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1 Introduction

This deliverable presents the research results obtained by the project partners in the first 20 months
of the project with respect to multi-modal route planning in urban areas. It describes the models
and algorithms developed so far for the problems related to WP3, while also showing experimental
results aiming to assess the quality of the proposed solutions.

1.1 Objectives and scope of D3.4

The aim of WP3 is to provide novel methods for route planning in urban public transportation
networks, considering the environmental impact as a main parameter of the optimization objective.

The present deliverable is the outcome of Task 3.4 “Algorithms for multi-modal route planning
using methods from stochasticity and machine learning and their empirical assessment”. This task
aims at developing models and algorithms outperforming the state-of-the-art techniques in both
precision and reliability when the underlying information is subject to unpredictable changes because
of delays or modifications to the planned schedules.

1.2 Motivation

Public transportation networks, such as buses, trains, trams, or subways are a key ingredient to
significantly reducing carbon dioxide emissions in passenger transportation. An effectively filled
bus produces considerably less environmental pollution than a large fleet of cars carrying the same
amount of people, but only a single person each. However, to assure the acceptance of such mass
transport systems it is important to reach a similar level of convenience as cars have.

A car departs at the moment that the user wishes but a bus has a fixed schedule. A car brings the
user from his starting position directly to his destination without the risk of missing an intermediate
connection train as is the case with train journeys. Unfortunately delays are frequent in large
public transportation networks which makes it even more difficult for the public transportation to
compete with individual car transportation. In the present work we address different aspects of this
problem and propose solutions to increase reliability and flexibility of traveling when using public
transportation.

We believe that it is of large importance for every mass transit information system to provide
a similar level of flexibility and reliability as cars do. As a result, this increases the motivation of
the potencial users to switch to public transportation, and thus, decreases the level of produced
emissions. In this document we make a step in this direction.

1.3 Structure of the Document

In Section 2, we focus on identifying journeys that are robust for typical delays and on supplying
the user with information about the reliability of a selected journey. The reliability of a journey is
an important criterion for a user who plans his journey ahead of time and wants to pick one that
will ensure that he arrives at his destination on time. Such a user is willing to accept a journey that
takes slightly longer than the quickest one, but has better chances of being feasible and on time
even in the presence of delays.

In Section 3, we focus on flexibility of the presented solutions to promote public transportation
as a competitive alternative to car traveling. If the user decides to change his destination midway,
because for example he might have realized that he still needs to buy groceries, then a car will bring
him directly to his new destination. Buses on the other hand follow a strict route fixed for months
in advance. We aim to provide flexible passenger routing information that allows the user to miss a
couple of trains and still get to his destination. If the user misses a bus then the system should tell
him in advance what backup bus he may take. Using this knowledge the user can also interrupt his
journey at a stop with a grocery store and resume his journey once he has finished shopping.
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2 Mining-Based Robust Routing in Public Transportation
Networks

In this section we focus on robust routing in public transportation networks. In order to propose
robust solutions we assume that we have past observations of real traffic situation available. In
particular, we assume that we have “snapshots” (i.e., traces) containing the observed travel times
in the whole network for a few past days. We introduce a new model to express a solution, a
so called journey, that is feasible in any snapshot of a given public transportation network. We
adapt the method of Buhmann et al. [7] for optimization under uncertainty, and develop algorithms
that allow its application for finding a robust journey from a given source to a given destination.
Finally, we introduce a measure for reliability of a given journey, and develop algorithms for its
computation. The worked presented in this section is published as part of the eCOMPASS technical
report series [4].

2.1 Related Work

In this section we survey the most relevant literature on robust routing in public transportation
networks. We first review the modeling question, and then we discuss robustness concepts.

A classical method is to model the public transportation network as a graph, which then allows
to solve the problem using standard algorithms for routing in graphs. The most widely considered
graph-based models are the time-expanded [6, 19, 21, 22] and time-dependent [18, 23, 26] models.

In the time-expanded model, each public transportation station is represented by many vertices,
each of them corresponding to a time event associated with the station. Usually, each depar-
ture/arrival of a train (or a tram, bus, etc.) passing through the station is one such event. Moreover,
for each station, other vertices are often added to simulate additional events and situations such as a
possible transfer from a train to another. Each edge in the graph models the possibility and the time
requirements of getting from a particular event to another one. For example, the event of departing
of a train t from a station s is connected by an edge to the event of the train t arriving to the next
station s′. Time-expanded models are quite versatile and a lot of aspects of public transportation
can be captured into them by refining and adding specific vertices and edges to the graph in a rather
straightforward way. An advantage of time-expanded models is that the corresponding graph is
usually directed and acyclic. The drawback is that the more properties the model captures, the more
vertices and edges must have the corresponding graph, and thus the size of this graph grows rapidly.
The size of the graph can be reduced to some extent, for example by remodeling less important
stations [9].

In the time-dependent model, each station is modeled as one vertex. The time-dependent nature
of the timetable is captured by the edges between the stations. In particular, for each edge there is
a table (a function) containing several entries, each indicating when a particular train (or bus, tram,
etc.) enters and leaves the edge. To make this model more realistic, it is possible to also simulate
transfers by splitting the vertex that corresponds to a station into several vertices and adding
transfer edges between them. For more detailed overview on the time-expanded and time-dependent
model we refer to [16, 24].

Recently, several models are considered that adopt different approaches than to try to capture
all the properties of the problem into a graph. The basic idea behind these approaches is that
the problem contains a certain structure (e.g. public transportation lines) that can be taken into
account to simplify the routing, but this structure is usually obfuscated when modeled into a graph.

As an example of a non graph-based approach we mention round-based public transit routing
introduced in [10]. The authors describe an algorithm to find all Pareto-optimal journeys between
two given stops a and b that minimize arrival time and the number of transfers. Their approach is
centered around transportation lines (such as train, or bus lines), and does not explicitly construct
a graph with vertices representing the stations and edges connecting these vertices. The routing
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algorithm operates in rounds: after round i, all non-dominated paths from stop a to each stop
reachable with at most i transfers are found. In each round the algorithm considers each line at
most once and uses it to extend the current paths in a non-dominated fashion. As shown later see,
we adopt a similar approach.

In practice, the efficiency of developed algorithms is an important measure of their applicability.
Precomputing may decrease query times substantially. Bast et al. [2] observe that for given two
stations a and b, we can find and encode each sequence of intermediate transfer stations (i.e., stations
where we change from one line to another) that can lead to an optimal route. The set of these
sequences of transfers is called transfer patterns. The transfer patterns can be precomputed and
stored (compressed into a prefix tree). Using transfer patterns it is possible to achieve very fast
query times. For a particular query it is enough to extract the sequence of intermediate stations
and then to find the corresponding direct lines that connect the stations and both of these steps can
be done quickly.

For further references and details concerning models and algorithms for routing in fixed public
transportation networks, we refer to Deliverable D3.1.

Various approaches for robust multi-modal route planning have been developed. Perhaps the
earliest work was done on stochastic networks [12, 5, 20], where either the lengths of edges (in the
case of car transportation), or the delays between successive edges (in the case of bus transportation)
are random variables. In a situation when timetables are fixed, Disser et al. [11] used a generalization
of Dijkstra’s algorithm to compute pareto-optimal multi-criteria journeys. With this algorithm,
the reliability of a journey can simply be considered as an additional criterion. The reliability is
expressed as a function depending on the minimal time to change two subsequent trains on the
journey. Müller-Hannemann and Schnee [17] and Schnee [25] introduced the concept of a dependency
graph for a prediction of secondary delays caused by some current primary delays, which are given
as input. Another approach to handle robustness in public transportation networks was presented
by Goerik et. al. [14]. They consider a given set of delay scenarios and introduce two concepts of
robustness: while the goal of strict robustness is the computation of a journey that arrives on time
for every scenario, the goal of light robustness is the computation of a journey whose travel time lies
only a certain factor over the optimum travel time. For a complete overview of multi-modal route
planning under uncertainty, see Deliverable D3.1.

2.2 Mining-Based Model

Stops and lines. Let S be a set of stops, and L ⊂
⋃|S|
i=2 Si be a set of lines, or services, (e.g.,

bus lines, tram lines or lines of other means of transportation). Every line l ∈ L is a sequence of

S(l) stops 〈s(l)1 , . . . , s
(l)
S(l)〉, where, for every i ∈ {1, . . . , S(l)− 1}, the stop s

(l)
i is served before s

(l)
i+1

by the line l. Notice that we explicitly distinguish two lines that serve the same stops but have
oppositional directions (these may be operated under the same identifier in reality). For a stop

s ∈ S and a line l ∈ L, we write s / l if there exists an index i ∈ {1, . . . , S(l)} such that s = s
(l)
i , i.e.

s is a stop on the line l. Furthermore, for two stops s1, s2 ∈ S and a line l ∈ L we write s1 / s2 / l if

there exist indices i, j ∈ N, 1 ≤ i ≤ S(l)− 1, i+ 1 ≤ j ≤ S(l) such that s1 = s
(l)
i and s2 = s

(l)
j , i.e.

if both s1 and s2 are stops on l and s1 is served before s2. For two lines l1, l2 ∈ L, we define l1 ∩ l2
to be the set of all stops s ∈ S that are served both by l1 and l2.

Trips and timetables. While the only information associated with a line itself are its consecutive
stops, it usually is operated multiple times per day. Each of these concrete realizations at a given

time of the day is called a trip. With every trip τ we associate a line L(τ) = 〈s(l)1 , . . . , s
(l)
S(l)〉 ∈ L.

On the other hand, L−1(l) denotes the set of all trips associated with a line l ∈ L. For a trip τ and
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a stop s ∈ S, we define

A(τ, s) :=

{
Arrival time of τ at stop si if s = s

(l)
i , i = 2, . . . , S(l)

−∞ otherwise
(1)

and

D(τ, s) :=

{
Departure time of τ from stop si if s = s

(l)
i , i = 1, . . . , S(l)− 1

+∞ otherwise
(2)

In the following, we assume time to be modelled by integers. We have two more natural requirements
on the arrival and the departure times for a given trip τ . First we require A(τ, s) ≤ D(τ, s) for
every stop s ∈ S. Note that for all stops s not served by L(τ), this requirement is trivially satisfied
by definition. Furthermore we require D(τ, s1) ≤ A(τ, s2) for every two stops s1, s2 ∈ S with
s1 / s2 /L(τ). A set of trips is called a timetable. We note that we are considering various timetables.

1) On one hand, we have the scheduled timetables for every day of the week. For the sake of
simplicity we assume that these seven timetables are the same timetable T . The assumption
of having scheduled timetables especially implies, that every line realized by some trip τ will
be realized by a later trip τ ′ again (in the worst case, not on the same day).

2) On the other hand, we also consider daily “snapshots” Ti that describe how various lines were
operated on a concrete day i, i.e. timetables that contain the actual travel times of the lines.

Goal. In the following, let a, b ∈ S be two stops, m ∈ N0 be the maximal allowed number of line
changes, ε ∈ N0 be the minimal time required to switch lines, and tA ∈ N be the latest arrival time.
A journey consists of a departure time tD, a sequence of lines 〈l1, . . . , lk〉, k ≤ m+ 1 and a sequence

of intermediate stops 〈s(1)CH, . . . , s
(k−1)
CH 〉. The intuitive interpretation of such a journey is to start at

stop a at time tD, take the first line l1, and for every i ∈ {1, . . . , k − 1}, leave li at stop s
(i)
CH and

take the next arriving line li+1 immediately. Our goal is to compute a recommendation to the user
in form of one or more (robust) journeys from a to b that will likely arrive on time (i.e., before time
tA) on a day, for which the concrete travel times are not known yet. We formalize the notion of
robustness later in this report.

