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Summary
In this deliverable we report on our progress in designing new models and algorithmic solutions
to multimodal route-planning. We identify the core algorithmic challenges that arise for fully-
multimodal urban networks. These are: Modelling issues and better solutions to subproblems;
Preprocessing flexible enough for user-defined path constraints; Capturing the richness of “best”
solutions in fully-multimodal networks. We then propose several interesting new approaches to these
challenges and extensively test our algorithms on benchmark data from, e. g., Deliverable D3.2. A
selection of these solutions will be integrated by project partners in WP5 and extensively evaluated
during the pilot in Berlin.

D3.3.2: Page 3 of 49



FP7-ICT-2011-7 288094 - eCOMPASS

Contents
1 Introduction 5

2 Problem Statement and Related Work 6

3 Subproblems: New Approaches 7
3.1 A Simple and Fast Approach to Public Transit Routing . . . . . . . . . . . . . . . . 7

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Basic Connection Scan Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 User-Constrained Multimodal Route Planning 13
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Path Constraints on the Sequences of Transport Modes . . . . . . . . . . . . 15
4.1.3 Contraction Hierarchies (CH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Contraction Hierarchies for Multimodal Networks . . . . . . . . . . . . . . . . 17
4.2.2 UCCH: Contraction for User-Constrained Route Planning . . . . . . . . . . . 17
4.2.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1 Evaluating Average Core Degree Limit . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3 Query Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Multi-Criteria Search: Finding (All) the Good Options 24
5.1 Computing and Evaluating Multimodal Journeys . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Multiobjective Route Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 Graph structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 The heuristic algorithm NAMOA* . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.3 Computing heuristic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.4 Extensions of NAMOA* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusions and Plans for Next Periods 43

D3.3.2: Page 4 of 49



FP7-ICT-2011-7 288094 - eCOMPASS

1 Introduction
The aim of this deliverable is to document the results of Task 3.3. It describes the models and
solutions developed, including extensive experimental validation thereof.

Background. The aim of Work Package WP3 is to provide novel methods for environmentally
friendly routes in urban public transportation networks. In particular, the goal is to develop
mathematical sound models for various (context-aware) route-planning scenarios arising in the
field of urban human mobility for city residents, commuters and tourists, as well as to provide
algorithmic methods for multimodal routes in urban transportation networks with respect to multiple
criteria and high robustness with a strong focus on the environmental footprint of these routes.
Algorithms and methods developed within this work package will be implemented and an extensive
experimental evaluation regarding performance and quality will be conducted following the Algorithm
Engineering [79] paradigm. This paradigm differs from traditional Algorithmic Design in Theoretical
Computer Science in several key factors: instead of deriving asymptotic bounds of a given algorithm
for worst-case inputs on abstract machine models, typical and realistic instances are examined on
real machines to measure the practical performance of the implementation of a given algorithm.
Also, the results of this experimentation are analyzed and used to guide the design of the algorithm,
the improvement of which is then again experimentally verified in a continuing feedback loop.

Objectives and Scope of Deliverable D3.3. Research on route planning algorithms in trans-
portation networks has undergone a rapid development over the last years. See [33] for an overview.
Usually the network is modeled as a directed graph G. While Dijkstra’s algorithm can be used to
compute a best route between two nodes of G in almost linear time [51], it is too slow for practical
applications in real-world transportation networks. Such applications are confronted with millions
of queries per hour [55], while the considered networks consist of several million nodes and we
expect almost instant results. Thus, over the years a multitude of speedup techniques for Dijkstra’s
algorithm were developed, all following a similar paradigm: In a preprocessing phase auxiliary data
is computed which is then used to accelerate Dijkstra’s algorithm in the query phase. The fastest
techniques today can answer a single query within only a few memory accesses [1]. However, most
of the techniques were developed with one type of transportation network in mind. In fact, the
fastest techniques developed for road networks heavily rely on structural properties of these and
their performance degrades significantly on other networks [11, 16].

