrival time at pi; arrivei = leaveprev(i) + travellingprev(i),i(leaveprev(i)),
where leaveprev(i) is the departure time from the previous node of pi in route r (prev(i)). We
assume that arrivesr = str.

• maxStarti, denoting the latest time the visit at pi can start without violating the time win-
dows of the nodes following pi; maxStarti = min(closeir,max{t : t + travellingi,next(i)(t) ≤
maxStartnext(i)} − visiti), where next(i) is the node following pi in r. We assume that
maxStarttr = etr.
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Figure 10: Travelling time from u to v as a function of the departure time from u

A POI pk can be inserted in route r between POIs pi and pj if the arrival time at pk does not
violate pk’s time window and the arrival at pj does not violate the time window of pj as well as
the time windows of the nodes following pj in r. The total time cost for pk’s insertion is defined

as shiftijk (insertion cost) and is equal to the time the arrival at pj will be delayed. In particular

shiftijk equals to the time required to travel from pi to pj having visited pk in between minus the
time taken for travelling directly from pi to pj .

shiftijk = (travellingi,k(leavei) + waitk + visitk + travellingk,j(leavek))− travellingi,j(leavei) (12)

Figure 11 illustrates an example of inserting pk, between pi and pj shifting the visit at pj later on
time (in this figure, waitvu denotes the waiting at u following a visit at v).

Figure 11: Illustration of pk insertion between pi and pj .

Note that the insertion of pk between pi and pj is feasible when

arrivek ≤ closekr and shiftijk ≤ maxStartj − arrivej (13)

A pseudo code implementation of the function shift(k, i, j, r) follows, which calculates the inser-
tion cost shiftijk in route r. The function returns ∞ if the insertion of pk is infeasible.
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Algorithm 5 shift(k, i, j, r)
result ←∞
arrivek ← leavei + travellingi,k(leavei)
if arrivek ≤ closekr then

waitk ← max(0, openkr − arrivek)
leavek ← arrivek + waitk + visitk
costAfterInsert ← travellingi,k(leavei) + waitk + visitk + travellingk,j(leavek)

shiftijk ← costAfterInsert −travellingi,j(leavei)

if shiftijk ≤ maxStartj − arrivej then

result ← shiftijk
end if

end if
return result

4.2.2 The Time Dependent CSCRoutes (TDCSCRoutes) algorithm

TDCSCRoutes algorithm modifies the insertion step CSCRoutes Insert of CSCRoutes algorithm
to handle time dependent travel times among different locations/POIs. CSCRoutes uses the notion
of Cluster Route (CR) defined as follows: Given a route r of a TOPTW solution, any maximal
sub-route in r comprising a sequence of nodes within the same cluster C is called a Cluster Route
(CR) of r associated with cluster C and denoted as CRrC . CSCRoutes algorithm is designed to
construct routes that visit each cluster at most once, i.e. if a cluster C has been visited in a route
r it cannot be revisited in the same route and therefore, for each cluster C there is only one cluster
route in any route r associated with C. The only exception allowed is when the start and the
terminal nodes of a route r belong to the same cluster C ′. In this case, a route r may start and
end with nodes of cluster C ′, i.e. C ′ may be visited twice in the route r and therefore, for a route
r there might be two cluster routes CRrC′ . The insertion step CSCRoutes Insert of CSCRoutes
does not allow the insertion of a POI pk in a route r, if this insertion creates more than one cluster
routes CRrC for some cluster C. Therefore, a POI cannot be inserted at any position in the route
r [23].

In the sequel, the description of insertion step of TDCSCRoutes (TDCSCRoutes Insert) is
given. It comprises a modification of CSCRoutes Insert which takes into consideration the time
dependent travel times among locations/POIs. Given a route r let CRrf be the first cluster route
(starting at sr) in r, and CRrl be the last cluster route (ends at tr) in r. Let also clustersIn(r) be
a set containing any cluster C for which there is a nonempty CRrC , and cluster(p) be the cluster
where p belongs to. Given a candidate for insertion POI pk TDCSCRoutes Insert distinguishes
among the following cases:

• cluster(sr) = cluster(tr)

– if clustersIn(r) = {cluster(sr)} then pk can be inserted anywhere in the route.

– if clustersIn(r) 6= {cluster(sr)} and cluster(pk) = cluster(sr) then pk can be inserted in
CRrf and CRrl

– if clustersIn(r) 6= {cluster(sr)} and cluster(pk) 6= cluster(sr) and cluster(pk) /∈ clustersIn(r)
then pk can be inserted after every end of a CR except for CRrl

– if clustersIn(r) 6= {cluster(sr)} and cluster(pk) 6= cluster(sr) and cluster(pk) ∈ clustersIn(r)
then pk can be inserted anywhere in CRrcluster(pk)

• cluster(sr) 6= cluster(tr)

– if cluster(pk) = cluster(sr) then pk can be inserted everywhere in CRrf

– if cluster(pk) = cluster(tr) then pk can be inserted everywhere in CRrl
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– if cluster(pk) ∈ clustersIn(r) and cluster(pk) is different from both cluster(sr) and
cluster(tr), then pk can be inserted everywhere in CRrcluster(p)

– if cluster(pk) /∈ clustersIn(r) then pk can be inserted at the end of any CR in r except
for CRrl

For each POI pk not included in a route, among all feasible insert positions (between POIs
pi, pj) we select the one with the highest ratio

ratioijk =
profit2

k

shiftijk
(1 + a ·

Dij
k + 1

Dij
k + 2

+ (1− a) · f(shiftijk ,waitj + delayj)) (14)

where f(x, y) = 1 if x ≤ y and 0 otherwise, and Dij
k = delayi,k(leavei) + waitk + delayk,j(leavek) +

waitj where a takes the values of 1, 1
2 and 0, depending on the number of iterations executed

by CSCRoutes. In particular, for the first 1
3 iterations a is equal to 1, it decreases to 1

2 in the
second 1

3 iterations and becomes 0 in the final iterations [23]. The incentive behind (14) is the

following:
profit2k
shiftijk

denotes preference for important (i.e. highly profitable) POIs associated with

relatively short time to visit. In the first iterations (a=1), the operand
Dijk +1

Dijk +2
dominates giving

preference to insertion of POIs among pairs (pi, pj) creating prolonged ‘empty’ time periods (i.e.
long aggregate waiting times and delays) to be utilized on later insertions. In the last iterations
(a=0), f(shiftijk ,waitj + delayj) dominates favoring insertion of POIs that best take advantage of
any left unexploited time (i.e. waiting and delays) remaining throughout the routes. Among all
candidate POIs, TDCSCRoutes algorithm selects for insertion the one associated with the highest
ratio.

Once a POI pk is inserted between pi and pj in a route r, the variable values of all POIs in r
need to be updated. The variables of pk are updated as follows:

arrivek = leavei + travellingi,k(leavei)
waitk = max(0, openkr − arrivek)
startk = arrivek + waitk
leavek = arrivek + waitk + visitk
maxStartk = min(closekr,max{t : t+ travellingk,j(t) ≤ maxStartj} − visitk)

Note that for each POI after pk, the variables arrive, wait, start and leave should be updated while
variable maxStart remains the same. For each POI pl before pk the value of maxStartl is the only
one that should be updated, recursively computed as follows:

maxStartl = min(closelr,max{t : t+ travellingl,next(l)(t) ≤ maxStartnextl} − visitl) (15)

The pseudo code of TDCSCRoutes Insert is listed below (Algorithm 6).

4.2.3 The SlackCSCRoutes algorithm

SlackCSCRoutes modifies the insertion step of TDCSCRoutes i.e., it follows a different approach
for determining the POI pk that will be selected for insertion in a route r. Specifically, while
TDCSCRoutes algorithm’s criterion for selecting a POI pk in a route r is based on the insertion
cost, SlackCSCRoutes involves a more global criterion as it takes into consideration the effect of
this insertion in the whole route r.

SlackCSCRoutes uses an additional variable slacki (see Figure 12) defined for each node pi in a
tourist route r as follows:

slacki = maxStarti − arrivei (16)
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Algorithm 6 TDCSCRoutes Insert
for each candidate POI pk do

for each route r do
if cluster(sr)= cluster(tr) then

if clustersIn(r)= {cluster(sr)} then
Search all positions in r for the highest ratio

else// clustersIn(r) 6= {cluster(sr)}
clusterID←cluster(pk)
if clusterID=cluster(sr) then

Search all positions in CRt
f and CRt

l for the highest ratio

else// clusterID 6=cluster(sr)
if clusterID /∈ clustersIn(r) then

Search all positions in r that are the end of a CR, for the highest ratio
else// clusterID ∈ clustersIn(r)

Search all positions in CRr
clusterID for the highest ratio

end if
end if

end if
else// cluster(sr) 6= cluster(tr)

clusterID←cluster(pk)
if clusterID = cluster(sr) then

Search all positions in CRr
f for the highest ratio

else// clusterID 6= cluster(sr)
if clusterID = cluster(tr) then

Search all positions in CRr
l for the highest ratio

else//clusterID 6= cluster(tr)
if clusterID /∈ clustersIn(r) then

Search all positions in r that are the end of a CR, for the highest ratio
else// clusterID ∈ clustersIn(r)

Search all positions in CRr
clusterID for the highest ratio

end if
end if

end if
end if

end for
end for
Insert the POI pl with the highest ratio.
Update the variables of each POI in r and the set of cluster members for each cluster.

Figure 12: Illustration of slack’s duration for POI pi
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Note that if the value of slacki is close to 0 then there is little hope in finding new POIs that can
be inserted between POIs pprev(i) and pi.

Let p1, p2, . . . , pn be the successive POIs of a route r with p1 = sr and pn = tr. Let pk be a
candidate POI for insertion between POIs pi and pi+1 of r. The insertion of the pk will likely shift
further the arrival time at pj (arrivej), for j = i + 1, . . . , n. That depends on the waiting time
before the visit of each POI and the time dependent travelling time for moving between successive
nodes along the route. Let arrivekj be the new arrival time at POI pj after the insertion of pk,
for j = i + 1, . . . , n, . The above insertion may shift the maximum time the visit at pj can start

(maxStartj) ahead for j = 1, . . . , i. Let maxStartkj be the new latest time the visit at pj can start
after the insertion of pk, for j = 1, . . . , i.

Let also slackkj = maxStartj − arrivekj , for j = i + 1, . . . , n, and slackkj = maxStartkj − arrivej ,

for j = 1, . . . , i, be the corresponding values of the “slack” variables. We define the quantity Aik as
follows:

Aik =

∑i
j=1 slackkj + slackk +

∑n
j=i+1 slackkj

n+ 1

Note that a large value of Aik implies that even after the insertion of pk, there are many possi-
bilities left for inserting new POIs along each leg of trip (that is, prior and after visiting pk).