Routes. Let k ∈ {1, . . . ,m+ 1} be an integer. A sequence of lines r = 〈l1, . . . , lk〉 ∈ Lk is called a
feasible route from a to b if there exist k+ 1 stops s0 := a, s1, . . . , sk−1, sk := b such that si−1 / si / li
for every i ∈ {1, . . . , k}, i.e. if both si−1 and si are stops on line li, and si−1 is served before si on
line li. Notice that on a feasible route r ∈ Lk we need to change the line at k− 1 intermediate stops.
Let

Rmab = {r ∈ L ∪ L2 ∪ · · · ∪ Lm+1 | r is a feasible route from a to b} (3)

be the set of all feasible routes from a to b using at most m intermediate stops. In the next section
we describe an algorithm that computes the set Rmab for two stops a, b ∈ S and a number m ∈ N0. If
a, b and m are clear from the context, for simplicity we just write R instead of Rmab. Notice that by
definition, a line l may occur multiple times in a route. This is reasonable because there might be
two intermediate stops s, s′ on l and one or more intermediate lines that travel faster from s to s′

than l does. Additionally, notice that a route does not contain any time information.

2.3 Computation of Feasible Routes

In this section we describe an algorithm that, given a set of stops S and a set of lines L, finds all
feasible routes that allow to travel from a given source stop a to a given target stop b using at
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most m intermediate stops (also called transfers). Recall that a route may contain a line multiple
times.

Input data. The input to the algorithm consists of a set of stops S and a set of lines L, where
each line is a particular sequence of stops. Note that to compute the set of feasible routes R we
only need the network structure. The information about arrival/departure times (i.e., a particular
timetable) is not necessary.

Preprocessing of the input data. We preprocess the input data and construct data structures
to allow efficient queries of several types that are explained below.

Supported queries.

• Q(li, sj)→ Position of sj on li.

Given a line li, and a stop sj , query Q(li, sj) tells whether the stop sj lies on the line li and if
this is the case, also the position of sj on li. In particular, if sj does not lie on li, the query
Q(li, sj) returns 0. Otherwise, to indicate that sj is k-th stop on li, Q(li, sj) returns a positive
integer k.

• Q(li, sj , s
′
j)→ sj / s

′
j / li? (i.e., “Is sj before s′j on li?”)

Given a line li and two stops sj , s
′
j , query Q(li, sj , s

′
j) returns whether the stop sj is before s′j

on the line li. In case sj or s′j is not on the line li, the query Q(li, sj , s
′
j) returns FALSE.

• Q(li, lj)→ li ∩ lj (i.e., stops shared by li and lj) in a compact, ordered format.

Given two lines li, and lj , query Q(li, lj) returns li ∩ lj , i.e., the set of stops that are shared
by these lines. We encode the stops shared by li and lj into an ordered set Iij of pairs of
stops with respect to the line li in such a way that (sq, sr) ∈ Iij indicates that li and lj share
the stops sq, sr, and all the stops in between on the line li. Thus, the query Q(li, lj) outputs
the described sorted set Iij of pairs of stops that compress the information on li ∩ lj . The
motivation to compress li ∩ lj into Iij is that, in practice, there may be many stops shared by
li and lj , but only a small number of contiguous intervals of such stops.

Note that Q(li, lj) doesn’t need to be equal to Q(lj , li), nor its reverse; a tricky example is
given in Figure 1.

Graph of line incidencies.

The function Q(li, lj) induces the following directed graph G. The set V of vertices of G
corresponds to the set of lines L. There is an edge from a vertex (line) li to a vertex lj if
and only if Q(li, lj) 6= ∅. Then, Q(li, lj) represents a tag on the edge of the edge (li, lj). We
construct and represent the graph G as adjacency lists, i.e., for each vertex li, we store the
outgoing edges along with their tags.

Notes on implementation of the query structures.

• The query Q(li, sj) can be implement using a suitable associative array/hashing table.

• The query Q(li, sj , s
′
j) can be easily implemented using two queries of the type Q(li, sj) to

determine the position of sj and s′j on li. In other words, a query Q(li, sj , s
′
j) outputs TRUE if

and only if both Q(li, sj) and Q(li, s
′
j) are nonzero and Q(li, sj) < Q(li, s

′
j).

• If the need is to query Q(li, lj) for an arbitrary pair of lines, hashing table or two dimensional
array may be a good choice of a data structure. However, for our purposes, it may be sufficient
to use the graph of line incidencies G to store this data. There, every edge (li, lj) ∈ G stores
Q(li, lj) and for any pair of lines li, lj that does not form an edge in G, the query Q(li, lj)
returns the empty set.
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Figure 1: Lines lj and l′j have common stops s3, s6, s11, s14, and s15. The ordered set Ijj′ = Q(lj , l
′
j)

consists of pairs {(s3, s3), (s15, s11), (s6, s6)}. Thus, the last stop in the last interval of Ijj′ is the stop
s6. On the other hand, the ordered set Ij′j = Q(l′j , lj) consists of pairs {(s3, s3), (s6, s6), (s11, s15)}.
Now, imagine that the current transfer stop sq for a partial path P = l1, . . . , lj is s14, then the stop
s14 is the current transfer stop s′q for a partial path P ′ = l1, . . . , lj , l

′
j , as well. However, observe

that if sq is s12, then s′q needs to be s11.

Algorithm for computing all feasible routes.

Given two stops a and b, and a number m, we want to find all routes R that allow to travel from
a to b using at most m transfers in the given public transportation network described by a set of
stops S and a set of lines L.

Note that each such route r = 〈l1, . . . , lk〉 ∈ Lk with 0 < k ≤ m+ 1 has the following properties.

• Both Q(l1, a) and Q(lk, b) are nonzero (i.e., a / l1, and b / lk).

• The vertices l1, . . . , lk form a path in G (i.e., li ∩ li+1 6= ∅ for all i = 1, . . . , k − 1).

• There exists a sequence of stops a = s0, s1, . . . , sk−1, sk = b such that Q(li, si−1, si) is TRUE

(i.e., si−1 / si / li) for all i = 1, . . . , k. Note that such a sequence can be found iteratively as
follows.

– set s0 = a,

– for all i = 1, . . . , k − 1: set si to a stop that minimizes (but being nonzero) the value of
Q(li+1, si), and still satisfies Q(li, si−1, si).

These observations lead to the following algorithm to find the set of routes R.

• For the stop a, determine the set La of all lines passing through a.

• Explore the graph G from the set La of vertices in the following fashion. For each vertex
l1 ∈ La, perform a kind of depth-first search in G up to the depth m. Any particular vertex
may be processed several times, when reached from different paths. In each step, try to extend
a partial path l1, . . . , lj to a neighbor l′j of lj in G. We keep track of the current transfer
stop sq. This is a stop on the currently considered line lj such that sq is the stop with the
smallest order on lj at which it is possible to transfer from lj−1 to lj , considering the partial
path from l1 to lj−1. Each step of the algorithm is characterized by a search state: a partial
path P = l1, . . . , lj , and a current transfer stop sq that allowed the transfer to line lj . The
initial search state consists of the partial path P = l1 and the current transfer stop a.

More specifically, to process a search state with the partial path P = l1, . . . , lj , and the current
transfer stop sq, we perform the following tasks:
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– Check whether the line corresponding to the vertex lj contains the stop b. If this is the
case (i.e., Q(lj , b) > 0), check that also sq / b / lj holds (i.e., the query Q(lj , sq, b) returns
TRUE), then the partial path P corresponds to a feasible route and is output as one of
the solutions in R.

– If the partial path P contains at most m− 1 edges (thus the corresponding route has at
most m− 1 transfers, and it can be further extended) then for each l′j neighbor of lj do:

Check whether extending P by l′j is possible (and if so, update the current transfer
stop) as follows.
Let Ijj′ = Q(lj , l

′
j) be the set of pairs of stops sorted as described in the previous

section. Recall that each pair (su, sv) ∈ Ijj′ encodes an interval of one or several
consecutive stops on lj that are also stops on the line l′j . Let sz be the last stop in
the last interval of Ijj′ . Similarly, let Ij′j = Q(l′j , lj).
If Q(lj , sq, sz) is TRUE, then sq / sz / lj , and the path P can be extended to l′j .

� We determine the current transfer stop s′q for l′j by considering the pairs/intervals
of Ij′j in ascending order and deciding whether the position of sq on the line lj
is before one of the endpoints of the currently considered interval.
We refer to Figure 1 for a nontrivial case of computing of the current transfer
stop.

� Perform the depth search with the search state consisting of the partial path
P ′ = l1, . . . , lj , l

′
j and the current transfer stop s′q.

Otherwise, if Q(lj , sq, sz) is FALSE, it is not possible to extend P to l′j .

• output the set of feasible routes R.

We can express the just described algorithm in a pseudocode as follows. We call this algorithm
All-Routes algorithm. The algorithm uses a subroutine All-Routes-Recursion.

All-Routes(a, b,S,L, G)

1 R ← ∅
2 La ← {l ∈ L | Q(l, a) > 0}
3 for each l ∈ La do

4 P ← 〈l〉; sq ← a

5 R ← R ∪ All-Routes-Recursion(a, b,S,L, G, P, l, sq)
6 return R
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All-Routes-Recursion(a, b,S,L, G, P, l, sq)

1 if Q(l, b) > 0 and Q(l, sq, b) then

2 R ← {P}
3 else

4 R ← ∅
5 if length(P ) > m then

6 return R
7 for each l′ such that (l, l′) ∈ G do

8 I ← Q(l, l′)

9 sz ← last element of the last interval of I

10 if Q(l, sq, sz) then

11 P ′ ← append(P, l′); I ′ ← Q(l′, l)

12 for each (su, sv) ∈ I ′ do

13 if Q(l, sq, su) or Q(l, sq, sv) then

14 if Q(l, sq, su) and Q(l, sq, sv) then

15 s′q ← su

16 else

17 s′q ← sq

18 R ← R ∪ All-Routes-Recursion(a, b,S,L, G, P ′, l′, s′q)
19 break

20 return R

2.4 Computing the earliest arrival of a journey

Recursive computation. As previously stated, let a ∈ S be the initial stop, b ∈ S be the
destination stop, ε be the minimum time to change lines and tA ∈ N be the latest arrival time. In the
previous section we showed how the set R of feasible routes from a to b can be computed. However,
instead of presenting just a route r ∈ R to the user, we want to compute a departure time t0 and a
journey that arrives at b before time tA. For the following considerations, we assume the underlying
timetable (either the scheduled timetable or a daily snapshot) to be fixed. We describe an algorithm
that computes the earliest arrival of a journey when the stops a, b ∈ S, an initial departure time
t0 ∈ N, and a route r = 〈l1, . . . , lk〉 ∈ Rk−1ab are given. The idea is simple: we start the journey at
the stop a at time t0 and take the first line l1 that arrives. We compute an appropriate intermediate
stop s ∈ l1 ∩ l2 (that is served both by l1 as well as by l2) and the arrival time t1 at s, leave l1 there
and compute recursively the earliest arrival time when departing from s at time at least t1 + ε,
following the route 〈l2, . . . , lk〉. Notice that the selection of an appropriate intermediate stop s is
the only non-trivial part due to mainly two reasons:

1) The lines l1 and l2 may operate with different speeds (e.g., because l1 is a fast tram while l2
is a slow bus line), or l1 and l2 separate at a stop s and join later again at a stop s′ but the
overall travel times of l1 and l2 differ between s and s′. Depending on the situation, it may be
better to leave l1 as soon or as late as possible.
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Figure 2: A network where not every stop in l1 ∩ l2 = {s1, s2, s3} is suitable for changing from l1 to
l2. We cannot choose s1 as intermediate stop since it is served before a. If s3 was chosen, then l3
can never be reached without travelling back. Thus, the only valid stop to change the line is s2.

2) The lines l1 and l2 may separate at a stop s and join later again at a stop s′. If all intermediate
stops in l2 ∩ l3 are served by l2 before s′, then leaving l1 at s′ is not an option since l3 is not
reachable anymore. See Figure 2 for a visualization.