In the real world different modes of travel are linked extensively, and realistic transportation
scenarios imply frequent modal changes. Furthermore, with the increasing appearance of electric
vehicles and their inherent range restrictions, the choice between taking the car and public transit
will become more important. To solve such scenarios we are interested in an integrated system that
can handle multiple transportation networks with a single algorithm.

The goal of Task 3.3 is the development of new models and solutions to route planning in
multimodal urban transportation networks; results will be integrated by partners in WP5 and tested
in the pilot within the scope of WP6. Within Task 3.3, we have achieved a better understanding of
the algorithmic nature of route planning for multimodal urban transportation networks. The research
done so far in WP3 has led to several peer-reviewed scientific publications as well as several pending
publications (c. f. Technical Reports ECOMPASS-TR-003, ECOMPASS-TR-005, ECOMPASS-
TR-006, ECOMPASS-TR-011, ECOMPASS-TR-013, ECOMPASS-TR-019, ECOMPASS-TR-21,
ECOMPASS-TR-022).

Outline. Section 2 gives an overview of recent state-of-the-art as well as the challenges we aim to
address. Section 3 discusses new solutions to subproblems of the fully-multimodal route planning
problem, while Section 4 reports on our progress towards acceleration techniques for multimodal
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networks. In Section 5 we discuss how to capture all the good solutions that a fully-multimodal
network offers. Section 6 concludes with future directions.

2 Problem Statement and Related Work
Online services for journey planning have become a commodity used daily by millions of commuters.
The problem of efficiently computing good journeys in transportation networks presents several
algorithmic challenges, and has been an active area of research in recent years. Much focus has been
given to the computation of routes both in road networks [2, 25, 33, 47, 58, 82] and in scheduled-based
public transit [11, 13, 19, 23, 32, 39, 71, 73, 81], but these are often considered separately. In practice,
however, users want an integrated solution that can find the “best” way to get to their destination
considering all available modes of transportation. Within a metropolitan area, this includes buses,
trains, driving, cycling, taxis, and, of course, walking. We refer to this as the multimodal route
planning problem.

In fact, any public transportation network necessarily has a multimodal component, since journeys
require some amount of walking. Existing solutions [13, 19, 28, 32, 39] handle this by predefining
transfer arcs between nearby stations, and running a search algorithm on the public transit network
to find the “best” journey. Unlike in road networks, however, defining “best” is not straightforward.
For example, while some people want to arrive as early as possible, others are willing to spend a
little more time to avoid extra transfers. Most recent approaches to public transportation route
planning therefore compute the Pareto set [56] of non-dominating journeys optimizing multiple
criteria, which is practical even for large metropolitan areas [32, 73], when relying on very short,
predefined walking transfer arcs and a small subset of interesting criteria (e. g., arrival time and
number of transfers).

Challenges. Extending current solutions to a full multimodal scenario (with unrestricted walking,
biking, and taxis) may seem trivial at first: One could just incorporate routing techniques for road
networks [25, 47, 58] and public transportation techniques [13, 19, 28, 32, 36, 39] to solve the new
subproblems. However, three types of algorithmic challenges remain.

Better Solutions to Subproblems on Subnetworks. Preprocessing-based techniques for
computing point-to-point shortest paths have been very successful on road networks [33, 82], but
their adaption to public transit networks [13, 44] is harder than expected [11, 17, 18]. In parts this
is due to the inherent time-dependency of public transit networks as well as the fact that they are,
in general, less hierarchically well-structured. While solutions to public transit route planning in
metropolitan areas are now reasonably fast [32, 36] ( the latter of which was developed within the
scope of Task 3.3 and is presented in Section 3.1) we are still far from being able to solve queries at
a global scale (unlike for road networks).