Then for each POI pk, the maximum possible Aik is determined, i.e. the best possible insert
position. Let the maximum value Aik over all possible insert positions be Ak. Then, in order to
determine the POI that will be selected for insertion, the slackWeight for each POI pk is calculated
as

slackWeightk = profitk
2 ∗Ak

and the POI with the highest slackWeight is inserted.
The main issue with the above derivations is that for each POI pk and for each possible insert

position i within a route r we need to calculate Aik which involves the updated values of the maxStart
and arrive variables for all POIs in r. This involves a global rather than a local decision perspective
regarding possible insertion positions along the whole route. In order to develop a fast heuristic, a
quick calculation of Aik is necessary. We may have a quick calculation of a good approximation of
Aik, by making two reasonable assumptions. The first one is that the time windows at the POIs are
fairly long spanning the most part of the day and therefore the waiting time (waitj) before each
POI pj (j = 1 . . . n) is typically zero. This clearly holds for most tourist sites. We also assume

that travellingj,j+1(leavej) ≈ travellingj,j+1(leavekj ), j = i + 1, . . . n, where leavekj is the new leave
time of all nodes following the newly inserted node pk along the route. The rational behind this
approximation is that the additional delay caused by the new detour for visiting node pk (i.e. shiftijk )
is expected to be relatively short and so the time differences among subsequent POIs arrival times
remains unaffected (intuitively, this removes the complexity associated with the time windows and
time dependency). As a result, the same frequencies of public transport services still hold and so
the travelling time between two successive nodes on the route can be considered the same as it was
before the insertion. In order to quickly compute an approximation of Aik, we further assume for
the moment that the departure delay at each POI due to public transport timetables is zero. Then,

if shift
i(i+1)
k = travellingi,k(leavei) + waitk + visitk + travellingk,i+1(leavek)− travellingi,i+1(leavei),

it holds that
arrivekj − arrivej ≈ Shift

i(i+1)
k , j = i+ 1 . . . n

.
For reasons similar to those mentioned above, it will also hold that

maxStartj −maxStartkj ≈ maxStarti −maxStartki , j = 1 . . . i

In that case, if sumL slacki =
∑i
j=1 slackj and (sumR slacki =

∑n
j=i+1 slackj), (that is the sum of

slack parameters for the part of the trip from POI p1 up to POI pi and pi up to POI pn, respectively)
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as has been estimated in previous global iteration, the new Aik for inserting POI pk will be

Aik =
sumL slacki + i · (maxStartki −maxStarti) + slackk + sumR slacki − (n− i) · Shift

i(i+1)
k

n+ 1

In the above derivations, we have disregarded the departure delays at each POI due to public
transport timetables, e.g. the delays incurred when waiting on transit stops. Note that when the
visit to a POI pj j = i + 1, . . . , n is delayed due to the insertion of POI pk, we may be lucky and
get the same bus, for instance, from POI pi+1 to pi+2 or unlucky and just miss the bus and wait
for the next one. These two possibilities can happen at each subsequent trip leg. Since, the visit
time at each POI can be considered random and the time each service arrives at a stop can be
also considered random in our setting (for instance, the bus can arrive bus at 11.08 and not 11.05
or 11.10), we can assume that this time savings and losses due to the fixed transit timetable are
canceling out along the trip. Thus, ignoring these delays in the above derivations may also be a
good approximation.

4.2.4 The Average Travel Times CSCRoutes (AvgCSCRoutes) algorithm

In this subsection we discuss the AvgCSCRoutes which is based on the average travel time approach
proposed by Garcia et al. [21] to handle time dependent travel costs among locations and integrate
public transportation. For each pair of locations u, v ∈ V the average travel cost (avTravelu,v) is
precalculated using the time dependent travelling costs with time steps of one minute (24·60 = 1440
time steps per day).

avTravelu,v =

7∑
r=1

1439∑
t=0

travellingru,v(t)

7 · 1440
where r represents the day of the week, and travellingru,v(t) is the travelling cost from u to v at

time t on the rth day of the week. Then, for each POI pi in a route r, the values of variables waiti,
starti, leavei and arrivei are determined using the average travel costs among locations, while the
value of maxStarti is calculated as follows

maxStarti = min(closeir,maxStartnext(i) − avTraveli,next(i) − visiti)

Note that once the average travel times are available, the problem can be solved using a TOPTW
algorithm, thereby removing time dependency. AvgCSCRoutes algorithm invokes CSCRoutes
TOPTW subroutine. Certainly, the routes created by CSCRoutes will not take into account the
real time dependent travel times between successive POIs. For this reason, the following update
procedure is applied by the AvgCSCRoutes algorithm, to update the travel costs appropriately:

1. For each route r = p1, p2, . . . , pl, starting from the pair (p1, p2) and for each following pair
(pi, pi+1) in r, i = 2, . . . , l − 1, the time dependent travel time travellingri,i+1(leavei) is calcu-
lated using the set of non-dominated pairs Spipi+1 .

2. If the time dependent travel time from pi to pj is shorter than the average one, then the visit at
pj starts earlier.In the opposite case, the visit at pj (and, most likely, at some nodes following
pj) starts later. In both cases the variables of each POI in r are updated appropriately. Note
that the above steps may violate the feasibility of one or more visits along a route r; in such
case, the whole route r becomes infeasible..

3. In the case that one or more routes are infeasible, the following repair step is applied: While
a route r is infeasible, the first, according to the visiting order, POI pk in r with starting
time (calculated based on the time dependent travel costs) greater than the starting time
(calculated based on the average travel cost) is removed from r; the POIs following pk in r are
moved backwards and the proper arrival times are recalculated for these POIs. If pk coincides
with the end of the route, then the previous POI is removed.
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4. At this point of the procedure, all routes in the solution are feasible, but there might exist
“gaps” between POIs , allowing possible insertions of new POIs along the routes. Since the
routes are almost “full”, it seems that a good criterion for an insertion is to insert the highest
profit POI in a position with the least shift (calculated based on the time dependent travel
times). Thus, the last step of the procedure is as follows: Sort the POIs that do not belong
to the routes of the solution in descending order of profit. Let L be the sorted list of POIs.
Starting from the highest profit POI pi and until the list L is empty do the following: if there
exists one or more feasible insert position for pi find one with the lowest shift over all routes
and insert pi; delete pi from L and repeat.

4.3 Solving the Generalized Tourist Trip Design Problem

By solving the TTDP we expect to derive k routes each of length at most B, that maximize the
overall collected profit. Each route may start and end at the tourist’s accommodation location,
or alternatively, at different user-defined starting and ending locations. TTDP may be formulated
and solved as a TDTOPTW, where the POIs as well as the route starting and ending locations are
formulated as nodes of the graph G (Section 4.2). In the sequel, we consider a generalization of the
problem (Generalized TTDP) where the starting and the ending locations of a route may be any
location in the destination city, i.e., they are both determined at runtime. This is in accordance with
the typical envisaged usage scenario, whereby the TTDP solver will be inquired by a mobile client;
the tourist’s starting location will be typically fixed to his current position and the ending location
will be also defined arbitrarily by the user at query time. Clearly, the formulation of the TDTOPTW
problem using precalculated travel costs among a fixed set of predefined locations/nodes (e.g. POIs
and hotels) cannot support the above described dynamic usage scenario. Therefore, the Generalized
TTDP cannot be solved by the TDTOPTW algorithms presented in Section 4.2, and we need to
further elaborate on an approach for its solution.

In the sequel we present an algorithm for solving the Generalized TTDP. The algorithm com-
prises a preprocessing phase and an on-line phase. The preprocessing phase consists of the following
steps: First the global k-means clustering algorithm is applied on the set of POIs of the destination
city and a set of clusters of POIs is constructed. Then the city is partitioned into small square re-
gions (e.g. 500m×500m), covering the whole geographical where POIs are located in. Within each
region Ri a central location is chosen as the location that represents Ri, called region representative
repi. Consider the complete directed graph G = (V,E), where V consists of all the POIs and all
region representatives. Then for each pair of locations (i, j) in V , the set Sij of non-dominated pairs
of departure and travel times is calculated (see Subsection 4.2.1). Finally, for each representative
repi of a region i, consider that repi belongs to the nearest cluster based on the geometric distance
of the mean of the POIs (i.e. centroid) of the cluster.

In the on-line phase of the algorithm, we assume that we are given a set of pairs (si, ti), i = 1, .., k,
denoting the starting and terminal locations of the ith route, and a set of pairs (sti, eti), i = 1, .., k,
denoting the starting and ending times of the ith route. Then, the on-line phase of the algorithm
proceeds as follows:

1. For each route ri, i = 1, ..,m, (i) find the representatives s′i and t′i of the regions where si
and ti belong to. (ii) Compute the distances ds = dist(si, s

′
i) and dt = dist(ti, t

′
i). Note that

due to the small size of the regions, ds and dt are walking distances; let tds and tdt be the
corresponding walking times. (iii) Set st′i = sti + tds and et′i = eti − tdt

2. Execute the TDCSCRoutes algorithm with input the new attributes s′i, t
′
i, st

′
i, et

′
i, for i =

1, . . . , k.

3. For each route ri = (s′i, bi = pi1, pi2, . . . , pik = li, t
′
i) obtained by TDCSCRoutes, replace s′i by

si, st
′
i by sti, t

′
i by ti and et′i by eti. In the case that the walking time from si to bi is shorter

than the walking time from si to s′i plus the travelling time from s′i to bi, the visit to bi may
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start earlier. Therefore, the variables of each POI in ri should be updated accordingly. Also,
in the case that the walking time from li to ti is shorter than the the travelling time from li to
t′i plus the walking time from t′i to ti, the visit to li may start later. Therefore, the maxStart
variables of each POI in ri should be updated accordingly.

4. Note that after step 3, time “gaps” may appear between POIs along ri. To fill these gaps,
another step is applied as follows: Sort the POIs that do not belong to any route ri, i = 1, ..,m,
in descending order of profit. Let L be the sorted list of POIs. Starting from the highest
profit POI pi and until the list L is empty do the following: if there exists one or more feasible
insert position for pi in any route ri, i = 1, ..., k, find one with the lowest shift over all routes
and insert pi; delete pi from L and repeat.

The pseudo code of the algorithm for solving the Generalized TTDP follows (Algorithm 7).