It is not hard to find an optimum intermediate stop recursively by the following algorithm. The
idea is to find the earliest trip of line l1 that departs from a at time t0 or later, iterate over all
stops s ∈ l1 ∩ l2, and compute recursively the earliest arrival time when continuing the journey from
s with a changing time of at least ε. We return the smallest arrival time that was found in one
of the recursive calls. These considerations lead to the following algorithm. Notice that if some
inappropriate intermediate stop was chosen at some point, the corresponding recursive call simply
returns ∞, thus, it is ignored due to the minimum computation in line 7.

Earliest-Arrival(a, b, t0, 〈l1, . . . , lk〉)

1 τ1 ← arg minτ∈L−1(l1){D(τ, a) | D(τ, a) ≥ t0}
2 if k = 1 and a / b / l1 then return A(τ, b)

3 else if k = 1 then return ∞
4 else A-min←∞
5 for each s ∈ l1 ∩ l2 do

6 if a / s / li then

7 A-min← min{A-min,Earliest-Arrival(s,A(τ1, s) + ε, 〈l2, . . . , lk〉)}
8 return A-min

Issues and improvement of the recursive algorithm. An issue with this näıve implementation
is the running time, which might be exponential in k in the worst-case (if |li ∩ li+1| > 1 for Ω(k)
many i ∈ {1, . . . , k − 1}). To improve the running time, we make two simple observations:
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1) Let τ and τ ′ be two trips with L(τ) = L(τ ′). If τ leaves before τ ′ at some stop s, then it will
never arrive later than τ ′ at any subsequent stop s′, s / s′ / L(τ), i.e. consecutive trips of the
same line do not overtake (i.e., the FIFO property applies).

2) Let l1, l2 ∈ L be two lines and Tl2 ⊆ L−1(l2) be the set of all trips that can be reached from
one of the stops in l1 ∩ l2 with a changing time of at least ε. It follows from the previous
observation that taking the earliest trip in Tl2 never results in a later arrival at b than taking
any other trip from Tl2 . Due to the first observation, a trip τ ∈ Tl2 is operated earlier than a
trip τ ′ ∈ Tl2 iff A(τ, s) < A(τ ′, s) for any stop s ∈ l1 ∩ l2.

Thus, we can iterate over some appropriate stops in l1∩l2 to find the earliest reachable trip associated
with l2. We just need to ignore those stops where changing to l3 is no longer possible (see Figure 2
for an example).

Computing appropriate intermediate stops. The problem to find these appropriate stops
can be solved by first sorting l1∩ l2 = {s1, . . . , sn} such that sj /sj+1 / l1 for every j ∈ {1, . . . , n−1}.
If the first f ≥ 0 stops s1, . . . , sf are served before a, they cannot be used for changing to l2. This
problem can easily be solved by considering only those stops sj where a / sj / l1. Unfortunately,
the last g ≥ 0 stops sn−g+1, . . . , sn might also not be suitable for changing to l2 because they may
prevent us later to change to some line lj (e.g., if all stops of l2 ∩ l3 are served before sn−g+1, . . . , sn
on l2, then changing to l3 is no longer possible). We solve this problem by precomputing (the index
of) the last stop sj where all later lines are still reachable. This can be done backwards: we start
at b, order the elements of lk ∩ lk−1 as they appear on line lk, and find the last stop that is served
before b on lk. We recursively continue with l1, . . . , lk−1 and use the stop previously computed as
the stop that still needs to be reachable.

Iterative algorithm. The improved algorithm works as follows. First, for every i ∈ {1, . . . , k−1},
we use the algorithm described in the previous paragraph to precompute the index last[i] of the last
stop where changing from li to li+1 is still possible (with respect to the route 〈l1, . . . , lk〉). After
that, for every i ∈ {1, . . . , k − 1}, we iterate over the appropriate intermediate stops s ∈ li ∩ li+1

where changing to li+1 is possible, and find among those the stop s
(i)
CH where the earliest trip τi+1

associated with line li+1 departs.

This computes a sequence of trips τ1, . . . , τk along with intermediate stops s
(0)
CH := a, s

(1)
CH, . . . , s

(k)
CH

to change lines. Since we gradually compute the earliest trips τi for each of the lines li, the earliest
time to arrive at b is simply A(τk, b).

Earliest-Arrival(a, b, t0, 〈l1, . . . , lk〉)

1 last[k]← b

2 for i← k, . . . , 2 do

3 Order the elements of li ∩ li−1 = {s1, . . . , sn} such that sj / sj+1 / li ∀j ∈ {1, . . . , n− 1}.
4 last[i− 1]← max{j ∈ {1, . . . , n} | sj / last[i] / li}

5 τ1 ← arg minτ∈L−1(l1){D(τ, a) | D(τ, a) ≥ t0}; s
(0)
CH ← a

6 for i← 1, . . . , k − 1 do

7 Order the elements of li ∩ li+1 = {s1, . . . , sn} such that sj / sj+1 / li ∀j ∈ {1, . . . , n− 1}.

8 τi+1 ← null; s
(i)
CH ← null; A

(i+1)
sn ←∞

9 for j ← 1, . . . , last[i] do

10 if s
(i−1)
CH / sj / li then
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11 τ ′ ← arg minτ∈L−1(li+1){D(τ, sj) | D(τ, sj) ≥ A(τi, sj) + ε}

12 if A(τ ′, sn) < A
(i+1)
sn then τi+1 ← τ ′; s

(i)
CH ← sj ; A

(i+1)
sn ← A(τ ′, sn)

13 return A(τk, b)

2.5 Maximizing the Unexpected Similarity

Computing the optimum journey for a fixed timetable. Given two stops a, b ∈ S and a
departure time t0 ∈ N, we can already compute the earliest arrival of a journey from a to b starting
at time t0. This section is concerned with a slightly different problem: we want to compute the
latest departure time at a when a latest arrival time tA at b is given. For this purpose we present a
sweepline algorithm that uses the previous algorithm Earliest-Arrival. This sweepline algorithm
will later be extended to count journeys (instead of computing a single one) and can be used for
finding robust journeys, i.e. journeys that are likely to arrive on time.

The sweepline algorithm works as follows. We consider the trips departing at stop a before time
tA, sorted in reserve chronological order. Everytime we find a trip τ of any line departing at some
time t0, we check whether there exists a route r = 〈L(τ), l2, . . . , lk〉 ∈ R that starts with the line
L(τ). If yes, then we use the previous algorithm to compute the earliest arrival time at b when
we depart at a at time t0 and follow the route r. If the time computed is not later than tA, we
found the optimal solution and stop the algorithm. Otherwise we continue with the previous trip
departing from a.

Computing the Unexpected Similarity. We will now describe how we can compute robust
journeys using the approach of Buhmann et. al. [7] (see Deliverable D2.2 for a detailed information).
Let a, b ∈ S be the departure and the target stop of the journey, tA be the latest arrival time at
b, and T be a set of traffic snapshots, i.e. timetables for some concrete times. When applying the
aforementioned approach to the model delevoped in this section, we can use R as the set of feasible
solutions. For a snapshot T ∈ T and a value γ, the approximation set Aγ(T ) is a multiset of routes.
For every journey along a route r ∈ R, we add r to Aγ(T ) if the starting time of the journey is
tA − γ or later and the arrival time is at most tA. We represent the approximation set by a function
µTγ : R → N0, where for a route r ∈ R, µTγ (r) is the number of journeys starting at time tA − γ or
later, arriving at time tA or earlier and following the route r (see Figure 3 for an example). Thus, we
have |Aγ(T )| =

∑
r∈R µ

T
γ (r), and for two snapshots T1, T2, we need to compute γ that maximizes

the similarity

Sγ =
|Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)|

=

∑
r∈Rmin(µT1

γ (r), µT2
γ (r))(∑

r∈R µ
T1
γ (r)

)
·
(∑

r∈R µ
T2
γ (r)

) . (4)

Let γOPT be the value of γ maximizing the ratio (4). After computing this value, we pick a route r
from AγOPT

(T1) ∩AγOPT
(T2) at random according to the probability distribution defined by

pr :=
min(µT1

γOPT
(r), µT2

γOPT
(r))∑

r∈Rmin(µT1
γOPT(r), µT2

γOPT(r))
, (5)

and search in the scheduled timetable T for a journey from a to b that departs at time tA − γOPT or
earlier, and that arrives at time tA or earlier.

For i ∈ {1, 2}, we represent the function µTi
γ by an |R|-dimensional vector µi such that µi[r] =

µTi
γ (r) for every r ∈ R. We can compute the value γOPT by a simple extension of the sweepline

algorithm presented in the previous paragraph. The modified algorithm again starts at time tA,
and considers all trips in T1 and T2 in reserve chronological order. The sweepline stops at every
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Figure 3: An example with five lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 (solid) and r2 = 〈4, 5〉
(dotted). The x-axis illustrates the stops {a, s1, s2, s3, b}, whereas the y-axis the time. If a trip
leaves a stop sd at time td and arrives at a stop sa at time ta, it is indicated by a line from (sd, td)
to (sa, ta). We have µTγ (r1) = 3, because we have three possible journeys from a to b when departing
at time tA − γ or later. Notice that we always have to take the first occurence of a line that arrives.
Thus, taking the first 1 and waiting for the second 2 is not counted because it is not a valid journey
in our setting although it would still arrive on time. Furthermore we have µTγ (r2) = 1, because
taking the second 4 will not result in an arrival on time.

time when one or more trips in T1 or in T2 depart. Assume that the sweepline stops at time tA − γ,
and assume that it stopped at time tA − γ′ > tA − γ in the previous step. Of course, we have
µTi
γ (r) ≥ µTi

γ′ (r) for every r ∈ R and i ∈ {1, 2}. Let τ1, . . . , τk be the trips that depart in T1 or T2 at

time tA − γ. The idea is to compute the values of µi (representing µTi
γ ) from the values computed

in the previous step (representing µTi

γ′ ). This can be done as follows: for every trip τj occuring in Ti
and departing at time tA − γ, we check whether there exists a route r ∈ R starting with L(τj). If
yes, we distinguish two cases:

1) If µi[r] = 0, then µTi

γ′ (r) = 0, thus r 6∈ Aγ′(Ti). If there exists a journey from a to b along r
departing at time tA − γ or later, and arriving at time tA or earlier, then Aγ(Ti) contains r
exactly once. Thus, if Earliest-Arrival(a, b, tA − γ, r) ≤ tA, we set µi[r]← 1.

2) If µi[r] > 0, then µTi

γ′ (r) > 0, thus Aγ′(Ti) contains r at least once. Thus, there exists a journey
from a to b along r departing at time tA − γ′ or later, and arriving at time tA or earlier. Since
τi is the only possibility to depart at a between time tA − γ and tA − γ′, τi is the first trip on
a journey we never found before. Therefore it is sufficient to simply increase µi[r] by 1.

Up to now, we did not define when the algorithm terminates. In fact we stop if γ exceeds a value
γMAX. Let tA − γi be the starting time of an optimal journey in Ti. Of course, γMAX has to
be larger than max{γ1, γ2}. We believe that from a practical point of view it is sufficient to set
γMAX = f(max{γ1, γ2}) for some function f : N→ N; good choices for f will be investigated in a
future experimental evalutation.
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The above considerations lead to the following algorithm for the computation of γOPT and
the corresponding functions µTi

γOPT
. In the following pseudocode, the parameter list of Earliest-

Arrival now contains the additional parameter Ti to determine which instance is considered.