User Constraints. In a fully-multimodal network, not every fastest path is feasible: on a
long train ride from, e. g., Karlsruhe to Nantes, taking a private car between train stations, e. g.
in Paris, might look like a good idea (in terms of travel time)—but most likely the user will not
have access to one. When designing preprocessing schemes for multimodal route planning, such
path constraints have to be considered, preferably by considering a user’s modal preferences: Not
every mode of transport might be available or preferable for him at any point along the journey.
In general, the user has restrictions on the sequence of transport modes. For example, some users
might be willing to take a taxi between two train rides if it makes the journey quicker. Others prefer
to use public transit at a stretch. For some users, such preferences might be subject to change over
time. A realistic multimodal route-planning system must handle such constraints as a user input for
each query.
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Capturing the Diversity of Solutions. Multimodal urban transportation networks offer
a rich set of travel possibilities. Just optimizing for the fastest journey, even if it adheres to
feasibility constraints, does not capture the diversity of solutions. This is not only true because
single subnetworks offer multi-criteria solutions (e.,g., in public transit you find journeys trading-off
travel time and number of transfers), but also because there are trade-offs between different modes
of transportation.

We conjecture that meaningful multimodal optimization needs to take more criteria into account,
such as walking duration and costs. Some people are happy to walk 10 minutes to avoid an
extra transfer, while others are not. In fact, some will walk half an hour to avoid using public
transportation at all. Taking a taxi all the way to the airport is a good solution for some; users on a
budget may prefer a cheaper solution.

3 Subproblems: New Approaches
3.1 A Simple and Fast Approach to Public Transit Routing
The problem of computing “best” journeys in public transportation networks comes in several
variants [72]: The simplest, called earliest arrival, takes a departure time as input, and determines a
journey that arrives at the destination as early as possible. If further criteria, such as the number of
transfers, are important, one may consider multi-criteria optimization [32, 39]. Finally, a profile
query [28, 32] computes a set of optimal journeys that depart during a period of time (such as
a day). Traditionally, these problems have been solved by (variants of) Dijkstra’s algorithm on
an appropriate graph model. Well-known examples are the time-expanded and time-dependent
models [28, 44, 72, 77]. Recently, Delling et al. [32] introduced RAPTOR. It solves the multi-criteria
problem (arrival time and number of transfers) by using dynamic programming directly on the
timetable, hence, no longer requires a graph or a priority queue.

In this section, we present the Connection Scan Algorithm (CSA). In its basic variant, it solves
the earliest arrival problem, and is, like RAPTOR [32], not graph-based (c f. [28, 44, 72, 77]).
However, it is not centered around routes (as RAPTOR), but elementary connections, which are
the most basic building block of a timetable. CSA organizes them as one single array, which
it then scans once (linearly) to compute journeys to all stops of the network. The algorithm
turns out to be intriguingly simple with excellent spatial data locality. We also extend CSA to
handle multi-criteria profile queries: For a full time period, it computes Pareto sets of journeys
optimizing arrival time and number of transfers. We extend CSA to handle these queries very
efficiently. Moreover, we do not make use of heavy preprocessing, thus, enabling dynamic scenarios
including train cancellations, route changes, real-time delays, etc. Our experiments on the dense
metropolitan network of London validate our approach. With CSA, we compute earliest arrival
queries in under 2ms, and multi-criteria profile queries for a full period in 221ms—faster than
previous algorithms.

Outline Section 3.1.1 sets necessary notion, and Section 3.1.2 presents our new algorithm. Sec-
tion 3.1.3 extends it to multi-criteria profile queries. The experimental evaluation is available in
Section 3.1.4, while Section 3.1.5 contains concluding remarks. Note that Deliverable D3.4 reports
on an extension of our algorithm to robust route planning in stochastic scenarios.