Algorithm 7 Generalized TTDP Algorithm

Preprocessing Phase
Cluster the POIs using global k-means
Partition the city into square regions. For each region Ri, choose a representative repi. Consider as locations the
representatives of the regions and the POIs
For each region representative repi consider that repi belongs to the nearest cluster
Calculate the time dependent travel times between all locations

On− line Phase
for each pair si, ti do

Find the representatives of si and ti, repsi
and repti

, respectively, and set s′i = repsi
and t′i = repti

.
Compute the walking distances ds = d(si, s

′
i) and dt = d(ti, t

′
i)

set st′i = sti + tds
set et′i = eti − tdt

end for
Execute the TDCSCRoutes with the new attributes (s′i, t

′
i, st
′
i, et
′
i), i = 1, . . . ,m

for each route ri, ri = (s′i, bi = pi1, pi2, . . . , pik = li, t
′
i) obtained by TDCSCRoutes do

Replace s′i by si, st
′
i by sti, t

′
i by ti and et′i by eti, and update the variables at each POI of ri, if needed

end for
Sort the POIs that do not belong to any route ri, i = 1, ..,m, in descending order of profit; let p1, ..., pk be the
sorted list
for j = 1 to k do

if there exists one (or more) feasible insert position for pj in any route ri, i = 1, ...,m, then
Find the position with the lowest shift over all routes and insert pj

end if
end for

A typical solution to the Generalized TTDP is illustrated in Figure 13. The tourist destination
area is partitioned in nine square regions and a central location (representative) is calculated for each
region (indicated by green circles). The start/end locations of the route (s1 and t1, respectively)
are determined at the user query time and are indicated by the black squares. The representatives
s′1 (of the area where s1 belongs to) and t′1 (of the area where t1 belongs to) are visited in the
beginning and in the end of the trip, respectively. POIs p11, p12, p13 and p14 are visited in between.
Solid and dashed lines denote walking and transit transfers, respectively.

4.4 Preprocessing Multimodal Travel Time Distances

In their most-inner loop, algorithms for tourist trip design optimization require the pairwise travel
time distance between points of interest (POIs). Typically in the literature such distances are
assumed to be already available in a two-dimensional matrix quadratic in the number of POIs. In
our scenario however, we consider multimodal travel times between POIs also dependent on the time
of day. In this section we shortly present algorithms to precompute such a time-dependent distance
matrix between POIs. This preprocessing step ensures fast travel time lookup during tourist trip
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Figure 13: Illustration of a solution to the Generalized TTDP.

optimization. We evaluate the performance of our approach for POIs chosen in the multimodal
network of the greater Athens area (see details in Section 4.5.1). A more detailed exposition can
be found in [4, 12].

4.4.1 Multimodal Profile Queries

We consider the combined multimodal network of walking, taxi and public transit. Each subnetwork
is modeled as a weighted graph Gi(Vi, Ai), separately. For the road networks (e. g., walking, taxi),
intersections are modelled by vertices v ∈ Vi, road segments as arcs a ∈ Ai; each arc is weighted by
the expected travel time necessary to traverse it. Public transit networks are modeled following the
time-dependent approach [42]; it assigns each arc a time-dependent weight function based on the
departure and travel times of public transit connections, also accounting for waiting on the next
trip. All subnetworks are combined into a multimodal graph G(V,A), V =

⋃
Vi, A =

⋃
Ai ∪ Al,

adding link arcs a ∈ Al between subnetworks to allow transition between modes of transportation.
For lack of better data we add such links at public transit stations and points of interests. (Note
that taxi stand data was not available to us, hence, we assume that transfers to and from a taxi can
occur at any public transit station or point of interest.) Conceptionally, we add POIs as a separate
subnetwork (with empty arc set), which we link to the walking network associating each POI with
its nearest road vertex. Note that, typically, the road subnetworks are much larger in number of
vertices and arcs, while the challenge in the public transit subnetworks lies in the time-dependency.

On such a network, quickest routes can be obtained by applying a variant [16, 28] of Dijkstra’s
algorithm [15]. Given a source node s, a target node t and a time of departure τ at the source,
it computes the earliest arrival time at target t. For our purposes, though, we require to know
quickest routes for all departure times of the day. This problem is known as profile or range search
in the literature. It can be solved by label-correcting (LC) variants of Dijkstra’s algorithm [8, 11, 24]
that maintain as vertex labels travel time functions instead of scalar distances. For purely public
transit networks label-setting approaches are known to perform better [9, 10, 14]. They exploit that
for public transit networks travel time functions have special structure (see Figure 14), defined by
departing connections. By easy transformation these functions can also be viewed as Pareto-sets
of (departure time, arrival time) tuples. A route is Pareto-dominated iff it departs earlier but
arrives later than another route. Under this perspective, LC [8] keeps Pareto-sets as vertex labels,
processing the whole set at once when scanning outgoing arcs of a vertex. Hence, vertex rescans
are expensive. Better query times can be achieved by (still) maintaining Pareto-sets as vertex
labels (in an ordered fashion) but processing single elements at a time. In principle, this family
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τ

f (τ)

Π4:00 6:00 9:00 12:00 14:30 18:00 20:30
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Figure 14: A time-dependent rail edge function representing seven departures: four fast trains with
a travel-time of 60 minutes to the next stop, three slow trains with a travel-time of 120 minutes.

of algorithms [9, 10, 14] runs earliest arrival search for each departing train at the source stop.
However, all these searches are cleverly interweaved to enable early detection of Pareto-inefficient
solutions.

For multimodal networks such as ours, travel time functions look slightly different (see Fig-
ure 15), yet, the same considerations apply. In [4] we have studied both a label-correcting and
a label-setting extension of Dijkstra’s algorithm for multimodal profile queries. The first follows
the algorithmic framework described in [11] but uses a specialized implementation that exploits
the specific form of multimodal travel time functions. The latter is a label-setting extension that
uses sets of labels of the form (departure time, travel time). When initialized on a road vertex,
departure time will be undefined and travel time set to zero (corresponding to a constant-zero travel
time function). Paths that start in the road network will hence have cost (undefined, path length
in seconds). When such a path meets the the public transit network, its corresponding label is
transformed: for each departure at the public transit vertex a label of form (departure time - path
length, path length) is generated. All vertex labels are sorted by departure time since it enables
Pareto-domination in linear time. The queue keeps vertex ids (not labels), with travel time as key.
For each vertex, a single representative label is maintained—the one of lowest travel time that is
still active: labels that were processed once are marked inactive and will never be reactivated.

τ

f (τ)

Πp3p2p1

w

Figure 15: A mixed travel time function observing three characteristics: 1. Points in time pi of
optimal journey departures. 2. Segments of slope -1, where waiting on the next departure results
in optimal travel time. 3. Segments of slope 0, where, e. g., the walking duration w is an upper
bound on the travel time (i. e., waiting on the next train departure does not pay off, e. g., in case
of bad connectivity such as at nights).

Interestingly, experimental evaluation in [4] has found the label-correcting multimodal profile
search to be slightly faster. More importantly, it showed that the bottleneck of both multimodal
profile search algorithms is processing the road network.
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4.4.2 Acceleration

In order to fasten the computation of the time-dependent distance matrix between points of inter-
est we apply a quick preprocessing of the road networks (which make up the largest part of the
multimodal network). The general approach has been described in [12], in the following we only
give a short overview and then state the adaptations for our scenario.

We exploit the fact that modal transfers are restricted to a small set of vertices of each subnet-
work. We therefore use preprocessing to compute a smaller core graph [43] that preserves distances
between such transfer vertices K ⊂ V . More precisely, we start from the original graph and itera-
tively contract [25] each vertex in V \K in the order given by a rank function r. Each contraction
step (temporarily) removes a vertex and adds shortcuts between its uncontracted neighbors to main-
tain shortest path distances (if necessary). It is usually advantageous to first contract vertices with
relatively small degrees that are evenly distributed across the network [25]. We stop contraction
when the average degree in the core graph reaches some threshold [12]. In practice, we only apply
this preprocessing to the road networks.

To enable the computation of the multimodal time-dependent distance matrix, we, additionally,
add all (road) vertices linked to POIs to the set K, keeping them in core. Then, for each POI, we
can run a one-to-all multimodal profile query (as described in the previous subsection) from the
associated POI vertex restricted to the core in order to obtain all multimodal time-dependent travel
time distances.

4.4.3 Results

We implemented above algorithms in C++ and compiled with g++ 4.7.1 (64 bits, flag -O3), running
experiments on a single core of a 4x 12-core AMD Opteron-6172 machine, clocked at 2.1 GHz. .

The multimodal network of the Athens instance consists of public transit, walking, taxi, and
points of interests (see Deliverable D3.2 for details). The public transit network has 7 778 stops, 570
routes, 26 192 trips, 1 003 188 daily departure events; in the time-dependent route model graph [42]
this results in 29 055 vertices and 63 424 arcs. The walking network consists of 287 003 vertices and
685 850 arcs. The taxi network of 219 615 vertices and 472 591. Points of interests were obtained
as described in Deliverable D3.2, however, the size of that data set has grown to 557 POIs total.

Preprocessing this network takes 162 seconds, after which 40 283 vertices remain in the core
network. We run 557 multimodal one-to-all profile (24h range) queries on this core, and ac-
quire a multimodal distance matrix with 71 145 759 entries total. Computing these distances
takes approximately 105 minutes. The complete data set can be found at http://i11www.iti.

uni-karlsruhe.de/ecompass/wp3/benchmarks/. Each of the 557 × 557 POI combinations has
on average about 229 distinct walking/public transportation journeys throughout the day. The
average walking/public transportation travel time is about 26 minutes, the maximal travel time
is about 3:19 hours (of walking). In addition, we compute the travel time of a single, continuous
taxi-ride per POI combination. The average travel time using the taxi is about 6 minutes, the
maximal travel time is about 24 minutes.

4.4.4 Outlook

We have demonstrated a practical approach to precomputing multimodal time-dependent travel
time distance matrices for applications such as the TTDP. However, at 105 minutes processing
time we are far from being able to integrate real-time transit delay information (to be supplied by
the public transit operator). Nor could we integrate road traffic information. While for walking
this might be a non-issue, for taxi this could certainly make a difference. From a algorithmic point
of view it could be worthwhile to look into adaptations of approaches described in [10, 14].
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4.5 Experimental Results

4.5.1 Test Instances

While many different datasets exist for testing (T)OP(TW) problems, this is not the case for their
time-dependent counterparts. To some extent, this is because only a limited body of literature
focuses on the time dependent variants of OP; most importantly though, it is due to the difficulty
in producing realistic synthesized multimodal timetabled data (respecting the FIFO property and
the triangular inequality, among others). Hence, relevant algorithmic solutions should unavoidably
be tested upon real transit network data (for instance, Garcia et al. [21] used timetabled data of
the Sab Sebastian bus network, provided by the local transportation authority), to validate their
solutions. Fortunately, the advent of the GTFS 1 (General Transit Feed Specification) standard,
used by major transportation authorities worldwide to describe and publish their timetabled data,
has made access to such data easier than before.