Compute-Maximum-Similarity(a, b, tA)

1 SOPT ← 0; µ1 ← µ2 ← µOPT
1 ← µOPT

2 ← 0|R|; γOPT ← 0

2 for each stopping time of the sweepline do

3 γ ← Time difference of the sweepline to tA

4 τ1, . . . , τn ← Trips departing at a at time tA − γ in T1 or T2

5 for i← 1, . . . , n do

6 for each r = 〈L(τi), l2, . . . , lk〉 ∈ R do

7 if τi occurs in T1 then

8 if µ1[r] > 0 then µ1[r]← µ1[r] + 1

9 else if Earliest-Arrival(T1, a, b, tA − γ, r) ≤ tA then µ1[r]← 1

10 else

11 if µ2[r] > 0 then µ2[r]← µ2[r] + 1

12 else if Earliest-Arrival(T2, a, b, tA − γ, r) ≤ tA then µ2[r]← 1

13 Sγ ←
(∑

r∈Rmin(µ1[r], µ2[r])
)
/
((∑

r∈R µ1[r]
)
·
(∑

r∈R µ2[r]
))

14 if Sγ ≥ SOPT then γOPT ← γ; SOPT ← Sγ ; µOPT
1 ← µ1; µOPT

2 ← µ2

2.6 Journey Reliability

Goal. In the previous sections, we have considered the problem of finding a robust journey in
public transporation network. In this section we will look at a related, but conceptually much simpler
problem: Estimating the reliability of a given journey with respect to a given latest arrival time tA.
We will take the most straightforward approach and express the reliability as the “probability” of the
given journey to finish before tA, and present a scan-line algorithm that computes the “probability”.

Input. We are given a public transportation network with its stops S and lines L. Furthermore,
we are given a journey J from stop a to stop b, and a (small) set of past daily snapshots T1, . . . , Tm
of the timetable, upon which we want to assess the reliability of the journey. We note that such data
are commonly collected by transportation companies, and thus they are, in practice, principially
available at virtually no cost. Recall also that a journey is specified by a departure time tD (i.e.,
the time when we start the journey), by a sequence of lines 〈l1, . . . , lk〉, and by a sequence of

transfer/changing stops 〈s(1)CH , . . . , s
(k−1)
CH 〉.

Definitions of reliability. In the most straightforward way, we express the reliability of a journey
as the fraction of days (timetables) in which the journey arrived on time (i.e., before the latest
arrival time tA). We call this the coupled reliability.

Definition 1 (Coupled reliability) The coupled reliability of a journey J with respect to a given
latest arrival time tA and timetables T1, . . . , Tm is the ratio of the number of timetables Ti, in which
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the journey J (departing at stop a no sooner than tD) arrives at stop b no later than tA, to the total
number of timetables, i.e.,

|{j | journey J arrives before tA in Tj}|
m

.

If the number of available timetables is small, and when “delays” of lines in the snapshot-
timetables are independent (uncoupled), then we can heuristically evaluate the travel-time of each
of the lines < l1, . . . , lk > of journey J in a different snapshot Ti, and check whether the journey J
would arrive before tA in such a “virtual snapshot”. This motivates the following definitions.

Definition 2 Let T ′1, . . . , T
′
k be timetables, and J a journey with departure time tD, sequence of

lines 〈l1, . . . , lk〉, and a sequence of transfer stops 〈s(1)CH , . . . , s
(k−1)
CH 〉. Journey j is realizable in

T ′1 × T ′2 × . . .× T ′k with respect to a given latest arrival time tA if for every line li there exists a trip
ti (of the line li) in T ′i such that:

1. The departure time of trip t1 from station a is after tD,

2. the arrival time of trip tk at station b is before tA, and

3. for every i = 1, . . . , k − 1, the arrival time of trip ti in station s
(i)
CH is before the departure

time of trip ti+1.

Definition 3 (Decoupled reliability) The decoupled reliability of a journey J with respect to
the latest departure time tA and timetables T1, . . . , Tm is the ratio of the number of all possible
k-tuples of timetables (T ′1, . . . , T

′
k), T ′i ∈ {T1, . . . , Tk}, such that J is realizable in T ′1 × . . .× T ′k with

respect to tA, to the total number of k-tuples.

Clearly, if the delays occuring on one line are dependent on delays in other parts of the
transportation network, we conservatively prefer to use one timetable Ti for the assessing the
reliability of a journey, i.e., the coupled reliability. This gives a realistic feedback on the quality of
the journey with respect to the an actually travelled past snapshot Ti. However, if the number of
available snapshots T1, . . . , Tm is small, we obtain only several such feedbacks. On the other hand, if
delays on one line in the transportation network are independent from delays in the other part of the
network, we can increase the feedback we get by simulating “artificial” timetables: for a decoupled
reliability, we evaluate the travel times of a line between two transfer stops in different timetables.

Computing reliability. We will address the computational aspects of the coupled and decoupled
reliability. Computing the coupled reliability is very easy: For every timetable Ti ∈ {T1, . . . , Tm} we
need to check whether the journey in question finished before time tA or not. This can be done
by a simple linear time algorithm that simply “simulates” the journey in the timetable Ti, and
checks whether the arrival time of the journey lies before or after tA. The computation of decoupled
reliability is not so trivial anymore, as the straightforward approach would require to enumerate all
the mk k-tuples of the set {T1, . . . , Tm}, and thus an exponential time. In the next part, we will
present an algorithm that avoids such an exponential enumeration.

2.6.1 Computing decoupled reliability

In this section we present an algorithm for computing the decoupled reliability of a journey J
with respect to a given latest arrival time tA and timetables T1, . . . , Tk. The algorithm is based on
dynamic programming.

Consider the situation in Figure 4. Different colors represent three different timetables (snapshots).
Since we have “decoupled” the delays on different lines, there are mk = 32 = 9 different k-tuples of
timetables 〈T ′1, T ′2〉. Each of the two lines can thus operate with any of the three timetables. We
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Figure 4: A journey with two lines l1 and l2 and three timetables (solid black, dotted red, dashed
blue). Partial probabilities of finishing on time are shown.

now proceed from the last to first stop and for each relevant time (arrival or departure time of
any connection) we compute how large fraction of all possible timetable combinations will make
the journey to “make it” if making the next connection at the considered time. For the last stop,
every time before before tA will be assigned the fraction 1/1, because once we are at the last stop
before tA, every combination of timetables will make us to get there. We process each stop by
decreasing time, starting at tA, going through all time points when one of the lines in any one of
the timetables departs or arrives. If the time-point t being processed corresponds to an arriving
line, we simply copy the previously computed value (i.e., the later in time). If it corresponds to a
departing line, we follow this trip and check the arriving time t′ at the next stop. We check at this
stop and time t′ the fraction of “paths” that reach the final destination and multiply this fraction
by 1/m. Furthermore, for each timetable we store the maximum encountered fraction up to that
point. If for the considered timetable Tj the just computed fraction is larger than the stored one,
we update this stored value. The total fraction for the processed time-point t is then equal to the
sum of the stored fractions of all timetables. The Figure 4 shows these compound fractions. The
resulting fraction is 6/9, which can be easily checked by enumeration of the 9 possible options. The
formal description is presented as Algorithm CalculateSuccessRate.

CalculateSuccessRate(J, tD, tA, T1, . . . , Tm)

1 SuccessRate[b, tA]← 1

2 for i← 1, . . . , k − 2 do SuccessRate[s
(i)
CH, tA]← 0

3 for i← k − 1, . . . , 1 do

4 for j ← 1, . . . ,m do max[j]← 0

5 for j ← tA, . . . , tD do

6 if connection at time tj is a departing one then

7 connection arrived at s
(i+1)
CH at time t′ and is from timetable Tk

8 max[k]← 1
mSuccessRate[s

(i+1)
CH , t′]

9 SuccessRate[s
(i)
CH, tj ]←

∑m
l=1 max[l]
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10 else SuccessRate[s
(i)
CH, tj ]← SuccessRate[s

(i)
CH, tj−1]

11 return SuccessRate[s
(1)
CH, tD]

2.7 Conclusions

We developed a novel model for public transportation networks. The main advantage is that it allows
to distinguish between routes and concrete journeys, while most common models just allow to specify
journeys by a sequence of lines and transfer stops. We also developed efficient algorithms for the
computation of robust journeys. Furthermore, inspired by our considerations, we have introduced
the natural concept of evaluating the robustness of a given journey (as defined in our model).

From a theoretical point of view, one of the next steps is to examine how the current methods
have to be extended to support a fully multi-modal scenario, i.e. how walking, biking or park-and-
ride can be integrated. We believe that the modelling itself is easy while the performance of the
algorithms will descrease significantly without developing special techniques. For example, if we
allow unrestricted walking, then all sequences of lines form a valid route since it is possible to walk
from every stop to every other stop. However, in this situation it is not even clear how to compute
the optimal overall travel time of a journey. It may be also worthwhile to study or develop different
approaches to robustness than the one we used. Additionally, if the input data grows, preprocessing
techniques may become necessary to allow an efficient computation of all feasible routes.

From a practical point of view, we will implement the presented algorithms. We are especially
interested to evaluate their running time and the quality of the computed journeys. For an
experimental evalutation, we need traffic snapshots which we do not have yet. If no traffic snapshots
will be available, we will develop techniques for generating artificial delays.
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3 Delay-Robust Stochastic Routing in Public Transporta-
tion Networks

In this section we first formalize a large number of different sources of delays in a mathematical
framework. We then prove that it can be solved using a dynamic program. Unfortunately for many
delay models this program has a superpolynomial running time and is therefore infeasible. We
therefore restict ourselfs to one of the simpler models and show that it can solved efficently by doing
experiments on real world data of realistic size and measuring the running times. This simpler
model enables computation of decision graphs such as presented in Figure 5.

3.1 Problem Statement and Preliminaries

Our public transit networks are defined in terms of their aperiodic timetable, consisting of a set
of stops, a set of connections, and a set of footpaths. A stop p corresponds to a location in the
network where a passenger can enter or exit a vehicle (such as a bus stop or train station). Stops
may have associated minimum change times, denoted minchange, which represent the minimum
time required to change vehicles at p. A connection c models a vehicle departing from a stop cdepstop
at time cdeptime and arriving to stop carrstop at time carrtime without intermediate halt. Connections
that are subsequently operated by the same vehicle are grouped into trips. We denote by cnext the
next connection (after c) of the same trip, if available. Trips can be further grouped into routes. A
route is a set of trips serving the exact same sequence of stops. For correctness, we require trips of
the same route to not overtake each other. Footpaths enable walking transfers between nearby stops.
Each footpath consists of two stops with an associated walking duration. Note that our footpaths
are transitively closed. A journey is a sequence of connections and footpaths. If two subsequent
connections are not part of the same trip, their arrival-departure time-difference must be at least the
minimum change time of the stop. Because our footpaths are transitively closed, a journey never
contains two subsequent footpaths.

3.2 Related Work

Usually, these journey routing problems have been solved by (variants of) Dijkstra’s algorithm on an
appropriate graph (representing the timetable), see Deliverable D3.1 for an overview. Most relevant
to our work is the realistic time-expanded model [24]. It expands time in the sense that it creates a
vertex for each event in the timetable (such as a vehicle departing or arriving at a stop). Then, for
every connection it inserts an arc between its respective departure/arrival events, and also arcs that
link subsequent connections. Arcs are always weighted by the time difference of their linked events.
Special vertices may be added to respect minimum change times at stops. See [16, 24] for details.

We are not the first to consider stochastic methods to formulate variants of the delay robust
routing problems [3, 14]. However the delay model we propose and evaluate is unique in the sense
that routing algorithms are known for it that scale to large networks as they occur in reality. We
achieve this by considering a model that is more simplistic than the existing alternatives and show
that this simplicity can be leveraged into simpler and more efficient algorithms.

In [14] the authors propose a stochastic delay model that is used to identify transfers that are
unlikely to work. They show that the identification problem is strongly NP-hard. Further they
introduce a query algorithm that computes Pareto-optimal journeys with respect to arrival time,
number of safe transfers and number of unsafe transfers. As the identification problem is a crucial
component of every routing system it is most likely not possible to construct an efficient solution
based on the proposed model. We conclude that a simpler mode is needed.

In [14] another stochastic delay model is proposed that is used to predict delays. The authors
evaluate the quality of their algorithm’s predictions by comparing it to real world delay data. They
show that in some cases their model is of by a large margin which makes their model impractical.
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Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

(a) The decision graph.