3.1.1 Preliminaries

Our public transit networks are defined in terms of their aperiodic timetable, consisting of a set of
stops, a set of connections, and a set of footpaths. A stop p corresponds to a location in the network
where a passenger can enter or exit a vehicle (such as a bus stop or train station). Stops may have
associated minimum change times, denoted τch(p), which represent the minimum time required to
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change vehicles at p. A connection c models a vehicle departing at a stop pdep(c) at time τdep(c) and
arriving at stop parr(c) at time τarr(c) without intermediate halt. Connections that are subsequently
operated by the same vehicle are grouped into trips. We identify them by t(c). We denote by cnext
the next connection (after c) of the same trip, if available. Trips can be further grouped into routes.
A route is a set of trips serving the exact same sequence of stops. For correctness, we require trips of
the same route to not overtake each other. Footpaths enable walking transfers between nearby stops.
Each footpath consists of two stops with an associated walking duration. Note that our footpaths
are transitively closed. A journey is a sequence of connections and footpaths. If two subsequent
connections are not part of the same trip, their arrival-departure time-difference must be at least the
minimum change time of the stop. Because our footpaths are transitively closed, a journey never
contains two subsequent footpaths.

In this paper we consider several well-known problems. In the earliest arrival problem we are
given a source stop ps, a target stop pt, and a departure time τ . It asks for a journey that departs
from ps no earlier than τ and arrives at pt as early as possible. The profile problem asks for the set
of all earliest arrival journeys (from ps to pt) for every departure at ps. Besides arrival time, we
also consider the number of transfers as criterion: In multi-criteria scenarios one is interested in
computing a Pareto set of nondominated journeys. Here, a journey J1 dominates a journey J2 if it is
better with respect to every criterion. Nondominated journeys are also called to be Pareto-optimal.
Finally, the multi-criteria profile problem requests a set of Pareto-optimal journeys (from ps to pt)
for all departures (at ps).

Usually, these problems have been solved by (variants of) Dijkstra’s algorithm on an appropriate
graph (representing the timetable). Most relevant to our work is the realistic time-expanded
model [77]. It expands time in the sense that it creates a vertex for each event in the timetable (such
as a vehicle departing or arriving at a stop). Then, for every connection it inserts an arc between its
respective departure/arrival events, and also arcs that link subsequent connections. Arcs are always
weighted by the time difference of their linked events. Special vertices may be added to respect
minimum change times at stops. See [72, 77] for details.

3.1.2 Basic Connection Scan Algorithm

We now introduce the Connection Scan Algorithm (CSA), our approach to public transit route
planning. We describe it for the earliest arrival problem and extend it to more complex scenarios
in Sections 3.1.3. Our algorithm builds on the following property of public transit networks: We
call a connection c reachable iff either the user is already traveling on a preceding connection
of the same trip t(c), or, he is standing at the connection’s departure stop pdep(c) on time, i. e.,
before τdep(c). In fact, the time-expanded approach encodes this property into a graph G, and then
uses Dijkstra’s algorithm to obtain optimal sequences of reachable connections [77]. Unfortunately,
Dijkstra’s performance is affected by many priority queue operations and suboptimal memory access
patterns. However, since our timetables are aperiodic, we observe that G is acyclic. Thus, its arcs
may be sorted topologically, e. g., by departure time. Dijkstra’s algorithm on G, actually, scans (a
subsequence of) them in this order.

Instead of building a graph, our algorithm assembles the timetable’s connections into a single
array C, sorted by departure time. Given source stop ps and departure time τ as input, it maintains
for each stop p a label τ(p) representing the earliest arrival time at p. Labels τ(·) are initialized to
all-infinity, except τ(ps), which is set to τ . The algorithm scans all connections c ∈ C (in order),
testing if c can be reached. If this is the case and if τarr(c) improves τ(parr(c)), CSA relaxes c by
updating τ(parr(c)). After scanning the full array, the labels τ(·) provably hold earliest arrival times
for all stops.