In our experiments, we have used the GTFS data of the transit network deployed on the
metropolitan area of Athens, Greece, provided by the OASA (Athens Urban Transport Organi-
zation). The network comprises 3 subway lines, 3 tram lines and 287 bus lines with an overall of
7825 transit stops (see Section 4.4.3 for an analytical description of the multimodal network of
the Athens). For our purposes, we require to know pairwise quickest routes between POIs, for all
departure times of the day. Using the method for preprocessing multimodal travel time distances,
as described in Section 4.4, we compute pairwise full (24h range) multimodal time-dependent travel
time profiles. Namely, for each pair of POIs we compute Suv, which contains all the non-dominated
pairs depuvi , travuvi , i = 1, 2, . . . , |Suv|, in ascending order of depuvi , where depuvi is a departure time
and travuvi is the corresponding travel time of a service of public transport connecting u and v (in
Athens |Suv| = 229, on average). We also maintain the walking time among u and v, provided
that this is shorter than using the transit network at any departure time within the day (otherwise,
walking time is set to infinite). The overall shortest time dependent travel time information is
pre-calculated and stored in a three-dimensional array of size N×N×1440, where N is the number
of specified locations/POIs and 1440(= 24 × 60) the time steps/minutes per day. This memory
structure (of size 3.5 GB in our implementation) ensures instant access to time dependent travel
times, given a specified pair of POIs (u, v), upon receiving a user query.

We have segmented the Athens tourist area in 144 (12x12) square regions (1km2 each) to allow
addressing the Generalized TTDP (see Section 4.3), i.e. allow associations of arbitrarily defined
start/end locations to nearby area representatives (see Figure 16a). However, to validate our
algorithmic solutions we have used a set of predefined start/end locations. In particular, we have
used a set of 100 hotels scattered around the city, but mostly situated nearby POIs (see Figure
16b). Those serve as potential start/end locations, i.e. we assume that typical tourist routes start
and end at the tourist’s accommodation location.

The POIs dataset used in our experiments features 113 sites (museums and art galleries, ar-
chaeological sites, monuments & landmarks, streets & squares, neighborhoods, churches & religious
heritage, nature) mostly situated around Athens downtown and Piraeus areas (see Figure 16a).
The POIs have been compiled from various tourist portals 2 and web services offering open APIs 3.
Profits have been set in a 1-100 scale and visiting times vary from 1 minute (e.g. for some outdoor
statues) to 2 hours (e.g. for some not-miss museums and wide-area archaeological sites). About
half of the POIs are outdoors and always visitable (24h time windows) while the remainder are
associated with relatively wide, largely overlapped time windows (typically around 8h). The POIs
have been grouped in

⌊
N
10

⌋
= 11 disjoint clusters.

The above described POIs dataset has been used to create three different ‘topologies’ (referred
to as ‘topol1’, ‘topol2’ and ‘topol3’ in the tables shown on the next subsection): the real POIs

1https://developers.google.com/transit/gtfs/reference
2http://www.tripadvisor.com/, http://index.pois.gr/
3https://developers.google.com/places/documentation/
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coordinates have been maintained in all cases, however, their respective profits, visiting times and
opening hours (i.e. time windows) have been ‘shuffled’, to ensure a fair validation of the evaluated
algorithms removing any potential bias of a single topology.

Our algorithms have been tested using 100 different ‘user preference’ inputs, each applied to
all the three abovementioned topologies. Each ‘preference’ input is associated with a different
start/end location, corresponding to a potential accommodation (hotel) option. Furthermore, for
each ‘preference’ input (a) a POI is disregarded on all routes with a 10% probability (this ‘simu-
lates’ preferences provided by real visitors, such as no interest on religious sites, which enables the
algorithms to disregard a subset of available POIs), and (b) each of the remaining POIs is removed
from a specific route with a 10% probability (this caters for the possibility of unsuitable weather
conditions; for instance, a TTDP solver should disqualify a visit to an open-air POI in a rainy
day 4). The total time budget available for sightseeing in daily basis (Br) has been set to 5 hours
(10:00-15:00) in all experiments.

All test instances-related files are accessible from: http://www2.aegean.gr/dgavalas/public/
tdtoptw_instances/index.html

(a) (b)

Figure 16: (a) Area centers (white markers) and POIs locations (orange markers) in the Athens
metropolitan area; (b) Hotels locations.

4.5.2 Results

We have implemented the following five algorithms: (a) TDCSCRoutes (see Section 4.2.2), (b)
SlackCSCRoutes (see Section 4.2.3), (c) Time Dependent ILS (TDILS - in effect, this is an extension
of the standard ILS TOPTW algorithm [50], wherein we take into account time dependent, rather
than constant, travel times in the insertion of nodes into routes), (d) AvgCSCRoutes (see Section
4.2.4), and (e) Average ILS (AvgILS).

AvgILS refers to the average travel time approach proposed by Garcia et al. [21], wherein
TDTOPTW is practically reduced to TOPTW and the standard ILS algorithm [50] is used to
construct routes based on pre-computed average travel times. AvgILS exercises a repair procedure,
introducing the real travel times between the POIs of the final TOPTW solution. If this causes

4Weather forecast information may be easily retrieved from freely available web services like Yahoo Weather
(http://weather.yahoo.com/) and fed into the TTDP solver.
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a visit to become infeasible, the latter is removed from the route and the remainder of the route
is shifted forward. AvgCSCRoutes employs a similar repair step and then a ‘gap filling’ step (see
steps No 3 and 4 in Section 4.2.4); the latter inserts new POIs into the routes, if feasible, thereby
further improving the solution’s quality.

All algorithms have been employed upon the test instances described in the previous subsection,
deriving k daily personalized routes, k = 1..4, each for every day of stay at the destination. All
routes start and end at the tourist’s accommodation location (see Figure 17).

Note that all the algorithms have been programmed in C++ and executed on a PC Intel Core
i5, clocked at 2.80GHz, with 4GB RAM.

Figure 17: Illustration of a tourist route starting/ending at a hotel; solid lines indicate walking
transfers while dashed lines indicate public transit transfers.

Our experimental results comprise two sets. In the first result set (see Section 4.5.2.1) we use the
standard profit criterion, i.e. we consider as best-found solution the one with the highest aggregate
profit. In the second result set (see Section 4.5.2.2) we use a ‘walk motivation’ criterion, i.e. we
select the solution that maximizes profit(2 + 1

transit +1 ), where profit equals the aggregate profit
over all routes and transit equals the overall transit transfers occurring along all routes. The latter
criterion clearly favors the insertion of POIs within walking distance from their previous and next
POIs.

When employing the walk motivation criterion, all algorithm implementations exercise an ad-
ditional repair step: transit transfers are substituted by walking transfers wherever this does not
impact the actual solution. This repair step is executed when reaching a local optimum for TD-
CSCRoutes, SlackCSCRoutes and TDILS or when deriving the final solution for AvgCSCRoutes
and AvgILS. In effect, this favors walking over transit transfers, given the reluctance of tourists in
using public transit, especially when considering relatively short distances.

4.5.2.1. Results – Profit Criterion

Tables 11 – 15 illustrate the experimental results compiled for the five implemented algorithms
when employing the standard profit criterion. The tables include results yield for the three topolo-
gies of the Athens dataset (see Section 4.5.1) and for 1-4 daily tourist routes. Table 16 offers a
comparative view on the algorithms performance.

The results shown are: the overall collected profit (over all routes); the execution time (in ms);
the number of visited POIs; the overall number of walking/transit transfers (e.g. for one route, that
is the number of visited POIs plus one to return back to the accommodation); the overall number of
public transit transfers (PT) over all routes; the percentage of the public transit transfers over the
overall transfers (PT%); the aggregate time spent for waiting until starting a visit (i.e. from arrival
until the opening time of a POI) plus the delays for embarking on public transit (in practice wait
time is negligible due to the relatively wide and overlapped time windows); the average delay time
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for embarking on public transit. All the above results are averaged over all (= 100) the execution
runs (hence, the decimal numbers for the number of visits and transfers). High quality solutions
are those featuring high aggregate profit and relatively small number of transit transfers, derived in
short execution time. It is noted that Table 16 averages results over the three topologies, while also
normalizing the actual performance parameter values assigning a value 100 to the highest recorded
value and adapting the rest accordingly (this allows illustrating relative performance gaps among
tested algorithms). Performance values shown in bold designate the best performing algorithm with
respect to each performance parameter.

As a general remark applied to all algorithms, the increase of the overall collected profit with
the increase of the number of routes is not linear, since the average POI profits is higher when
considering low numbers of routes (i.e. for short stays, the tourist only visits the not-miss POIs).
The same applies to the number of visits, as it appears that shorter stays tend to favor visits to
best profit-for-time POIs (hence, they include larger number or POIs per route) disregarding those
associated with long visiting time. Furthermore, all algorithms perform remarkably well as far as
the average delay for transit transfers is concerned (typically less than two minutes per transfer).

As expected, the algorithms working with average travel times (i.e. AvgCSCRoutes and AvgILS)
execute considerably faster, since they disregard time dependency on the insertion decision, while
also using smaller memory structures to hold travel time information (hence, required travel times
are retrieved more efficiently). AvgILS executes slower than AvgCSCRoutes as it explores a larger
search space on each POI insertion. Interestingly, AvgCSCRoutes and AvgILS are competitive in
terms of profit (although they perform worse than TDILS and TDCSCRoutes), with AvgCSCRoutes
performing better than AvgILS, mainly due to the extra ‘gap filling’ step, which considerably
improves the quality of its solutions and corrects potential suboptimal node insertion decisions made
during the main execution (insertion) phase. Nevertheless, we argue that the results obtained by
AvgCSCRoutes and AvgILS could be worse when considering either less frequent transit services
or timetables where transit frequencies changes considerably along the day (e.g. frequent services
in peak hours and infrequent services in off-peak hours) or even when considering tourist visits in
off-peak hours (e.g. afternoon to night time budgets). In such scenarios, using the average travel
time would not serve as a good approximation.

TDILS performs marginally better than TDCSCRoutes and SlackCSCRoutes with respect to
the overall profit (achieving a performance gap up to 0.35% from TDCSCRoutes and up to 2,43%
from SlackCSCRoutes). This is mainly because both TDCSCRoutes and SlackCSCRoutes, when
deciding on the best candidate node to insert between a pair of POIs, they are typically restricted
in considering exclusively POIs grouped within the same clusters, thereby compromising the quality
of their solutions.

On the other hand, SlackCSCRoutes performs marginally better than TDILS with respect to
the number of transits, while also achieving higher number of POI visits (intuitively, in order to
achieve high slack variable values, the algorithm favors insertions of nodes reachable via walking).