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

(b) The primary journey and the tight transfer.

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

(c) The first backup journey and the tight transfer.

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

(d) The backup’s backup journey and an example of
speculative traveling.

Figure 5: The horizontal boxes represent stops. For every box the name of the stop is given and a
number of points in time. These are ordered increasingly from left to right. The arrows correspond
to trains and connect their departure time with their arrival time. These time are the ones given
in the timetable and are not adjusted for delays. In every situation the user should try to get the
first train that he can catch. If a train is delayed then the user can lookup the next best train by
picking the next time box to the right of his arriving train that has a departing train. The example
decision graph travels from Karlsruhe in the top left to Roma in the bottom left. The user is given
the graph as depicted in 5(a). If there are no delays then he will take the journey as highlighted in
5(b). The transfer in Zurich with only 9 minutes is very tight and therefore a backup is needed.
This backup is highlighted in 5(c). Unfortunately the backup has another tight transfer in Basel
with only 4 minutes. The backup journey needs therefore its own backup which is highlighted in
5(d). Figure 5(d) contains also an example of speculative traveling. If the user misses his first train
in Zurich, then for an extended period of time no good backup exists and therefore it is beneficial to
travel to Basel and to speculate on getting the connecting train there. If this fails then the user
should take the train back to Zurich. If the speculation fails then the user has lost nothing because
no train departed in Zurich within this time frame that would have been beneficial.
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Their model propagates delay information over time which makes the model more realistic but
also has the drawback that errors in the information are also propagated and accumulate over
time. We suppose that this effect is at the root of the large errors that the authors unfortunately
observe. Every fully realistic model needs to propagate delay information. Every model that does
this, however, needs to be highly detailed and needs very precise input delay information. Solving
the routing problem on more detailed models, however, is likely to be hard in term of computational
complexity, making the existence of efficient algorithms unlikely. A further problem is that precise
input delay information must be gathered. To our knowledge current systems only gather very
rough information which contains too much noise. To sum up, we conclude that a fully realistic
model is not usable and settle with the most complex model that does not propagate delays.

3.3 Stochastic Models

In this section, we consider models for delay-robust stochastic routing. In Section 3.4, we describe
several different stochastic models that vary in their degree of realism. We note that there is a
trade-off between realism and sufficiently fast computability. In Section 3.6, we discuss how to
compute delay-robust routes based on these models. We do not expect that for the most realistic
models queries can be solved within reasonable time. In Section 3.7 we illustrate how one of the
models can be solved within reasonable time.

The key idea is to define states that model the user in different situations and transitions between
these states. Every journey corresponds to a path in this state-transition graph. Examples of states
are:

1. The user stands at a stop at a moment in time.

2. The user is sitting in a train entering a stop.

3. The user stands at a stop at a moment in time knowing the delays of the arriving trains with
certainty.

4. The user is sitting in a train entering a stop and has decided at what stop to exit.

5. The user is sitting in a delayed train knowing that another train is delayed.

It is important to note that besides the local and temporal location, the state must also encode the
whole non-static knowledge of the user. Precise train delays are such knowledge. Therefore, the
user is in a different state if he knows when his connecting train will precisely arrive than if he is
absolutely clueless about specific delays. This is what makes the difference between Examples 1
and 3, and the difference between 2, 4 or 5. Example 3 shows that knowledge encompasses data on
which the user will base his next action. Example 4 shows that the decisions that the user has taken
in the past are also part of his knowledge. If he enters a state that does not encode his decision
he forgets what he decided. Example 5 illustrates that the user’s knowledge also contains all the
information that the user has gathered so far on his journey. For example he might have learned
while waiting at a stop that a train tr is delayed even though the user does not intend to take tr. It
is possible that the user will never base a decision on this data and might just as well forget about
it. However it is also possible that he misses a connecting train and therefore considers if the train
tr is a good alternative. He might determine that if tr was on time he would not be able to catch it
but as he knows that it is delayed he can get it. Note that even our most complex model does not
allow modeling Example 5.

Every model further defines how the user transitions from one state into another one. We
distinguish two types of states: action-states and happen-states. If the user is in an action state
then he can choose his next state from a set of valid next states. He may base his decision only on
information encoded inside of his current state. An example for an action state is the user standing
at a stop and choosing what train to take. If the user is in a happen-state then he has no direct
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control over his next state. The model defines a set of valid next states and a probability distribution
that defines how likely a specific next state is. This distribution is constant over time and is known
by the user. For example if the user sits in a train with no delay he might transition into a state
with delay or with no delay. As the user can not influence the delays he can not decide in what
state he will end up. However, he has a statistic about the previous delays and therefore knows how
likely which next state is.

We consider the problem of guiding the user towards a target stop given a start stop and a start
time. The initial state the user is in is called the start-state. A state that the user wants to reach is
a target-state. In every model there exists for every moment in time a state that models the user
standing at a specific stop at that time. This means that there is only one start-state. There is,
however, for every moment in time a target-state. Note that every target state is associated with
an arrival time. One way of guiding the user is to compute for every action-state the best choice
that the user can make to get to his target. This is called a strategy. We can print out a list of
action-states and the recommended actions and hand it to the user. The main problem with this
approach is that the list is too large to be of use to the user. We therefore only compute the actions
for the action-states that the user can reach from the start state.

More precisely we compute a decision graph. The nodes of this graph are formed by states.
Every action-state has exactly one out-arc that represents the action that the user should take and
that ends in the next state as defined by the model. Every happen-state has an out-arc to all of
the next states as defined by the model and is associated with the probability of that transition.
Note that the probabilities associated with the out-arcs of each happen-state must add up to 1.
For convenience, we define that the out-arc of an action-state is associated with probability 1. The
target-states are the only states that have no out-arcs. The start-state must be in the decision graph
and every other node must be reachable from it. Note that without time discretization, decision
graphs have an infinite set of nodes and arcs as there is an infinite number of moments in time.
Figure 6 illustrates an example decision graph with a very rough time discretization.

For every decision graph and every state q in it is possible to compute an expected arrival time.
Let Pr(a) denote the probability associated with arc a. Further we denote by P the set of paths that
start at q and end at a target-state. Denote by parrtime the arrival time of a path p and by Ap the
set of its arcs. Given a fixed decision graph and a state q in it we define the expected arrival time as

f(q) =


q’s arrival time if s is a target state

+∞ if P = ∅∑
p∈P

(
parrtime ·

∏
y∈Ap

Pr(y)
)

otherwise .

Given a state q the goal is to compute a decision graph that has q as its start state and minimizes
f(q), i.e., to compute a decision graph with a minimum expected arrival time (M.E.A.T.). We refer
to this as the M.E.A.T.-problem. We denote by A the set of all arcs in a specific decision graph.
The first central observation is that f(q) can be formulated recursively as

f(q) =
∑

(q,q′)∈E
Pr(q, q′)f(q′)

and this formula suggests that is can be efficiently evaluated using dynamic programming, which
is exactly what we do in Section 3.6.2. Denote by g(q) the minimum f(q) over all valid decision
graphs starting at q and by Y the set all arcs allowed by the model. Suppose that g(q) is known for
every state except q then we can compute g(q) as

g(q) =
∑

(q,q′)∈Y
Pr(q, q′)g(q′)
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if q is a happen-state and as
g(q) = min

(q,q′)∈Y
g(q′)

if x is an action-state.

3.4 Formal Definition

This section represents a very formal approach to the topic. A more informal illustration of the basic
concepts specific to the problem setting our algorithm solves is given in Section 3.7.1. In this section
We define the set of states and the set of next states for every action- and happen-state. For every
possible transition we indicate a recursive formula to compute the corresponding minimum expected
arrival time. All models share the same set of states. They differ in the allowed transitions. The
more realistic models use more complex transitions. Every transition option belongs to a certain
category. Choosing an option for every category yields a precise formal model definition. Given this
precise definition we can consider the problem of determining a decision graph with a minimum
expected arrival time.

The options listed here try to formalize the following aspects:

• Do the trains arrive delayed?

• Do the trains depart delayed?

• Are the delays at different connections in one trip stochastically independent?

• Can a train decrease its delay at a stop by waiting for a shorter time than planned?

• When does the user decide at what stop to exit the train? Is it when he enters the train or
when the train enters the exit stop?

We start by formalizing the states. We group similar states into a class and describe them together.
The list of classes is:

Stand-at-Stop. The user stands at a stop s at a moment t. He does not know the precise delays
of any possible next train. He has not yet decided which train to take. This is a happen-state
as the user gathers knowledge and can be represented by a (t, s)-pair.

Deciding-Next-Train. The user stands at a stop s at a moment t. He knows the delay of some
possible next trains. We formalize this knowledge as a set Ne of (c, d)-pairs where c is a
departing connection and d its delay. One can interpret Ne as a partial function. If Ne = ∅
then the user knows no precise delays. A state is described using a (t, s,Ne)-triple. Note that
this is the only state where the tuple components are not only simple numbers. This is an
action-state.

Walk-to-Stop. The user has exited a train and stands at a stop s at a moment t. He may decide
to walk along a footpath or remain at s. This is an action-state and can be represented by a
(t, s)-pair.

Deciding-Exit. The user has just entered a train c delayed by d and must decide how he wants to
exit it. A state is described using a (c, d)-pair. This is an action-state.

Departure. The user sits in a train c delayed by d that is about to leave a stop. The user may
have fixed an exit connection e at the end of which he wants to exit the train. If not then e is
a dummy connection, denoted by ⊥. This state can be described using a (c, d, e)-triple. This
is a happen-state.
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Stand-at-Stop

Walk-to-Stop

Deciding-Next-Train

Deciding-Exit

Departure

Arrival

May-Exit

Figure 7: A graph containing the state classes as nodes. If a class A contains a state which has a
next state in class B then the graph contains an arc (A,B).

May-Exit. The train c has just entered a stop. The user must decide whether he wants to exit it
or remain seated. The train is delayed by d. Again the state also has an exit connection e.
This state can be described using a (c, d, e)-triple. This is an action-state.

Arrival. The train c has just entered a stop. The user does not want to exit. The train is delayed
by d. This state can be described using a (c, d, e)-triple. This is a happen-state.

The allowed transitions differ from model to model, however, all of them connect the same state
classes. Figure 7 illustrates for every state class what the allowed direct next state classes are.

As already discussed briefly, a time discretization is needed to construct finite decision graphs.
We discretize the time differently for different state classes. Time components that describe a
moment in time, such as those in Stand-at-Stop, Walk-to-Stop and Deciding-Next-Train,
are sampled at a regular time interval. Time components that describe a delay, such as those in
Deciding-Exit, Departure, May-Exit and Arrival, must be chosen from a finite set of valid
delays D. We require that a delay of 0 is valid and that every delay must be positive. A small set of
valid delays leads to fast running times but low accuracy. We do not require that the delays are
sampled at regular intervals to allow a higher precision for small delays that generally are more
relevant.

3.5 Notation

In the next subsections we specify how the M.E.A.T. of a state (always denoted by f) can be
expressed in terms of the M.E.A.T. of its next states (denoted by g and h). Recall that C is the set
of connections, F the set of footpaths, S the set of stops and D the set of valid delays. We denote
by Cs ⊆ C the connections that depart at the stop s and by Fs ⊆ F the footpaths that start there.

3.5.1 Next States of Stand-at-Stop

A Stand-at-Stop state represents a user that is at a stop and decides what to do next. If he
has arrived at the target stop then he finishes his journey, otherwise he gathers information about
the precise delays of some trains. This gathering process is modeled using the transition into the
Deciding-Next-Train state. Note that the minimum change time and footpaths do not have to
be considered because they are handled by the transition from the Walk-to-Stop state into the
Stand-at-Stop state.

The M.E.A.T. of a Stand-at-Stop state is f(t, s) and the M.E.A.T. of a Deciding-Next-
Train state is g(t, s,Ne). If the user has arrived at his target then the M.E.A.T. can be computed
using

f(t, s) = t
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otherwise the next states are relevant. Now follows a list of the different options to define the valid
next states.