Reachability, Minimum Change Times and Footpaths. To account for minimum change
times in our data, we check a connection c for reachability by testing if τ(pdep(c)) + τch(pdep(c)) ≤
τdep(c) holds. Additionally, we track whether a preceding connection of the same trip t(c) has been
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used. We, therefore, maintain for each connection a flag, initially set to 0. Whenever the algorithm
identifies a connection c as reachable, it sets the flag of c’s subsequent connection cnext to 1. Note
that for networks with τch(·) = 0, trip tracking can be disabled and testing reachability simplifies to
τ(pdep(c)) ≤ τdep(c). To handle footpaths, each time the algorithm relaxes a connection c, it scans
all outgoing footpaths of parr(c).

Improvements. Clearly, connections departing before time τ can never be reached and need not
be scanned. We do a binary search on C to identify the first relevant connection and start scanning
from there (start criterion). If we are only interested in one-to-one queries, the algorithm may stop
as soon as it scans a connection whose departure time exceeds the target stop’s earliest arrival time.
Also, as soon as one connection of a trip is reachable, so are all subsequent connections of the same
trip (and preceding connections of the trip have already been scanned). We may, therefore, keep
a flag (indicating reachability) per trip (instead of per connection). The algorithm then operates
on these trip flags instead. Note that we store all data sequentially in memory, making the scan
extremely cache-efficient. Only accesses to stop labels and trip flags are potentially costly, but the
number of stops and trips is small in comparison. To further improve spatial locality, we subtract
from each connection c ∈ C the minimum change time of pdep(c) from τdep(c), but keep the original
ordering of C. Hence, CSA requires random access only on small parts of its data, which mostly fits
in low-level cache.

3.1.3 Extensions

CSA can be extended to profile queries. Given the timetable and a source stop ps, a profile
query computes for every stop p the set of all earliest arrival journeys to p for every departure
from ps, discarding dominated journeys. Such queries are useful for preprocessing techniques, but
also for users with flexible departure (or arrival) time. We refer to the solution as a Pareto set
of (τdep(ps), τarr(pt)) pairs.

In the following, we describe the reverse p–pt-profile query. The forward search works analogously.
Our algorithm, pCSA (p for profile), scans once over the array of connections sorted by decreasing
departure time. For every stop it keeps a partial (tentative) profile. It maintains the property
that the partial profiles are correct wrt. the subset of already scanned connections. Every stop
is initialized with an empty profile, except pt, which is set to a constant identity-profile. When
scanning a connection c, pCSA evaluates the partial profile at the arrival stop parr(c): It asks for the
earliest arrival time τ∗ at pt over all journeys departing at parr(c) at τarr(c) or later. It then updates
the profile at pdep(c) by potentially adding the pair (τdep(c), τ∗) to it, discarding newly dominated
pairs, if necessary.

Maintaining Profiles. We describe two variants of maintaining profiles. The first, pCSA-
P (P for Pareto), stores them as arrays of Pareto-optimal (τdep, τarr) pairs ordered by decreasing
arrival (departure) time. Since new candidate entries are generated in order of decreasing departure
time, profile updates are a constant-time operation: A candidate entry is either dominated by the
last entry or is appended to the array. Profile evaluation is implemented as a linear scan over the
array. This is quick in practice, since, compared to the timetable’s period, connections usually have
a short duration. The identity profile of pt is handled as a special case. By slightly modifying the
data structure, we obtain pCSA-C (C for constant), for which evaluation is also possible in constant
time: When updating a profile, pCSA may append a candidate entry, even if it is dominated. To
ensure correctness, we set the candidate’s arrival time τ∗ to that of the dominating entry. We then
observe that, independent of the input’s source or target stop, profile entries are always generated
in the same order. Moreover, each connection is associated with only two such entries, one at its
departure stop, relevant for updating, and, one at its arrival stop, relevant for evaluation. For each
connection, we precompute profile indices pointing to these two entries, keeping them with the
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connection. Furthermore, its associated departure time and stop may be dropped. Note that the
space consumption for keeping all (even suboptimal) profile entries is bounded by the number of
connections. Following [28], we also collect—in a quick preprocessing step—at each stop all arrival
times (in decreasing order). Then, instead of storing arrival times in the profile entries, we keep
arrival time indices. For our scenarios, these can be encoded using 16 (or fewer) bits. We call this
technique time indexing, and the corresponding algorithm pCSA-CT.