Notably, TDILS requires significantly longer execution time compared to TDCSCRoutes and
SlackCSCRoutes, mainly due to exploring a much larger search space in node insertions, while also
executing larger number of iterations in search of improved solutions.
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Table 11: Results for TDCSCRoutes
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1106.40 72.15 14.50 15.50 2.84 18.32 2.98 1.05
2 1772.25 189.05 24.48 26.48 4.66 17.60 5.35 1.15
3 2268.40 369.17 32.49 35.49 6.54 18.43 8.17 1.25
4 2670.15 586.82 39.88 43.88 8.20 18.69 11.71 1.43

topol2
1 861.15 58.38 11.86 12.86 3.67 28.54 3.80 1.04
2 1520.80 161.47 21.81 23.81 6.17 25.91 7.59 1.23
3 2029.85 321.97 29.75 32.75 9.24 28.21 13.13 1.42
4 2475.10 589.65 37.30 41.30 12.02 29.10 17.19 1.43

topol3
1 903.15 60.12 12.26 13.26 2.67 20.14 2.82 1.06
2 1553.25 166.25 21.52 23.52 5.77 24.53 7.82 1.36
3 2067.60 322.31 29.16 32.16 8.38 26.06 14.06 1.68
4 2515.35 537.34 36.71 40.71 10.66 26.19 18.84 1.77

Table 12: Results for SlackCSCRoutes
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1107.35 80.00 14.67 15.67 2.76 17.61 3.23 1.17
2 1756.65 201.62 24.78 26.78 4.40 16.43 5.96 1.35
3 2220.35 341.57 33.29 36.29 6.00 16.53 10.43 1.74
4 2618.80 511.73 41.49 45.49 7.44 16.36 14.12 1.90

topol2
1 860.35 66.38 12.27 13.27 3.40 25.62 4.32 1.27
2 1512.05 176.66 22.42 24.42 6.07 24.86 9.40 1.55
3 2001.15 319.88 30.92 33.92 8.37 24.68 14.02 1.68
4 2429.40 478.68 38.97 42.97 11.21 26.09 19.94 1.78

topol3
1 902.75 65.73 12.64 13.64 2.37 17.38 2.83 1.19
2 1538.05 177.23 21.93 23.93 5.37 22.44 9.68 1.80
3 2026.30 318.55 29.92 32.92 7.49 22.75 14.82 1.98
4 2450.35 502.50 37.78 41.78 10.32 24.70 20.32 1.97

Table 13: Results for TDILS
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1108.15 125.29 14.54 15.54 2.88 18.53 3.21 1.11
2 1777.30 409.70 24.48 26.48 4.45 16.81 5.12 1.15
3 2276.30 736.10 32.60 35.60 6.17 17.33 8.17 1.32
4 2679.05 976.22 39.95 43.95 7.81 17.77 10.77 1.38

topol2
1 858.95 95.83 11.68 12.68 3.71 29.26 3.84 1.04
2 1524.90 364.06 21.94 23.94 6.06 25.31 7.37 1.22
3 2038.00 690.11 29.78 32.78 8.84 26.97 11.86 1.34
4 2486.45 975.82 37.21 41.21 11.40 27.66 15.74 1.38

topol3
1 902.90 96.04 12.18 13.18 2.43 18.44 2.21 0.91
2 1554.55 336.56 21.47 23.47 5.64 24.03 7.40 1.31
3 2073.90 667.82 29.23 32.23 7.90 24.51 12.29 1.56
4 2519.90 927.03 36.53 40.53 10.06 24.82 16.25 1.62
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Table 14: Results for AvgCSCRoutes
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1094.10 43.43 14.32 15.32 2.57 16.78 3.60 1.40
2 1757.40 109.31 24.45 26.45 4.30 16.26 6.86 1.60
3 2250.20 197.48 32.41 35.41 5.82 16.44 10.83 1.86
4 2661.70 314.77 39.78 43.78 7.17 16.38 14.17 1.98

topol2
1 841.40 36.29 11.65 12.65 3.33 26.32 4.06 1.22
2 1500.95 92.91 21.60 23.60 5.57 23.60 8.60 1.54
3 2010.45 177.22 29.85 32.85 7.35 22.37 12.61 1.72
4 2452.35 290.35 37.29 41.29 10.34 25.04 22.51 2.18

topol3
1 888.60 39.02 12.19 13.19 2.25 17.06 2.66 1.18
2 1530.65 100.42 21.51 23.51 4.76 20.25 8.85 1.86
3 2044.90 180.14 29.41 32.41 6.22 19.19 12.74 2.05
4 2487.65 291.94 36.94 40.94 8.03 19.61 16.62 2.07

Table 15: Results for AvgILS
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1079.85 64.80 13.85 14.85 2.50 16.84 4.81 1.92
2 1748.05 213.70 23.90 25.90 4.17 16.10 7.79 1.87
3 2236.05 406.79 31.86 34.86 5.75 16.49 12.25 2.13
4 2645.20 505.49 39.07 43.07 7.21 16.74 15.62 2.17

topol2
1 823.85 50.11 11.07 12.07 3.08 25.52 4.99 1.62
2 1478.35 183.83 21.08 23.08 5.41 23.44 9.52 1.76
3 1988.85 336.31 29.10 32.10 7.24 22.55 15.15 2.09
4 2424.05 523.93 36.30 40.30 10.22 25.36 24.06 2.35

topol3
1 871.70 54.02 11.78 12.78 2.30 18.00 4.01 1.74
2 1505.60 195.03 20.79 22.79 4.53 19.88 9.62 2.12
3 2017.00 357.91 28.49 31.49 6.04 19.18 13.85 2.29
4 2454.05 491.05 35.81 39.81 8.01 20.12 19.52 2.44

Table 16: Comparative view of results compiled for the tests employing the standard profit criterion
#Routes Profit Time Visits PT

TDCSCRoutes 100 60.11 97.57 100
SlackCSCRoutes 99.99 66.88 100 92.92

1 TDILS 99.98 100 97.02 98.26
AvgCSCRoutes 98.38 37.44 96.41 88.78

AvgILS 96.68 53.26 92.72 85.84
TDCSCRoutes 99.78 46.54 98.09 100

SlackCSCRoutes 98.97 50.03 100 95.42
2 TDILS 100 100 98.21 97.29

AvgCSCRoutes 98.61 27.26 97.73 88.13
AvgILS 97.43 53.37 95.14 85

TDCSCRoutes 99.65 48.4 97.1 100
SlackCSCRoutes 97.8 46.8 100 90.48

3 TDILS 100 100 97.32 94.83
AvgCSCRoutes 98.71 26.5 97.39 80.26

AvgILS 97.71 52.58 95.03 78.77
TDCSCRoutes 99.68 59.53 96.32 100

SlackCSCRoutes 97.57 51.85 100 93.81
4 TDILS 100 100 96.15 94.79

AvgCSCRoutes 98.91 31.16 96.42 82.71
AvgILS 97.89 52.81 94.03 82.38
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4.5.2.2. Results – Walk motivation Criterion

Tables 17 – 21 illustrate the experimental results compiled for the five implemented algorithms
when employing the ‘walk motivation’ instead of the profit criterion, while Table 22 offers a
comparative view on the algorithms performance. The results indicate a clear tradeoff between
profit and number of transit transfers. In particular, since profit is not the sole criterion used
for picking the best solution, the overall profit is reduced compared to the results discussed in the
previous subsection. On the other hand, the incorporation of the occurring transit transfers into the
criterion for finding best solutions has considerably reduced the overall number of transit transfers
along the derived routes (typically, each route features one transit transfer less than in the previous
result sets). Notably, the profit values associated with AvgCSCRoutes and AvgILS are identical
with those shown in Tables 14 – 15, as both these algorithms lack transit-related information
in their main execution phase, hence, they are unable to effectively employ the ‘walk motivation’
criterion.

TDILS maintains its prevalence over TDCSCRoutes and SlackCSCRoutes with respect to so-
lutions quality (i.e. overall profit). However, SlackCSCRoutes achieves a significant performance
gap in terms of the number of transit transfers (half as many as in TDILS), reducing accordingly
the total delay time experienced along the routes. This is due to the objective of SlackCSCRoutes
to maximize the available time between successive visits for selecting slower transportation modes,
such as walking. Thus, when motivating walks, SlackCSCRoutes considerably reduces the transit
transfers in favor of walking. Furthermore, SlackCSCRoutes appears to accommodate the highest
number of POI visits among all tested algorithms.

Table 17: Results for TDCSCRoutes
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1094.05 72.13 14.38 15.38 1.34 8.71 1.61 1.20
2 1755.75 191.94 24.32 26.32 2.30 8.74 2.78 1.21
3 2250.65 380.42 32.28 35.28 3.61 10.23 5.01 1.39
4 2639.80 607.67 38.96 42.96 4.47 10.41 6.51 1.46

topol2
1 838.05 59.24 11.48 12.48 1.43 11.46 1.63 1.14
2 1489.70 161.61 21.17 23.17 3.53 15.24 4.29 1.22
3 2022.55 318.42 29.61 32.61 6.80 20.85 9.18 1.35
4 2473.65 582.77 37.29 41.29 9.75 23.61 13.40 1.37

topol3
1 889.85 61.83 12.00 13.00 0.89 6.85 0.97 1.09
2 1523.10 167.90 21.07 23.07 2.98 12.92 4.08 1.37
3 2044.55 328.42 29.04 32.04 5.17 16.14 9.01 1.74
4 2504.75 549.69 36.64 40.64 7.89 19.41 13.62 1.73
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Table 18: Results for SlackCSCRoutes
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1093.10 82.09 14.58 15.58 1.02 6.55 1.53 1.50
2 1735.50 205.12 24.79 26.79 1.60 5.97 2.83 1.77
3 2199.30 353.82 33.15 36.15 2.46 6.80 5.36 2.18
4 2587.70 519.09 41.17 45.17 3.14 6.95 7.64 2.43

topol2
1 838.80 67.25 11.94 12.94 1.01 7.81 1.89 1.87
2 1478.40 179.95 22.00 24.00 2.45 10.21 4.05 1.65
3 1965.40 319.92 30.71 33.71 3.95 11.72 7.57 1.92
4 2390.90 501.56 38.95 42.95 5.91 13.76 10.97 1.86

topol3
1 894.95 66.64 12.49 13.49 0.67 4.97 0.97 1.45
2 1512.60 181.46 21.89 23.89 2.02 8.46 4.25 2.10
3 1990.10 333.63 29.88 32.88 3.15 9.58 7.59 2.41
4 2408.90 500.68 37.66 41.66 5.14 12.34 11.41 2.22

Table 19: Results for TDILS
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1102.10 128.50 14.39 15.39 2.21 14.36 2.43 1.10
2 1776.05 409.89 24.46 26.46 3.67 13.87 3.96 1.08
3 2276.30 735.78 32.60 35.60 5.17 14.52 6.45 1.25
4 2678.25 976.06 39.94 43.94 6.11 13.91 8.49 1.39

topol2
1 855.65 94.82 11.64 12.64 2.83 22.39 2.65 0.94
2 1522.55 354.15 21.89 23.89 5.02 21.01 5.75 1.15
3 2038.00 673.25 29.78 32.78 7.06 21.54 8.74 1.24
4 2486.45 951.63 37.21 41.21 9.49 23.03 12.82 1.35

topol3
1 899.30 100.58 12.08 13.08 1.61 12.31 1.34 0.83
2 1552.30 340.59 21.43 23.43 4.38 18.69 5.53 1.26
3 2073.90 668.57 29.23 32.23 6.45 20.01 9.89 1.53
4 2519.90 927.04 36.53 40.53 8.27 20.40 13.59 1.64