Departure-on-Time. The departures are always on time. This is not very realistic but easy to
implement. The only valid next state is the (t, s,Ne) Deciding-Next-Train state where Ne
maps every connection onto 0.

f(t, s) = g (t, s, {c 7→ 0})

Departure-Delay-Unknown. The user has no way of finding out when a train departs. The
only valid next state is (t, s, ∅).

f(t, s) = g(t, s, ∅)

Departure-Delay-Random. A departure c has a random departure delay. We denote by pc(d) the
probability that the connection c leaves with the precise delay d. The user gathers information
about every connection that departs at s. The possible next states are the (t, s,Ne) states,
where Ne contains an entry for every departing connection. Note that Ne can be interpreted as
a function that maps a connection onto its precise delay. The possible delays are not restricted.
A state (t, s,Ne) has a probability of Πc∈Cs

pc(Ne(c)). The M.E.A.T. can be calculated as
following:

f(t, s) =
∑
Ne

g(t, s,Ne)
∏
c∈Cs

pc(Ne(c))

As a further extension one could consider dependencies between trains. For example it often
happens that the last train in a route waits for other delayed trains. The delays are therefore
no longer independent. A shortcoming of all the models presented here is that the user forgets
everything he knows about the delays of other trains once he enters a train. However, dropping this
simplification dramatically increases the number of states and therefore seems intractable using a
dynamic programming approach. A result of this is that if he may get the same train at different
stops the user supposes that their delays are independent and therefore might try to get the same
train twice.

For example consider the case where the user is, according to the timetable, capable of catching
the same train at two different stops. He tries to catch it at the first stop but it is delayed and
therefore he takes another train. The user can derive from this that the train he originally intended
to catch will also be delayed at the second stop. This, however, requires that he remembers that
the train is delayed. The simplification introduced, however, supposes that he forgets about this
information.

3.5.2 Next States of Deciding-Next-Train

The Deciding-Next-Train state represents a user that is at a stop and is aware of some exact
delays. He must decide which train to take. This decision basically consists of choosing a departing
connection. There are two groups of connections that depart from stop s. The first group Cs,1
consists of the connections the user knows the precise delays of, i.e., those for which Ne has an
image. The second group Cs,2 are the remaining ones.

If the user knows the exact delay of a connection (i.e. one in Cs,1) then he can reach one of the
Deciding-Exit states with certainty. If this is not the case then for every possible delay a next
state can be reached. The probability that a connection c is delayed by d is denoted by pc(d).

The M.E.A.T. of a Deciding-Next-Train state is f(t, s,Ne) and the M.E.A.T. of a Deciding-
Exit state is g(c, d). We set min ∅ = +∞.
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f(s, t,Ne) = min

 min
c∈Cs,1

t≤cdeptime+Ne(c)

g(c,Ne(c)), min
c∈Cs,2

t≤cdeptime

∑
d∈D

pc(d)g(c, d)

 .

Consider a train that is scheduled to leave before the user could get it (i.e. t > cdeptime). Normally
the user would not be able to get it, but if it is delayed enough then it will still be considered as
t ≤ cdeptime + Ne(c) may hold. This only works if the user knows the precise delay. If he does not
know it then there is a chance that he already missed the train. If this is the case then he would
wait forever and therefore he always avoids this situation and never takes such a train.

3.5.3 Next States of Walk-to-Stop

The user has just exited a train and can walk to another stop. The M.E.A.T. of a Walk-to-Stop
state is f(t, s) and the M.E.A.T. of a Stand-at-Stop state is g(t, s). Recall that the set of footpaths
that start at a stop s is denoted by Fs. The formula is

f(t, s) = min

{
g(t+ sminchange, s),

minx∈Fs
g(t+ sminchange + xdur + (xarrstop)minchange, xarrstop)

}
.

3.5.4 Next States of Deciding-Exit and May-Exit

The Deciding-Exit and the May-Exit states are tightly coupled and therefore are both explained
in one section. A Deciding-Exit state represent a user that entered a train and must decide where
he exits it. A May-Exit state models a user in a train that enters a stop. The user may exit the
train at this point. The action of the user in a May-Exit state depends on the decision in the
Deciding-Exit state. The decision of the user is encoded in the state using the exit connection e
tuple component.

We consider two options:

Exit-at-Train-Enter. The user decides when entering a train where he exits it. In this model
the decision is only based on the precise delay of the train at the moment the user enters it.
He does not know with certainty how the delay evolves.

Exit-at-Stop-Enter. The user decides when entering a stop if he exits the train. In this model
the user may take the delay of the train at the moment it enters a stop into account.

These two options define the next states of the Deciding-Exit class and May-Exit class. We first
consider the Deciding-Exit class.

Next States of Deciding-Exit. The M.E.A.T. of a Deciding-Exit state is f(c, d) and the
M.E.A.T. of a Departure state is g(c, d, e). If the Exit-at-Stop-Enter option is used the user
has nothing to decide. The exit connection is set to a dummy value, denoted by ⊥, i.e.,

f(c, d) = g(c, d,⊥) .

If the Exit-at-Train-Enter option is used then the user may exit at any connection after c in the
same trip, i.e.,

f(c, d) = min
e
g(c, d, e) .

D3.4: Page 29 of 44



FP7-ICT-2011-7 288094 - eCOMPASS

Next States of May-Exit. The M.E.A.T. of a May-Exit state is f(c, d, e), the M.E.A.T. of a
Walk-to-Stop state is g(t, s) and the M.E.A.T. of an Arrival state is h(c, d, e). If c is the last
connection in a trip, then the user must always exit the train, i.e.,

f(c, d, e) = g(carrtime + d, carrstop) .

Otherwise the behavior of the user depends on the option chosen. If the Exit-at-Stop-Enter
option is used then the user has two options to chose from, i.e.,

f(c, d,⊥) = min {g(carrtime + d, carrstop), h(c, d, e)} .

If the Exit-at-Train-Enter option is used the the following formula defines his behavior.

f(c, d, e) = h(c, d, e) if c 6= e

f(c, d, c) = g(carrtime + d, carrstop)

3.5.5 Next States of Departure

A train transition from a Departure state into a May-Exit state represents the train actually
moving. It is possible that the train changes its delay while doing so. Recall that D is the set of
valid delays. The M.E.A.T. of a Departure state is f(c, d, e), the M.E.A.T. of a May-Exit state
is g(c, d, e). We formalize the following options:

Trip-Delay-Constant. The delay of a train always remains constant, i.e.,

f(c, d, e) = g(c, d, e) .

This is unrealistic but is easy to implement. Note that the train may have an initial delay.
This is the difference to the model without any delays.

Trip-Delay-Random. The delay of a train changes randomly. We denote by p(c, ddep, darr) the
probability that the train will have a delay of darr if it started with a delay of ddep. It must be
impossible for the user to arrive before he departs (i.e. p(c, ddep, darr) = 0 for every departure
darr such that cdeptime + ddep ≥ carrtime + darr). The functions relate as follows.

f(c, ddep, e) =
∑
d∈D

p(c, ddep, d)g(c, d, e)

3.5.6 Next States of Arrival

The transition from an Arrival into a Departure state represents the train waiting at a stop.
Note that this transition does not handle the user exiting the train or the trip ending. (This is what
the May-Exit state is for.) The train is scheduled to wait for a certain amount of time at the stop.
By decreasing this waiting buffer time the train can decrease its delay. Recall that D is the set of
valid delays. The M.E.A.T. of a Arrival state is f(c, d, e), the M.E.A.T. of a Departure state is
g(c, d, e). We formalize the following options:

Stop-Delay-Reset. The waiting buffer time is larger than every delay. This is easy to implement
and for small delays very accurate. The M.E.A.T. values relate as follows.

f(c, d, e) = g(cnext, 0, e)
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Stop-Delay-Constant. The waiting buffer time can not be decreased. A (c, d, e) Arrival state
is followed by the (cnext, d, e) Departure state. The M.E.A.T. values relate as follows.

f(c, d, e) = g(cnext, d, e)

Stop-Delay-Max-Reduce. The waiting buffer time is decreased as much as possible. The train
arrives at carrtime + dold and departs at (cnext)deptime. The waiting buffer time is therefore
carrtime +dold− (cnext)deptime. This is the maximum amount by which the delay can be reduced.
As this does not always result in a valid delay some rounding is necessary. Formally this can
be expressed as

f(c, dold, e) = g(cnext,min {dnew ∈ D | dnew ≥ carrtime + dold − (cnext)deptime} , e) .

3.6 The eCOMPASS Approach to Delay-Robust Stochastic Routing

In this section we describe algorithms that compute the minimum expected arrival time for the
various models introduced. We start with a recursive program derived from the minimum expected
arrival time formulas introduced in the previous section and prove its termination. We then turn this
recursive program into a dynamic one. (In Section 3.7 we construct an efficient algorithm for one
specific model based on the dynamic program.) The programs introduced in this section work for
all problems that use Departure-on-Time or do not use Stop-Delay-Reset. However for many
problems they are too slow to be of practical use. Especially the Departure-Delay-Random
option seems impossible to handle because of the exponential number of states.

All algorithms first compute the minimum expected arrival time for a fixed target stop and every
possible start state. Afterwards, they use the M.E.A.T. to reconstruct an optimal decision graph.
Constructing the decision graph is normally not the bottleneck and therefore we only consider the
problem of computing the minimum expected arrival time. In the previous section we presented
recursive formulas to compute the M.E.A.T. in the various states, which can be used to construct a
recursive program. It remains to show that this program does not cause an endless recursion. We
show that this is the case if Stop-Delay-Reset is not combined with Departure-Delay-Random
or Departure-Delay-Unknown. The problem with these two combinations is that they lead to
time travel as the following example illustrates: The user leaves a stop with a delay of 40 min at a
planned departure time of 10:00. He arrives at the second stop at a planned arrival time of 10:10
with a delay of 40 min. He remains seated. The delay is reseted. The train will leave at the planned
10:20 on time and arrive at 10:30 on time at the next stop. The user effectively departed at 10:40
but arrived at 10:30. He thus traveled 10 min back in time. We will only consider models that do
not use Stop-Delay-Reset or use Departure-on-Time.

An important tool in this section is the so called Time Potential. This is a function that maps
every state onto a moment in time. Every state must have a time potential smaller or equal to the
potentials of all its valid next states. Table 1 shows two choices for this function. We use Potential
1 if Stop-Delay-Reset is not used. Otherwise Departure-on-Time must be used and we use
Potential 2. It is possible to verify that these choices are valid by looking at the definitions of the
M.E.A.T. formulas in the previous section.

For example using Stop-Delay-Constant the user can transition from an (c, d, e) Arrival
state into a (cnext, d, e) Departure state. The Time Potential 1 of the first carrtime + d and of the
second is (cnext)deptime + d. As carrtime + d ≤ (cnext)deptime + d holds the potential is valid for this
formula.
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State Class Name Tuple Time Potential 1 Time Potential 2

Stand-at-Stop (t, s) t t
Deciding-Next-Train (t, s,Ne) t t

Walk-to-Stop (t, s) t t
Deciding-Exit (c, d) cdep + d cdep
Departure (c, d, e) cdep + d cdep
May-Exit (c, d, e) carr + d carr
Arrival (c, d, e) carr + d carr

Table 1: Time potentials for problems without the Stop-Delay-Reset option. The departure time
of a connection c is cdep and its arrival time is carr.

3.6.1 Recursive Program

The formulas given in the previous section lead to a recursive program. Based on the correctness of
these formulas it is possible to see that if the program terminates it computes the correct value. It
remains to show that the program terminates (i.e. no endless recursion occurs).

Consider a problem that does not use Stop-Delay-Reset or uses Departure-on-Time.
Further consider a fixed target stop and a non-empty network. It is possible to compute the
M.E.A.T. of any state in finitely many steps using the functions given in section 3.4.