Minimum Change Times and Footpaths. We incorporate minimum change times by evaluat-
ing the profile at a stop p for time τ at τ + τch(p). The trip bit is replaced by a trip arrival time,
which represents the earliest arrival time at pt when continuing with the trip. When scanning a
connection c, we take the minimum of the trip arrival time and the evaluated profile at parr(c). We
update the trip arrival time and the profile at pdep(c), accordingly. Footpaths are handled as follows.
Whenever a connection c is relaxed, we scan all incoming footpaths at pdep(c). However, this no
longer guarantees that profile entries are generated by decreasing departure time, making profile
updates a non-constant operation for pCSA-P. Also, we can no longer precompute profile indices
for pCSA-C. Therefore, we expand footpaths into pseudoconnections in our data, as follows. If pa
and pb are connected by a footpath, we look at all reachable (via the footpath) pairs of incoming con-
nections cin at pa and outgoing connections cout at pb. We create a new pseudoconnection (from pa
to pb, departure time τarr(cin), and arrival time τdep(cout)) iff there is no other pseudoconnection
with a later or equal departure time and an earlier or equal arrival time. Pseudoconnections can be
identified by a simultaneous sweep over the incoming/outgoing connections of pa and pb. During
query, we handle footpaths toward pt as a special case of the evaluation procedure. Footpaths at ps
are handled by merging the profiles of stops that are reachable by foot from ps.

One-to-One Queries. So far we described all-to-one profile queries, i. e., from all stops to the
target stop pt. If only the one-to-one profile between stops ps and pt is of interest, a well-known
pruning rule [28, 72] can be applied to pCSA-P: Before inserting a new profile entry at any stop, we
check whether it is dominated by the last entry in the profile at ps. If so, the current connection
cannot possibly be extended to a Pareto-optimal solution at the source, and, hence, can be pruned.
However, we still have to continue scanning the full connection array.

Multi-Criteria. CSA can be extended to compute multi-criteria profiles, optimizing triples
(τdep(ps), τarr(pt),# t) of departure time, arrival time and number of taken trips. We call this
variant mcpCSA-CT. We organize these triples hierarchically by mapping arrival time τarr(pt) onto
bags of (τdep(ps),# t) pairs. Thus, we follow the general approach of pCSA-CT, but now maintain
profiles as (τarr(pt), bag) pairs. Evaluating a profile, thus, returns a bag. Where pCSA-CT computes
the minimum of two departure times, mcpCSA-CT merges two bags, i. e., it computes their union
and removes dominated entries. When it scans a connection c, # t is increased by one for each entry
of the evaluated bag, unless c is a pseudoconnection. It then merges the result with the bag of
trip t(c), and updates the profile at pdep(c), accordingly. Exploiting that, in practice, # t only takes
small integral values, we store bags as fixed-length vectors using # t as index and departure times as
values. Merging bags then corresponds to a component-wise minimum, and increasing # t to shifting
the vector’s values. A variant, mcpCSA-CT-SSE, uses SIMD-instructions for these operations.

3.1.4 Experiments

We ran experiments pinned to one core of a dual 8-core Intel Xeon E5-2670 clocked at 2.6GHz, with
64GiB of DDR3-1600 RAM, 20MiB of L3 and 256KiB of L2 cache. We compiled our C++ code
using g++ 4.7.1 with flags -O3 -mavx.

We consider three realistic inputs whose sizes are reported in Table 1. They are also used
in [28, 44, 32], but we additionally filter them for (obvious) errors, such as duplicated trips and
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Table 1: Size figures for our timetables including figures of the time-dependent (TD), colored
time-dependent (TD-col), and time-expanded (TE) graph models [28, 72, 77].