Table 20: Results for AvgCSCRoutes
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1094.10 43.84 14.32 15.32 1.55 10.12 2.06 1.33
2 1757.40 109.45 24.45 26.45 2.90 10.96 4.95 1.71
3 2250.20 197.97 32.41 35.41 3.72 10.51 7.72 2.08
4 2661.70 315.75 39.78 43.78 4.81 10.99 10.75 2.23

topol2
1 841.40 36.23 11.65 12.65 2.19 17.31 2.35 1.07
2 1500.95 92.86 21.60 23.60 3.66 15.51 4.90 1.34
3 2010.45 177.27 29.85 32.85 4.77 14.52 8.68 1.82
4 2452.35 290.84 37.29 41.29 6.74 16.32 15.93 2.36

topol3
1 888.60 39.13 12.19 13.19 1.35 10.24 1.75 1.30
2 1530.65 101.13 21.51 23.51 3.14 13.36 6.68 2.13
3 2044.90 181.52 29.41 32.41 4.05 12.50 8.85 2.19
4 2487.65 294.53 36.94 40.94 5.70 13.92 13.42 2.35
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Table 21: Results for AvgILS
# Routes Profit Time (ms) Visits Transfers PT PT (%) Wait + Delay (min) Avg Delay

topol1
1 1079.85 64.85 13.85 14.85 1.41 9.49 2.88 2.04
2 1748.05 214.52 23.90 25.90 2.43 9.38 4.96 2.04
3 2236.05 406.50 31.86 34.86 3.28 9.41 7.96 2.43
4 2645.20 505.60 39.07 43.07 4.21 9.77 11.18 2.66

topol2
1 823.85 50.09 11.07 12.07 1.43 11.85 2.24 1.57
2 1478.35 184.01 21.08 23.08 2.90 12.56 5.37 1.85
3 1988.85 336.27 29.10 32.10 3.84 11.96 9.38 2.44
4 2424.05 523.75 36.30 40.30 5.82 14.44 16.54 2.84

topol3
1 871.70 54.32 11.78 12.78 1.10 8.61 2.35 2.14
2 1505.60 195.32 20.79 22.79 2.42 10.62 5.95 2.46
3 2017.00 358.51 28.49 31.49 3.48 11.05 9.62 2.76
4 2454.05 492.05 35.81 39.81 4.96 12.46 14.05 2.83

Table 22: Comparative view of results compiled for the tests employing the ‘walk motivation’
criterion

#Routes Profit Time Visits Public Transport
TDCSCRoutes 98.77 59.65 97.05 55.04

SlackCSCRoutes 98.94 66.68 100 40.6
1 TDILS 100 100 97.69 100

AvgCSCRoutes 98.85 36.8 97.82 76.54
AvgILS 97.14 52.26 94.08 59.25

TDCSCRoutes 98.3 47.21 96.91 67.41
SlackCSCRoutes 97.44 51.29 100 46.44

2 TDILS 100 100 98.69 100
AvgCSCRoutes 98.72 27.47 98.37 74.22

AvgILS 97.55 53.76 95.76 59.3
TDCSCRoutes 98.9 49.44 97 83.4

SlackCSCRoutes 96.35 48.49 100 51.18
3 TDILS 100 100 97.73 100

AvgCSCRoutes 98.71 26.8 97.79 67.13
AvgILS 97.71 53.01 95.42 56.75

TDCSCRoutes 99.14 60.96 95.85 92.63
SlackCSCRoutes 96.13 53.29 100 59.45

4 TDILS 100 100 96.52 100
AvgCSCRoutes 98.92 31.57 96.8 72.27

AvgILS 97.9 53.29 94.4 62.8
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4.6 Conclusions and Future Work

We introduced TDCSCRatio and SlackCSCRoutes, two novel approaches to the TTDP, which
allow modeling multimodal transfers among POIs. To the best of our knowledge, these are the only
TDTOPTW solvers not based in the unrealistic assumption of periodic transit services. The main
design objectives of the two algorithms are to derive high quality TDTOPTW solutions (maximizing
tourist satisfaction), while minimizing the number of transit transfers and executing fast enough to
support online web and mobile applications.

Our experimental results demonstrate that the use of the ‘walk motivation’ criterion satisfies best
the requirements of most tourists (i.e. it minimizes transit transfers), at the expense of marginally
lower solutions quality.

With respect to the overall collected profit, TDILS has been shown to perform better; however,
it appears to be suitable only when considering small to medium-scale datasets, as it requires longer
execution phases. In practical applications, comprising large datasets, AvgCSCRoutes could be the
most suitable choice as it efficiently derives solutions of reasonably good quality. Nevertheless, its
suitability largely depends on the high frequency of public transit services, so that average travel
time would be a good approximation.

In the future, we plan to test our algorithms on additional real datasets to remove potential bias
introduced by the particularities of the Athens dataset and transit network. Besides, testing our
algorithms over larger POI datasets will verify their scalability in terms of the required execution
time. Along the same line, we plan to produce realistic synthesized multimodal timetabled data
(respecting the FIFO property and the triangular inequality, among others) to serve as additional
test benchmarks.

Our future work will also focus on variants of TOPTW to tackle more realistic TTDPs. For
instance, tourists typically require relaxing and having breaks (e.g. for coffee and meal) in between
of visits to POIs. Such breaks are typically specific in number, while respective recommendations
may be subject to strict time window (e.g. meal should be scheduled around noon) and budget
constraints. Further, we plan to incorporate max-n type [45] restrictions to constrain the selection
of POIs by allowing users to state a maximum number of certain types of POIs, per day or for the
whole trip (e.g., maximum two museum visits on the first day). Likewise, mandatory visits (i.e.
tours including at least one visit to a POI of certain type, such as a visit to a church) could also be
asked for. Focused adjustments and refinements of our algorithms should be able to provide such
features.
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Appendix A Analytical Results for TOPTW Algorithms
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Table 23: Results for Solomon instances for 1 tour
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
c101 10 320 7 104 310 8 94 300 5 92
c102 10 360 6 95 360 6 128 360 6 111
c103 10 390 8 101 390 8 201 380 8 159
c104 10 400 9 128 420 7 217 410 7 205
c105 10 340 9 97 340 11 122 330 7 99
c106 10 340 8 101 340 9 130 330 6 124
c107 10 360 8 104 360 8 142 360 6 113
c108 10 370 8 124 370 8 158 360 6 129
c109 10 380 8 111 380 6 172 380 6 144

c201 10 840 16 553 860 14 370 840 10 161
c202 10 910 14 780 910 12 469 890 9 146
c203 10 940 19 726 940 14 647 900 10 169
c204 10 950 17 549 960 11 843 970 10 235
c205 10 900 13 406 900 12 476 890 10 167
c206 10 910 15 419 920 12 513 900 10 190
c207 10 910 17 623 930 12 570 920 10 203
c208 10 930 14 463 930 13 618 920 10 201

r101 10 182 6 61 183 7 64 180 5 70
r102 10 286 6 111 286 6 122 282 5 104
r103 10 286 7 101 291 6 166 289 6 127
r104 10 297 6 117 301 4 167 303 5 151
r105 10 247 5 135 247 5 91 238 3 85
r106 10 293 6 108 293 6 128 279 5 116
r107 10 288 7 100 294 5 162 289 6 119
r108 10 297 5 170 308 5 187 303 5 146
r109 10 276 7 124 276 7 112 259 3 95
r110 10 281 4 144 281 4 133 281 4 109
r111 10 295 6 129 295 6 160 297 4 119
r112 10 295 6 114 295 6 185 285 3 132

r201 10 788 28 709 786 23 491 476 10 115
r202 10 880 27 965 891 21 654 788 10 161
r203 10 980 22 1781 983 22 975 914 10 231
r204 10 1073 23 909 1057 16 1380 1048 10 291
r205 10 931 28 1452 905 28 815 644 10 144
r206 10 996 21 701 996 22 915 849 10 206
r207 10 1038 21 789 1059 20 1101 917 10 259
r208 10 1069 17 1524 1083 17 1437 1061 10 297
r209 10 926 22 706 920 23 963 717 10 221
r210 10 958 24 1132 970 21 976 813 10 200
r211 10 1023 24 728 1025 17 1216 865 10 274

rc101 10 219 4 93 219 4 78 219 4 79
rc102 10 259 5 117 259 5 98 266 4 81
rc103 10 265 6 100 263 4 115 266 4 95
rc104 10 297 5 83 301 4 133 301 4 110
rc105 10 221 4 116 244 4 93 241 4 86
rc106 10 239 5 124 250 4 95 250 4 86
rc107 10 274 5 124 276 5 110 261 4 102
rc108 10 288 5 104 288 5 125 274 4 111

rc201 10 780 19 583 777 19 384 646 10 121
rc202 10 882 19 762 924 14 543 864 10 165
rc203 10 960 13 761 956 18 750 901 10 173
rc204 10 1117 14 852 1108 11 1100 1121 10 279
rc205 10 840 17 564 845 15 435 685 10 138
rc206 10 860 19 541 869 18 568 751 10 140
rc207 10 926 17 896 925 15 771 801 10 205
rc208 10 1037 17 1226 1026 16 884 971 10 254
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Table 24: Results for Cordeau et al. instances for 1 tour
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
pr01 4 304 8 109 304 8 77 236 4 44
pr02 9 385 5 371 389 8 211 374 4 112
pr03 14 384 9 343 393 11 298 349 6 161
pr04 19 447 18 879 464 9 473 425 7 236
pr05 24 576 14 1221 552 12 790 446 7 353
pr06 28 538 13 1223 554 16 879 472 9 516
pr07 7 291 6 120 291 5 132 291 5 79
pr08 14 463 7 615 446 5 314 397 5 164
pr09 21 461 10 685 468 8 497 442 5 303
pr10 28 539 13 1235 528 14 933 492 7 494
pr11 4 330 5 136 340 8 97 321 3 86
pr12 9 431 5 355 434 5 293 408 3 141
pr13 14 450 7 476 447 8 426 421 6 237
pr14 19 482 9 749 505 6 687 465 8 312
pr15 24 638 17 1531 636 18 1171 594 9 409
pr16 28 559 10 4195 577 11 1290 525 6 591
pr17 7 346 9 247 349 7 194 331 4 93
pr18 14 479 10 821 523 12 401 408 6 188
pr19 21 499 9 1131 510 8 738 487 8 424
pr20 28 570 16 1844 595 14 1264 522 12 569
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Table 25: Results for Solomon instances for 2 tours
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
c101 10 590 15 278 590 12 195 550 8 141
c102 10 650 11 410 650 14 255 650 11 220
c103 10 700 14 305 710 13 407 700 12 310
c104 10 750 14 534 750 14 506 740 12 408
c105 10 640 16 288 640 16 218 600 12 196
c106 10 620 17 282 620 17 263 600 12 241
c107 10 670 13 304 670 13 259 620 11 184
c108 10 670 16 299 670 16 311 640 9 197
c109 10 710 10 378 720 10 398 690 9 289