We prove this by showing that:

1. There exists a time potential. We already showed that this is the case.

2. There exists a constant ε > 0 such that every state only indirectly depends on states of its own
class with a time potential bigger by at least ε. See below for a proof.

3. There exists a minimum time potential pmin and a maximum time potential pmax. As there are
only finitely many connections (and at least one exists) there are only finitely many reachable
states (and at least one exists) and therefore the minimum and the maximum time potential
exists.

4. Every state has a finite number of possible next states. This is the case because the time is
discretized and the considered network is finite.

Using the first three statements it is easy to see that the maximum recursion depth is pmax−pmin

ε .
Adding the fourth one shows the theorem.

It remains to show that the required ε exists. Consider two states of the same class. As shown
in figure 7 they may only indirectly depend on each other. In every case the user must transition
through a Departure state. If the Trip-Delay-Constant option is used then the time potential
is increased when transitioning trough a Departure state by at least

ε := min
c∈C

carrtime − cdeptime

where C is the set of all connections. The minimum exists because C is finite and non-empty. If the
Trip-Delay-Random-option is used then the choice for ε is more complicated:

ε := min
c∈C

ddep∈D
darr∈D

cdeptime+ddep<carrtime+darr

carrtime + darr − cdeptime − ddep

where D is the set of valid delays. The set over which we compute the minimum is not empty
because we can indicate an element in it (set ddep = 0, darr = 0 and c to some element in C). Further
it is finite because C and D are finite. Hence it has a minimum.
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enumerate all state ;
sort the states topologically ;
for all states s decreasingly do

Compute the M.E.A.T. m ;
store m ;

construct the start state decision graph using the stored M.E.A.T. ;
output this decision graph ;

Figure 8: Dynamic Program

The termination proof holds only for finite networks. See section 3.6.4 for an example where the
recursive program would not terminate as the minimum decision graph is infinite.

3.6.2 Dynamic Program

In this section we turn the recursive program into a dynamic one. Let us recall that a query consists
of a start stop, a start time and a target stop. Our dynamic program starts by enumerating all the
possible states and then sorts them topologically. We use a special topological sorting that can be
constructed using the time potential. For the given target stop we compute the M.E.A.T. to it from
every other state. We first compute the M.E.A.T. of the states at the end of the topological sorting.
These states do not depend on any other states. Next we compute the states before these. They
only rely on the M.E.A.T. of states that have already been computed. This way we never have to
make a recursive function call. Once all the M.E.A.T. are computed we construct and output the
decision graph of the (start-stop, start-time)-Stand-at-Stop-state. See Figure 8 for an overview
over the basic program. Note that this algorithm determines the M.E.A.T. for every decision graph
that ends at the target stop. It is therefore an all-to-one algorithm.

3.6.3 Topological Sorting using the Time Potential

In this section we show how to topologically sort the states using the time potential. We want to
assign an index to every state such that all valid next states have a higher index. We first sort the
states in ascending order by their time potential. We then sort all states with the same time potential
by their class. The order on the classes is given by May-Exit < Arrival < Walk-to-Stop <
Stand-at-Stop < Deciding-Next-Train < Deciding-Exit < Departure. When removing
the out-arc of the Departure-state, this order is basically a topological sort of the graph given
in Figure 7. The key idea is that the removed transition strictly increases the time potential and
therefore no state (indirectly) depends on itself. We claim that the order of the states constructed
in this way is a topological one.

First sorting by time potential and then by state class yields a topological sort of the states.
Consider two states q and q′ where q′ is a (direct) next valid state of q. It is sufficient to show

that q is ordered before q′. We denote by t and t′ their time potentials. One of the following cases
must be true:

1. t < t′: If this is the case then q is ordered before q′ just as wanted.

2. t = t′ and q is not in the Departure-class: The time potentials are equal and therefore the
order of q and q′ is given by the order on the classes which sorts the states as needed.

3. t = t′ and q is in the Departure-class: This can not happen because all the valid next states
of a Departure-state have time potential that is bigger by at least some constant ε > 0. See
the proof of termination theorem 3.6.1 for the exact value of ε.

4. t > t′: This can not happen because it violated the time potential definition.
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s

x y

t

3:00 → 4:00

1:00 → 2:00

0:30 → 1:00

3:00 → 4:00

2:30 → 3:00

Figure 9: The user wants to get from s to t. The start time is 3:00. The time period is 4 hours.
A train has a maximum delay of 40 min. The chance that the delay is less than 30 min is p. The
trains always depart on time.

3.6.4 Problems with Infinite Extensions

In this section we considers periodic networks. The proof of termination Theorem 3.6.1 uses the
fact that only finite networks are considered. This is certainly valid but seems more restrictive than
needed. We show that it is not the case and that finiteness is a key ingredient.

Consider the periodic network illustrated in figure 9. We show that it admits no finite optimal
decision graph. It is obvious that every decision graph must first tell the user to take the s → x
connection. After that the decision graphs differ. Discarding obviously suboptimal decision graphs
there remain two candidates:

1. The user tries to get the x → t connection and succeeds with probability p. If this does
not work, he waits a period and then takes the x→ t. As the waiting time far exceeds the
maximum delay he succeeds with certainty. The M.E.A.T. m1 is

m1 = p · 5 + (1− p) · 9 = −4p+ 9

2. The user tries to get the x→ t connection and succeeds with probability p. If this does not
work he uses the x→ y connection with certainty. Now he tries to get the y → t connection
with probability p. If this again fails he uses the y → x connection. We can recursively define
the M.E.A.T. m2 as

m2 = p · 5 + p (1− p) · 9 + (1− p)2m2

which can be solved for m2:

m2 =
9p− 14

p− 2

The M.E.A.T. are the same for p = 1 and otherwise m2 is always smaller. Consequently, the decision
graph with the infinite number of nodes is optimal for p 6= 1.

It is possible to turn this decision graph into a finite cyclic one by reducing the moments in
time stored in the states modulo the time period. However even this does not lead to any obvious
algorithm to compute the M.E.A.T. nor the decision graph. We know of no algorithm capable of
solving the M.E.A.T. problem for periodic networks.

3.7 Minimum Expected Arrival Time Algorithm

In this section, we propose an algorithm to efficiently solve the M.E.A.T.-problem for one of the
simpler models introduced in the previous section. All connections have an independent random
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cdepstop

carrstop

cdeptime

carrtime

carrtime + cmaxdelay

Figure 10: How a connection is represented.

a

t1

t2

t3 t4

t5 t6

Figure 11: A stop with one incoming and four departing connections.

positive delay at their arrival. We suppose that the delay at the departure is negligible. The goal
is to compute a decision graph that has a minimum expected arrival time at a given target stop.
This corresponds to the usage of the Departure-on-Time, Exit-at-Train-Enter, Trip-Delay-
Random and Stop-Delay-Reset options. We first illustrate a simplified variant of this problem
setting to give an intuition about the problem. We then simplify the formulas introduced in the
previous Section and construct an algorithm to solve this problem that is nearly identical to the
backward profile algorithm introduced in Task 3.3. The only difference is the evaluation function of
step functions. Finally, we describe how to generate the diagrams such as those shown in Figure 5.

3.7.1 Problem and Algorithm Illustration

The goal of this section is to give an intuition about the problem setting and the algorithm. For
this reason we only consider a vastly simplified variant. Suppose that there are no footpaths, no
minimum change times and all trips are composed of a single connection. We represent a connection
c as illustrated in Figure 10. The horizontal axis is the time. Left is an early moment and right a
later one. Every stop is identified using a horizontal line. The name of a stop is indicated at the
right of its line. The left end of a stop’s line represents an early moment at that stop whereas the
right end represents a later one. Connections are represented using triangles. They depart at their
departure stop precisely at cdeptime and arrive some time between carrtime and carrtime + cmaxdelay

at the target stop. The top edge of the triangle represents the user being at cdeptime at the stop
cdepstop and the bottom side him being at carrstop in some given interval. We do not only know that
the user arrives within [carrtime, carrtime + cmaxdelay] but we also know the probability of him having
a specific delay even though the figure does not indicate this.

The problem variants considered in this section are equivalent to selecting a subset of connections.
The user is always supposed to take the next possible connection out of this subset. Given the delay
distributions it is possible to compute an expected arrival time. Consider the situation illustrated in
Figure 11. The user arrives at a stop a some time between t1 and t5 and there are four departing
connections that he can take. If the first and the second departing connections are in the subset
then the user takes the first if he arrives between t1 and t2 and the second one if he arrives between
t2 and t3. If only the second one is in the subset then he takes that one if he arrives between t1 and
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time

st
op

s

tstarttime

sstartstop

a

b

c

d e

stargetstop

Figure 12: A timetable extract. The blue connections are in the decision graph. The red ones are
not.

t3. Note that the fourth departing connection must always be in the subset because otherwise the
user would be not be able to depart from the stop if he arrived between t4 and t5. Suppose that the
expected arrival time is know for each of the departing connections then it is possible to compute
the expected arrival time for the incoming connection given a subset choice. Suppose that t is the
arrival time of the user and e1, e2, e3 and e4 are the expected arrival times of the four departing
connections. Further suppose that the first, third and the fourth departing connections are in the
subset. Then the expected arrival time of the incoming connection is

P [t1 ≤ t ≤ t2] e1 + P [t2 < t ≤ t4] e3 + P [t4 < t ≤ t5] e4 .

If only the second and the fourth connections were in the subset then the expected arrival time was

P [t1 ≤ t ≤ t3] e2 + P [t3 < t ≤ t5] e4 .

Suppose that we did not select the fourth connection. In this case he could not leave the stop if he
arrives after t4. We defined the arrival time to be +∞ in this case. As the chance of this happening
is not zero (even though it might be very small) the expected arrival time would become +∞. Even
selecting every other departure results in +∞.

P [t1 ≤ t ≤ t2] e1 + P [t2 < t ≤ t2] e2 + P [t3 < t ≤ t4] e3 + P [t4 < t ≤ t5]∞ = +∞

This is the case regardless of how unlikely it is that the user arrives that late. There must always be
a way for him to get away from the stop. Note that because all the connections depart on time it is
possible to compute the subset that results in the minimum expected arrival time without iterating
over all possible subsets. We already observed that the fourth connection must be in the subset. The
third connection is in the subset exactly if e3 < e4, the second if e2 < min {e3, e4} and the first if
e1 < min {e2, e3, e4}. Basically a connection is dominated if it is not better than another connection
that departs later. Our algorithm stores for every stop a dominated list of the departing connection
along with their expected arrival time. This allows to quickly evaluate the expected arrival time
of any incoming connection. Now consider the timetable extract in Figure 12. The user is at the
start stop sstartstop at the moment tstarttime and wants to get to the target stop spt . We want to
generate a decision graph for him. In the example above all connection in the decision graph are
represented in blue whereas those that are not in it are red. The leftmost connection is not in the
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decision graph because it departs before the user arrives at the start stop. The journey along stop d
has a high chance of being faster than the one along stop e but it also has a low chance of the user
not being able to get away from d and therefore the journey along stop e is preferred.

3.7.2 Formula Simplification and Algorithm

First let us recall the relevant formulas. We denote by α the M.E.A.T. of a Stand-at-Stop state,
by β the one of a Deciding-Next-Train state, by γ the one of a Deciding-Exit state, by δ the
one of a Departure state, by ε the one of a May-Exit state, by ζ the one of a Arrival state and
by η the one of a Walk-to-Stop state.