Figures London Germany Europe
Stops 20 843 6 822 30 517
Trips 125 537 94 858 463 887
Connections 4 850 431 976 678 4 654 812
Routes 2 135 9 055 42 547
Footpaths 45 652 0 0
Expanded Footpaths 8 436 763 0 0
TD Vertices (Arcs) 97 k (272 k) 114 k (314 k) 527 k (1 448 k)
TD-col Vertices (Arcs) 21 k (71 k) 20 k (86 k) 79 k (339 k)
TE Vertices (Arcs) 9 338 k (34 990 k) 1 809 k (3 652 k) 8 778 k (17 557 k)

connections with non-positive travel time. Our main instance, London, is available at [63]. It
includes tube (subway), bus, tram, Dockland Light Rail (DLR) and is our only instance that also
includes footpaths. However, it has no minimum change times. The German and European networks
were kindly provided by HaCon [55] under a restricted license. Both have minimum change times.
The German network contains long-distance, regional, and commuter trains operated by Deutsche
Bahn during the winter schedule of 2001/02. The European network contains long-distance trains
in Austria, Belgium, Bulgaria, Croatia, Czech Republic, France, Germany, Great Britain, Greece,
Hungary, Italy, Luxembourg, Netherlands, Poland, Romania, Sweden, Slovak Republic, Slovenia,
Switzerland, Turkey, and is based on the winter schedule of 1996/97. To account for overnight
trains and long journeys, our (aperiodic) timetables cover one (London), two (Germany), and
three (Europe) consecutive days.

We ran for every experiment 10 000 queries with source and target stops chosen uniformly at
random. Departure times are chosen at random between 0:00 and 24:00 (of the first day). We
report the running time and the number of label comparisons, counting an SSE operation as a single
comparison. Note that we disregard comparisons in the priority queue implementation.

Earliest Arrival. In Table 2, we report performance figures for several algorithms on the Lon-
don instance. Besides CSA, we ran realistic time-expanded Dijkstra (TE) with two vertices per
connection [77] and footpaths [72], realistic time-dependent Dijkstra (TD), and time-dependent
Dijkstra using the optimized coloring model [28] (TD-col). For CSA, we distinguish between scanned,
reachable and relaxed connections. Algorithms in Table 2 are grouped into blocks.

The first considers one-to-all queries, and we see that basic CSA scans all connections (4.8M),
only half of which are reachable. On the other hand, TE scans about half of the graph’s arcs (20M).
Still, this is a factor of four more entities due to the modeling overhead of the time-expanded
graph. Regarding query time, CSA greatly benefits from its simple data structures and lack of
priority queue: It is a factor of 52 faster than TE. Enabling the start criterion reduces the number
of scanned connections by 40%, which also helps query time. Using trip bits increases spatial
locality and further reduces query time to 9.7ms. We observe that just a small fraction of scanned
arcs/connections actually improve stop labels. Only then CSA must consider footpaths. The second
block considers one-to-one queries. Here, the number of connections scanned by CSA is significantly
smaller; journeys in London rarely have long travel times. Since our London instance does not
have minimum change times, we may remove trip tracking from the algorithm entirely. This yields
the best query time of 1.8ms on average. Although CSA compares significantly more labels, it
outperforms Dijkstra in almost all cases (also see Table 4 for other inputs). Only for one-to-all
queries on London TD-col is slightly faster than CSA.
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Table 2: Figures for the earliest arrival problem on our London instance. Indicators are: • enabled,
◦ disabled, – not applicable. “Sta.” refers to the start criterion. “Trp.” indicates the method of trip
tracking: connection flag (◦), trip flag (•), none (×). “One.” indicates one-to-one queries by either
using the stop criterion or pruning.

#Scanned #Reachable #Relaxed #Scanned #L.Cmp. Time
Alg. St

a.
Tr
p.

On
e.