c201 10 1400 24 1115 1420 21 838 1430 15 375
c202 10 1430 29 873 1430 23 1164 1440 18 385
c203 10 1430 28 848 1440 25 1365 1440 15 399
c204 10 1460 28 1080 1450 26 1491 1460 15 466
c205 10 1450 18 1791 1450 18 1098 1440 17 487
c206 10 1440 17 923 1470 15 1304 1470 14 450
c207 10 1450 22 1078 1470 16 1184 1470 14 504
c208 10 1460 19 1178 1480 17 1478 1460 16 540

r101 10 330 12 180 343 10 124 325 7 107
r102 10 508 11 290 501 12 255 501 9 174
r103 10 513 13 292 514 12 327 504 8 258
r104 10 539 10 346 543 10 397 529 10 287
r105 10 430 10 252 442 10 171 422 7 153
r106 10 529 12 411 524 12 256 505 10 199
r107 10 529 11 332 524 10 310 523 10 252
r108 10 549 11 345 556 9 386 552 9 308
r109 10 498 11 376 506 12 258 480 7 173
r110 10 515 9 455 508 8 276 506 7 255
r111 10 535 10 605 538 10 326 538 10 217
r112 10 515 10 523 538 9 423 531 7 312

r201 10 1231 54 838 1212 46 1299 864 19 269
r202 10 1270 47 955 1302 44 1285 1115 20 447
r203 10 1377 46 726 1372 40 1304 1243 20 560
r204 10 1440 38 565 1438 32 1453 1364 19 637
r205 10 1338 40 913 1333 39 1390 1115 20 413
r206 10 1401 44 667 1406 41 1672 1294 20 458
r207 10 1428 48 588 1434 44 1574 1378 20 758
r208 10 1458 43 456 1458 36 1667 1419 20 597
r209 10 1345 48 933 1370 40 1702 1187 19 429
r210 10 1365 42 915 1383 41 1438 1281 20 465
r211 10 1422 37 656 1438 35 2073 1316 18 552

rc101 10 427 7 506 427 7 150 419 8 130
rc102 10 494 7 355 488 8 244 497 7 147
rc103 10 519 7 275 516 8 262 519 8 192
rc104 10 565 9 481 574 8 324 555 7 277
rc105 10 459 8 327 478 8 181 435 6 168
rc106 10 458 11 394 481 8 254 464 8 174
rc107 10 515 9 488 514 8 258 487 7 255
rc108 10 546 11 388 536 10 296 535 8 216

rc201 10 1305 41 865 1343 37 891 1034 19 311
rc202 10 1461 34 1055 1435 37 1011 1184 18 362
rc203 10 1573 35 846 1562 32 1298 1364 19 396
rc204 10 1656 26 654 1666 26 1445 1607 19 469
rc205 10 1381 36 1136 1363 34 1012 1045 17 359
rc206 10 1495 34 820 1477 34 1288 1326 20 605
rc207 10 1531 29 873 1508 31 1518 1427 19 483
rc208 10 1606 31 1389 1610 29 1579 1583 19 579
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Table 26: Results for Cordeau et al. instances for 2 tours
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
pr01 4 471 11 128 493 13 159 437 6 84
pr02 9 660 12 696 669 18 416 631 9 214
pr03 14 714 17 954 713 21 847 635 11 334
pr04 19 863 20 2197 832 20 1203 797 16 593
pr05 24 1011 32 3459 1047 23 2486 918 17 984
pr06 28 997 24 4219 964 24 2086 869 17 1149
pr07 7 552 7 422 555 10 301 552 8 137
pr08 14 796 19 1165 783 17 737 722 10 360
pr09 21 867 22 2592 816 26 1208 749 13 737
pr10 28 1004 26 4475 1058 26 2481 932 18 1380
pr11 4 542 10 155 521 10 218 528 6 135
pr12 9 727 10 641 727 16 616 686 6 367
pr13 14 757 14 1448 799 17 960 750 8 499
pr14 19 925 22 2432 943 17 1695 867 17 897
pr15 24 1126 29 6147 1101 28 3109 981 14 1453
pr16 28 1110 26 5159 1076 24 3199 929 14 1509
pr17 7 624 11 935 620 10 398 594 7 254
pr18 14 877 13 1152 892 21 1259 790 11 490
pr19 21 955 21 3242 899 18 2083 855 12 1020
pr20 28 1056 24 4568 1110 24 3003 950 15 1586
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Table 27: Results for Solomon instances for 3 tours
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
c101 10 790 20 704 800 22 310 780 15 308
c102 10 890 20 664 890 19 419 880 15 541
c103 10 960 20 772 960 17 626 940 16 534
c104 10 1010 15 960 1010 16 981 1020 14 760
c105 10 840 26 615 850 20 398 830 16 361
c106 10 840 23 764 850 23 447 830 16 441
c107 10 900 19 1134 900 19 464 880 15 354
c108 10 900 22 1875 910 23 514 880 13 482
c109 10 950 16 674 950 15 694 960 15 737

c201 10 1750 35 1176 1760 27 1341 1750 22 618
c202 10 1750 38 947 1780 28 1151 1750 27 548
c203 10 1760 44 584 1750 35 1247 1750 23 583
c204 10 1780 43 525 1780 30 1579 1790 22 653
c205 10 1770 26 636 1770 24 1330 1790 21 715
c206 10 1770 21 538 1800 21 1523 1800 20 595
c207 10 1810 22 875 1790 24 1463 1780 20 641
c208 10 1810 21 883 1810 21 1721 1810 19 756

r101 10 481 17 314 475 16 167 448 11 163
r102 10 685 14 537 670 16 412 666 13 334
r103 10 720 15 878 720 14 548 708 12 365
r104 10 765 13 1138 767 15 621 746 11 488
r105 10 609 19 831 596 16 294 592 11 289
r106 10 719 13 594 704 13 403 699 13 453
r107 10 747 14 810 743 14 540 744 13 471
r108 10 790 14 1616 794 14 671 769 13 518
r109 10 699 16 1110 697 16 495 677 12 325
r110 10 711 16 694 718 16 538 707 13 491
r111 10 764 14 941 764 14 602 758 12 466
r112 10 758 14 1023 757 14 864 746 13 598

r201 10 1408 65 784 1412 57 1352 1170 29 478
r202 10 1443 59 619 1443 58 1414 1344 27 601
r203 10 1458 63 394 1458 54 1494 1387 30 705
r204 10 1458 56 311 1458 40 1711 1444 24 766
r205 10 1458 63 408 1458 60 1379 1404 29 656
r206 10 1458 52 334 1458 54 1523 1428 27 778
r207 10 1458 63 318 1458 58 1570 1453 27 654
r208 10 1458 49 309 1458 39 1673 1458 24 729
r209 10 1458 53 359 1458 52 1443 1409 28 599
r210 10 1458 56 347 1458 51 1455 1420 28 611
r211 10 1458 56 315 1458 44 1508 1458 27 607

rc101 10 604 12 592 614 9 236 614 9 216
rc102 10 698 13 1389 695 11 459 692 12 409
rc103 10 747 11 760 763 12 500 729 11 359
rc104 10 822 11 687 816 11 512 804 10 523
rc105 10 654 11 487 648 11 303 634 9 271
rc106 10 678 13 549 683 13 390 670 11 358
rc107 10 745 14 690 752 15 564 724 11 350
rc108 10 757 14 562 780 12 531 763 11 538

rc201 10 1625 53 743 1650 53 1385 1374 27 564
rc202 10 1686 58 664 1684 49 1530 1465 26 713
rc203 10 1724 42 444 1724 43 1398 1612 25 885
rc204 10 1724 42 350 1724 40 1534 1701 26 634
rc205 10 1659 54 601 1660 49 1462 1376 28 551
rc206 10 1708 43 562 1721 47 1734 1583 26 706
rc207 10 1713 39 610 1719 46 1452 1629 24 678
rc208 10 1724 51 359 1724 49 1481 1724 27 818
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Table 28: Results for Cordeau et al. instances for 3 tours
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
pr01 4 598 20 84 582 12 178 582 9 180
pr02 9 899 21 799 882 19 705 821 12 407
pr03 14 946 29 1978 935 26 1355 887 17 978
pr04 19 1195 31 6425 1201 32 2121 1146 24 1607
pr05 24 1356 39 6107 1382 42 4404 1308 21 2460
pr06 28 1376 43 12652 1353 34 3979 1220 28 2398
pr07 7 713 13 898 721 16 465 693 10 265
pr08 14 1082 27 2052 1075 28 1479 960 20 674
pr09 21 1144 29 6240 1203 27 2843 1067 19 1334
pr10 28 1473 38 11768 1446 41 4984 1312 31 2708
pr11 4 632 13 76 635 11 217 617 9 132
pr12 9 902 19 756 927 16 1282 899 10 502
pr13 14 1046 20 2150 1045 22 1877 984 15 958
pr14 19 1197 29 4614 1240 32 3304 1210 22 1951
pr15 24 1488 36 6891 1477 34 5465 1426 21 3119
pr16 28 1478 36 8589 1501 29 5878 1355 23 3808
pr17 7 808 20 344 793 13 554 781 12 338
pr18 14 1165 22 2078 1133 24 1783 1050 17 964
pr19 21 1238 27 5001 1331 29 4142 1241 21 2409
pr20 28 1514 31 14826 1495 33 6340 1402 26 4079
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Table 29: Results for Solomon instances for 4 tours
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
c101 10 1000 27 851 1010 23 509 960 15 576
c102 10 1090 24 1211 1110 19 802 1080 17 699
c103 10 1150 28 816 1160 25 841 1140 18 685
c104 10 1220 19 2037 1200 22 1108 1230 17 1148
c105 10 1030 26 1560 1060 23 660 1020 20 487
c106 10 1040 25 932 1060 26 733 1030 22 758
c107 10 1100 23 789 1110 20 937 1080 19 779
c108 10 1100 23 1309 1100 24 808 1080 24 875
c109 10 1180 22 1323 1160 20 1207 1160 19 997

c201 10 1810 40 318 1810 45 1408 1810 32 788
c202 10 1810 57 302 1810 43 1436 1810 32 740
c203 10 1810 51 303 1810 40 1455 1810 29 802
c204 10 1810 56 293 1810 40 1565 1810 30 823
c205 10 1810 51 297 1810 40 1446 1810 33 804
c206 10 1810 55 257 1810 37 1450 1810 32 788
c207 10 1810 53 290 1810 39 1439 1810 33 810
c208 10 1810 48 286 1810 40 1453 1810 32 768