α(t, s) =

{
t if s = spt
β (t, s, {c 7→ 0}) otherwise

β(s, t,Ne) = min

 min
c∈Cs,1

t≤cdeptime+Ne(c)

{γ(c,Ne(c))} , min
c∈Cs,2

t≤cdeptime

{∑
d∈D

hc(d)γ(c, d)

}
γ(c, d) = min

e
δ(c, d, e)

δ(c, dold, e) =
∑

dnew∈D
Pr(c, dold, dnew)ε(c, dnew, e)

ε(c, d, e) = ζ(c, d, e) if c 6= e

ε(c, d, e) = η(carrtime + d, carrstop) if c = e

ζ(c, d, e) = δ(cnext, 0, e)

η(t, s) = min

{
α(t+ sminchange, s),

minx∈Fs
α(t+ sminchange + xdur + (xarrstop)minchange, xarrstop)

}
There are a lot of constants in this system and therefore it can greatly be simplified. We make

use of the facts that Ne(c) = 0, Cs,2 = ∅ and Cs,1 = Cs and get:

α(t, s) =

{
t if s = spt
β (t, s, {c 7→ 0}) otherwise

β(s, t, {c 7→ 0}) = min
c∈Cs

t≤cdeptime

γ(c, 0)

γ(c, 0) = min
e
δ(c, 0, e)

δ(c, 0, e) =
∑

dnew∈D
Pr(c, 0, dnew)ε(c, dnew, e)

ε(c, d, e) = ζ(c, d, e) if c 6= e

ε(c, d, e) = η(carrtime + d, carrstop) if c = e

ζ(c, d, e) = δ(cnext, 0, e)

η(t, s) = min

{
α(t+ sminchange, s),

minx∈Fs
α(t+ sminchange + xdur + (xarrstop)minchange, xarrstop)

}
By inlining β and ζ and eliminating constant zero parameters this can be simplified to:
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α(t, s) =

t if s = spt
min c∈Cs

t≤cdeptime

γ(c) otherwise

γ(c) = min
e
δ(c, e)

δ(c, e) =
∑

dnew∈D
Pr(c, 0, dnew)ε(c, dnew, e)

ε(c, d, e) = δ(cnext, e) if c 6= e

ε(c, d, e) = η(carrtime + d, carrstop) if c = e

η(t, s) = min

{
α(t+ sminchange, s),

minx∈Fs
α(t+ sminchange + xdur + (xarrstop)minchange, xarrstop)

}
We show that δ does not depend on the exact value of c. More formally we show that: For all

connections x, y, z that are in the same trip, where y is the connection directly after x and z is some
connection after y, it holds that δ(x, z) = δ(y, z).

The key idea is that the delays are reset after one connection and therefore do not propagate.

δ(x, z) =
∑
d∈D

Pr(x, 0, d)ε(x, d, z)

=
∑
d∈D

Pr(x, 0, d)δ(y, z) because x 6= z

= δ(y, z)
∑
d∈D

Pr(x, 0, d)︸ ︷︷ ︸
=1

= δ(y, z)

Using this lemma we show the following lemma: For all consecutive connections x and y it holds
that γ(x) = min {γ(y), δ(x, x)}.

Consider all the connections c1c2 . . . cn that follow x in the same trip with x = c1 and y = c2.
We can write γ(x) as

γ(x) = min
i∈{1...n}

δ(x, ci)

= min {δ(c1, c1), δ(c1, c2), . . . , δ(c1, cn)}
= min {δ(c1, c1), δ(c2, c2), . . . , δ(c2, cn)} using Lemma 3.7.2

= min {δ(c1, c1),min {δ(c2, c2), . . . , δ(c2, cn)}}
= min {δ(c1, c1), γ(c2)}
= min {δ(x, x), γ(y)}

Using this lemma allows us to reformulate γ as

γ(c) = min {γ(cnext), δ(c, c)}

= min

{
γ(cnext),

∑
d∈D

Pr(c, 0, d)ε(c, d, c)

}

= min

{
γ(cnext),

∑
d∈D

Pr(c, 0, d)η(carrtime + d, carrstop)

}
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and that allows us to reduce the system to

α(t, s) =

t if s = spt
min c∈Cs

t≤cdeptime

γ(c) otherwise

γ(c) = min

{
γ(cnext),

∑
d∈D

Pr(c, 0, d)η(carrtime + d, carrstop)

}
where γ(cnext) = +∞ if cnext = ⊥

η(t, s) = min

{
α(t+ sminchange, s),

minx∈Fs α(t+ sminchange + xdur + (xarrstop)minchange, xarrstop)

}
At first these transformations seem to lead nowhere, however, the structure of the corresponding

dynamic program (as described in Section 3.6.2) is now very similar to the profile Connection Scan
algorithm described in Deliverable D3.3. The expression η(t, s) is a step function (for a fixed s)
which can be interpreted as a profile mapping the departure time at s onto the minimum expected
arrival time at the target stop. Similarly the earliest trip arrival time is replaced by a minimum
expected trip arrival time and corresponds to γ(c). Note that the datastructures are exactly the
same. The dynamic program introduced in section 3.6.2 visits the states using a topological ordering.
Recall that ordering the connections by departure time yields such an ordering and therefore the
adapted profile algorithm is an optimized variant of the dynamic program. The adapted profile
algorithm is therefore correct.

There are two differences to the backward profile algorithm. The first is how the user is allowed
to end his journey. The backward profile algorithm does not account for the minimum change time
at the target stop and it supposes that the final connection arrives on time. The equation system
accounts for the minimum change time at the target stop and supposes that the arrival time can be
delayed. Both of these differences are minor and can be fixed by initializing the arrival time for
connections that arrive at the target stop with

carrtime +

 ∑
d∈D

d≤dmax

Pr(c, 0, d)

+ (spt)

instead of only carrtime.
The second difference is that the evaluation of the step functions is replaced by the computation

of an expected value. Fortunately this is also an easy operation on step functions. We start by
computing the distribution function of Pr, i.e.,

Pc(dmax) =
∑
d∈D

d≤dmax

Pr(c, 0, d) .

This allows us to sum up the probabilities in a given interval in constant time using∑
d∈D

d≤dmax
d>dmin

Pr(c, 0, d) = Pc(dmax)− Pc(dmin) .

Consider some stop s, some connection c and some moment in time x. The goal is to evaluate∑
d∈D Pr(c, 0, d)η(x+ d, s). We denote by (d1, a1) . . . (dn, an) the list of jumps that corresponds to

η(·, s). Recall that di < di+1, ai < ai+1 and (dn, an) = (+∞,+∞) must hold. Determine the first
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Recall that for every step function an array of jumps (d1, a1) . . . (dn, an) is stored and that enough
memory has been allocated to extend it at the beginning.

i← 1;
while di < x do

i← i+ 1;

p← Pc(di − x);
t← p · ai;
while p 6= 1 do

i← i+ 1;
p′ ← Pc(di − x);
t← t+ (p′ − p) · ai;
p← p′;

return t ;
Procedure evaluate(x)

Figure 13: evaluation operation for M.E.A.T. algorithm

jump after x, i.e., the smallest i such that x ≤ di. This allows use to compute the needed expression
as ∑

d∈D
Pr(c, 0, d)η(x+ d, s) = Pc(di − x) · ai +

∑
j∈{i+1...n}

(Pc(dj − x)− Pc(dj−1 − x)) · aj .

Algorithm 13 illustrates how this formula can evaluated in pseudo-code. The pseudo-code of the
remaining parts of the algorithm are identical to the backward profile algorithm.

3.7.3 Delay Distribution Functions

The probability distributions we use are solely parametrized in this value. In this section we present a
number of ways to define the distribution function Pc. Recall that Pc(x) = 0 for x < 0 and Pc(x) = 1
for x ≥ cmaxdelay is required. Further every distribution function must further be strictly ascending.
We only indicate the values for delays x with 0 ≤ x < cmaxdelay. We evaluate the following options:

1. The distribution function is constant. Strictly speaking this choice is not even valid but it
certainly is the function that can be evaluated the fastest.

Pc(x) = 0.5

2. The distribution function grows linearly, i.e.,

Pc(x) = 0.5 +
x

2cmaxdelay

3. The distribution function follows an exponential law. We use

Pc(x) = 1− 0.4 · exp

(
− 15x

4cmaxdelay

)
.

This choice is largely inspired by Disser et al. [11]. They use

s− exp
(

ln (1− a)− x

b

)
with a = 0.6, b = 8 and s = 0.99. We round s to 1 and observe that for x = 30 the function is
nearly 1. After a few simplifications our function is obtained.
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Table 2: Size figures for our timetables.

Figures London Germany Europe

Stops 20 843 6 822 30 517
Trips 125 537 94 858 463 887
Connections 4 850 431 976 678 4 654 812
Footpaths 45 652 0 0

Table 3: Evaluating pCSA-P for the MEAT problem on all instances.

Max. Delay Decision Graph All-To-One One-To-One One-To-One
Network [min] # Stops # Arcs Time [ms] Time [ms] Dis. Time [ms]

Germany 30 8 19 68.1 31.0 24.6
Europe 30 20 46 205.0 169.0 112.0
London 10 2 724 30 243 668.0 491.0 272.0

4. A discretized exponential distribution function. This is nearly the same function as number 3
but it is discretized with 30 interpolation points. The only advantage of this approach over
number 3 is that it can be evaluated faster.

3.8 Experiments

We ran experiments pinned to one core of a dual 8-core Intel Xeon E5-2670 clocked at 2.6 GHz, with
64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. We compiled our C++ code
using g++ 4.7.1 with flags -O3 -mavx.

We consider three realistic inputs whose sizes are reported in Table 2. They are also used
in [8, 13, 10], but we additionally filter them for (obvious) errors, such as duplicated trips and
connections with non-positive travel time. Our main instance, London, is available at [27]. It
includes tube (subway), bus, tram, Dockland Light Rail (DLR) and is our only instance that also
includes footpaths. However, it has no minimum change times. The German and European networks
were kindly provided by HaCon [15]. Both have minimum change times. The German network
contains long-distance, regional, and commuter trains operated by Deutsche Bahn during the winter
schedule of 2001/02. The European network contains long-distance trains, and is based on the winter
schedule of 1996/97. To account for overnight trains and long journeys, our (aperiodic) timetables
cover one (London), two (Germany), and three (Europe) consecutive days.

We ran for every experiment 10 000 queries with source and target stops chosen uniformly at
random. Departure times are chosen at random between 0:00 and 24:00 (of the first day). We
report the running time and the number of label comparisons, counting an SSE operation as a single
comparison. Note that we disregard comparisons in the priority queue implementation.

3.8.1 Minimum Expected Arrival Time.

In Table 3 we present figures for the MEAT problem on all instances. Besides running time, we also
report output complexity in terms of number of stops and arcs of the decision graph (see Figure 5 for
an example). Real world delay data was not available to us. Hence, we follow Disser et al. [11] and
assume that the probability of a train being delayed by t minutes (or less) is 0.99− 0.4 · exp(−t/8).
After 30 min (10 min on London) we set this value to 1. Moreover, we also evaluate performance when
discretizing the probability function at 60 equidistant points [11]. We run pCSA-P on 10 000 random
queries and evaluate both the all-to-one and one-to-one (with earliest arrival pruning enabled)
setting. Regarding output complexity, on the German and European networks the resulting decision
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graphs are sufficiently small to be presented to the user. They consist of 8 stops and 19 arcs on
average (Germany), roughly doubling on Europe. However, for London these figures are impractically
large, increasing to 2 724 (stops) and 30 243 (arcs). Note that in a dense metropolitan network (such
as London), trips operate much more frequently, therefore, many more alternate (and fall-back)
journeys exist. These must all be captured by the output.

3.9 Conclusion and Outlook

We have successfully formalized the problem of computing robust journeys as the minimum expected
arrival time (M.E.A.T.) problem. We have further shown that the problem can be solved efficiently
even on large metropolitan areas such as London. The next step is to make it scale to even larger
networks such as the complete transit network of Germany including not only the already evaluated
long distance trains but also every single tram and bus. This network is significantly larger than
the London network we considered up to now. We believe that this is not going to be possible
without precomputing auxilary information in an offline phase. However, before we can make use of
such techniques to solve the M.E.A.T. problem we will first have to incorporate them into the the
algorithmic foundation on which we built our existing M.E.A.T. solver, i.e., the Connection Scan
algorithm introduced in Task 3.3.
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