r101 10 601 19 869 598 18 248 576 13 268
r102 10 807 22 1008 806 20 659 794 15 561
r103 10 878 22 862 888 22 894 858 14 603
r104 10 941 23 1282 951 16 921 925 17 800
r105 10 735 24 679 753 22 674 712 16 420
r106 10 870 20 795 881 20 907 845 17 675
r107 10 927 21 1018 912 19 1054 907 16 785
r108 10 982 17 1071 967 18 980 959 17 809
r109 10 866 18 1148 874 22 920 854 16 843
r110 10 870 22 1048 879 20 815 867 15 736
r111 10 935 20 2453 924 20 1059 905 16 717
r112 10 939 18 2248 949 20 1301 933 17 1033

r201 10 1458 75 403 1458 70 1527 1339 36 966
r202 10 1458 65 340 1458 58 1646 1392 37 775
r203 10 1458 60 284 1458 56 1636 1456 32 879
r204 10 1458 57 198 1458 40 1714 1458 30 831
r205 10 1458 69 259 1458 63 1591 1451 32 848
r206 10 1458 62 219 1458 60 1547 1458 36 1106
r207 10 1458 67 186 1458 54 1591 1458 34 802
r208 10 1458 49 133 1458 31 1551 1458 28 876
r209 10 1458 59 214 1458 49 1691 1458 34 870
r210 10 1458 66 270 1458 62 1626 1458 32 751
r211 10 1458 56 186 1458 51 1395 1458 34 791

rc101 10 794 16 1098 779 13 348 776 11 439
rc102 10 881 19 1380 878 13 615 855 14 421
rc103 10 947 15 1060 965 13 841 931 13 553
rc104 10 1019 14 1605 1024 16 797 1014 13 652
rc105 10 841 16 734 826 15 494 814 14 416
rc106 10 874 16 879 866 14 703 852 13 538
rc107 10 951 15 1147 949 15 590 956 12 624
rc108 10 998 14 2110 988 18 811 975 16 877

rc201 10 1724 63 427 1724 65 1562 1587 34 839
rc202 10 1724 67 342 1724 57 1489 1640 34 1019
rc203 10 1724 63 287 1724 49 1601 1719 33 1202
rc204 10 1724 49 201 1724 40 1524 1724 33 829
rc205 10 1724 59 364 1724 56 1561 1593 31 720
rc206 10 1724 59 295 1724 65 1526 1724 31 838
rc207 10 1724 57 300 1724 61 1553 1718 30 1026
rc208 10 1724 55 297 1724 53 1627 1724 31 805
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Table 30: Results for Cordeau et al. instances for 4 tours
ILS CSCRatio CSCRoutes

Name Clusters Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
pr01 4 644 17 72 654 17 297 649 10 203
pr02 9 1014 23 807 1020 20 1303 947 16 826
pr03 14 1162 27 3153 1181 26 2727 1087 21 1346
pr04 19 1452 40 6826 1453 37 3245 1343 27 2713
pr05 24 1665 56 19036 1670 49 5821 1588 39 3559
pr06 28 1696 50 10613 1711 48 6374 1544 32 5576
pr07 7 840 19 436 834 20 576 800 12 511
pr08 14 1267 37 2392 1272 34 2393 1199 23 1064
pr09 21 1460 43 6910 1507 46 4527 1421 30 2812
pr10 28 1782 56 11975 1785 50 9202 1614 39 5001
pr11 4 654 17 57 654 17 234 654 13 209
pr12 9 1041 23 761 1054 21 1723 1056 16 812
pr13 14 1263 33 3564 1255 34 2307 1157 21 1269
pr14 19 1528 34 8541 1583 37 5981 1461 25 2948
pr15 24 1818 52 9163 1805 41 7763 1658 24 4599
pr16 28 1889 40 16763 1870 41 12066 1740 26 6058
pr17 7 889 22 291 881 18 619 873 13 404
pr18 14 1352 28 3032 1384 29 2590 1318 23 1663
pr19 21 1560 39 7442 1636 34 6206 1487 27 3980
pr20 28 1846 47 13714 1867 46 8963 1784 35 6845
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Table 31: Results for t1* instances
ILS CSCRatio CSCRoutes

Name Clusters Tours Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
t101 10 1 387 9 267 387 8 241 375 7 168
t102 10 2 772 10 593 763 11 905 766 11 455
t103 16 2 786 10 1177 803 13 1143 797 12 806
t104 12 2 737 9 824 748 10 744 739 9 497
t105 15 1 433 8 329 428 7 384 433 8 378
t106 18 3 1167 16 2205 1179 16 3039 1164 16 1788
t107 13 2 787 15 1377 759 12 883 773 14 769
t108 15 2 711 16 1428 708 15 1028 712 16 868
t109 10 3 1114 16 1516 1097 14 1305 1069 16 815
t110 16 2 807 14 1494 817 15 1132 809 15 1260
t111 19 2 821 15 1845 812 14 1257 815 15 1150
t112 14 2 800 14 740 793 13 961 821 14 867
t113 15 3 1091 19 2766 1065 17 1672 1058 17 1257
t114 12 1 467 7 334 476 7 409 456 8 277
t115 10 3 1059 12 1207 1062 14 1425 1035 13 688
t116 18 2 840 14 889 841 15 1260 839 11 1020
t117 19 1 452 9 725 446 6 638 462 8 511
t118 15 3 1140 23 1615 1133 16 1925 1140 21 1726
t119 18 3 1163 25 1732 1142 21 2416 1159 20 2214
t120 17 2 1023 15 2902 1014 16 1951 1002 14 1038
t121 16 1 424 8 302 445 6 481 428 4 331
t122 14 1 468 4 751 469 4 449 470 2 242
t123 15 1 404 5 247 410 7 339 409 8 293
t124 12 1 435 5 180 467 7 337 471 4 222
t125 18 3 1176 19 2298 1169 12 2180 1179 14 1556
t126 12 1 413 5 294 414 6 319 408 4 208
t127 11 3 1025 15 1595 1023 13 1152 1012 14 846
t128 14 3 1111 22 1994 1105 22 2027 1062 23 1273
t129 13 1 432 7 263 442 6 329 441 7 263
t130 18 2 812 18 956 804 15 1178 764 12 1023
t131 16 1 400 7 322 407 9 397 365 7 263
t132 19 1 420 10 497 416 7 509 418 7 458
t133 13 2 798 12 1395 804 17 854 804 14 660
t134 18 3 1212 24 3719 1227 24 2220 1233 21 2323
t135 16 2 823 15 2377 780 15 1083 801 15 922
t136 10 2 756 8 456 762 11 568 746 10 414
t137 17 3 1119 18 2254 1089 20 1758 1069 16 1430
t138 17 3 1222 19 2378 1203 18 2080 1206 18 2108
t139 15 3 1115 20 2257 1154 20 2149 1138 17 1500
t140 10 3 993 18 770 1035 13 1217 1004 13 660
t141 10 2 724 13 664 746 15 682 730 14 426
t142 18 3 1185 24 2516 1178 18 3289 1166 22 1907
t143 15 1 413 8 254 416 8 444 416 9 379
t144 17 2 763 14 1222 733 15 971 729 13 701
t145 10 1 357 9 196 370 6 289 364 6 151
t146 13 2 767 13 960 773 11 862 768 14 586
t147 13 3 1078 15 2124 1103 14 1306 1085 20 1288
t148 14 1 468 5 256 475 5 423 475 5 250
t149 13 3 1072 21 2070 1065 16 1230 1084 15 1214
t150 16 1 487 6 477 485 6 528 487 6 399
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Table 32: Results for t2* instances
ILS CSCRatio CSCRoutes

Name Clusters Tours Profit Transf CPU(ms) Profit Transf CPU(ms) Profit Transf CPU(ms)
t201 12 1 183 3 76 187 3 107 177 2 102
t202 14 1 193 2 102 193 2 111 193 2 111
t203 10 1 174 3 67 179 4 120 178 2 95
t204 14 1 171 3 153 171 5 126 171 3 137
t205 13 3 447 10 1070 434 10 267 445 10 345
t206 17 1 196 3 212 197 7 165 196 6 201
t207 14 1 174 2 89 174 2 101 201 3 111
t208 19 1 162 3 90 176 3 138 176 3 157
t209 17 3 455 13 1010 464 13 552 446 9 480
t210 20 3 481 11 1086 482 9 527 497 9 666
t211 12 3 472 7 703 473 8 374 474 7 462
t212 10 3 461 4 394 466 5 260 460 5 234
t213 17 3 498 11 825 500 14 644 490 9 681
t214 14 2 310 6 380 322 8 283 317 6 249
t215 13 3 424 10 429 425 11 358 424 12 381
t216 12 3 463 11 600 462 10 357 468 11 328
t217 11 3 463 8 821 463 7 242 462 7 342
t218 10 1 155 1 50 155 1 69 155 2 70
t219 16 3 473 11 761 482 15 638 483 12 692
t220 13 2 334 5 592 347 4 237 329 5 185
t221 18 2 280 10 315 287 9 285 280 6 323
t222 19 2 396 10 520 396 12 456 389 11 441
t223 15 1 183 4 65 216 8 158 229 6 162
t224 13 3 402 5 539 406 6 301 405 5 282
t225 18 3 543 14 1623 551 13 648 549 12 845
t226 19 3 569 14 1151 563 14 741 578 13 819
t227 13 1 159 3 73 159 3 100 159 3 115
t228 16 3 537 11 812 531 11 697 530 11 626
t229 19 1 178 4 123 178 4 157 174 3 176
t230 11 2 288 7 176 286 11 147 285 8 193
t231 11 3 498 8 426 501 8 507 489 8 343
t232 17 3 522 15 1309 535 11 642 525 13 655
t233 15 1 180 5 112 209 6 145 213 7 163
t234 15 3 488 8 888 501 8 526 503 10 434
t235 14 3 484 12 468 496 13 366 482 11 430
t236 15 1 175 3 84 174 3 121 175 3 132
t237 11 3 473 10 954 477 9 489 479 10 491
t238 12 3 526 8 731 522 8 485 533 7 439
t239 19 3 508 15 1703 509 12 771 508 13 914
t240 12 2 297 6 183 308 8 190 322 8 232
t241 14 1 170 3 48 172 4 98 172 3 113
t242 10 1 180 2 89 180 2 91 180 2 83
t243 15 1 170 2 77 195 5 136 201 4 149
t244 10 2 331 9 176 331 8 218 332 7 183
t245 14 2 291 5 168 299 5 136 285 7 182
t246 15 3 455 11 548 453 8 459 452 9 436
t247 13 3 445 10 582 454 9 370 444 9 422
t248 17 3 445 13 941 467 13 817 465 14 629
t249 11 3 431 10 474 438 12 226 425 6 231
t250 20 1 200 7 276 201 7 174 192 5 202
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