Arcs/Con. Arcs/Con. Arcs/Con. Footpaths p. Stop [ms]
TE – – ◦ 20 370 117 — 5739 046 — 977.3 876.2
TD – – ◦ 262 080 — 115 588 — 11.9 18.9
TD-col – – ◦ 68 183 — 21 294 — 3.2 7.3
CSA ◦ ◦ ◦ 4 850 431 2 576 355 11 090 11 500 356.9 16.8
CSA • ◦ ◦ 2 908 731 2 576 355 11 090 11 500 279.7 12.4
CSA • • ◦ 2 908 731 2 576 355 11 090 11 500 279.7 9.7
TE – – • 1 391 761 — 385 641 — 66.8 64.4
TD – – • 158 840 — 68 038 — 7.2 10.9
TD-col – – • 43 238 — 11 602 — 2.1 4.1
CSA • • • 420 263 126 983 5 574 7 005 26.6 2.0
CSA • × • 420 263 126 983 5 574 7 005 26.6 1.8

Profile and Multi-Criteria Queries. In Table 3 we report experiments for (multi-criteria)
profile queries on London. Other instances are available in Table 4. We compare CSA to SPCS-
col [28] (an extension of TD-col to profile queries) and rRAPTOR [32] (an extension of RAPTOR
to multi-criteria profile queries). Note that in [32] rRAPTOR is evaluated on two-hours range
queries, whereas we compute full profile queries. A first observation is that, regarding query time,
one-to-all SPCS is outperformed by all other algorithms, even those which additionally minimize
the number of transfers. Similarly to our previous experiment, CSA generally does more work than
the competing algorithms, but is, again, faster due to its cache-friendlier memory access patterns.
We also observe that one-to-all pCSA-C is slightly faster than pCSA-P, even with target pruning
enabled, although it scans 2.7 times as many connections because of expanded footpaths. Note,
however, that the figure for pCSA-C does not include the postprocessing that removes dominated
journeys. Time indexing further accelerates pCSA-C, indicating that the algorithm is, indeed,
memory-bound. Regarding multi-criteria profile queries, doubling the number of considered trips
also doubles both CSA’s label comparisons and its running time. For rRAPTOR the difference is
less (only 12%)—most work is spent in the first eight rounds. Indeed, journeys with more than
eight trips are very rare. This justifies mcpCSA-CT-SSE with eight trips, which is our fastest
algorithm (221ms on average). Note that using an AVX2 processor (announced for June 2013), one
will be able to process 256 bit-vectors in a single instruction. We, therefore, expect mcpCSA-CT-SSE
to perform better for greater numbers of trips in the future.

3.1.5 Final Remarks

In this work, we introduced the Connection Scan framework of algorithms (CSA) for several public
transit route planning problems. One of its strengths is the conceptual simplicity, allowing easy
implementations. Yet, it is sufficiently flexible to handle complex scenarios, such as multi-criteria
profile queries. Our experiments on the metropolitan network of London revealed that CSA is faster
than existing approaches. All scenarios considered are fast enough for interactive applications. For
future work, we are interested in investigating network decomposition techniques to make CSA
more scalable, as well as more realistic delay models. Also, since CSA does not use a priority queue,
parallel extensions seem promising. Regarding multimodal scenarios, we like to combine CSA with
existing techniques developed for road networks.
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Table 3: Figures for the (multi-criteria) profile problem on London. “#Tr.” is the max. number of
trips considered. “Arr.” indicates minimizing arrival time, “Tran.” transfers. “Prof.” indicates profile
queries. “#Jn.” is the number of Pareto-optimal journeys.

#L.Cmp. Time
Algorithm #

Tr
.

Ar
r.

Tr
an
.

Pr
of
.

On
e.

# Jn. p. Stop [ms]
SPCS-col – • ◦ • ◦ 98.2 477.7 1 262
SPCS-col – • ◦ • • 98.2 372.5 843
pCSA-P – • ◦ • ◦ 98.2 567.6 177
pCSA-P – • ◦ • • 98.2 436.9 161
pCSA-C – • ◦ • – 98.2 1 912.5 134
pCSA-CT – • ◦ • – 98.2 1 912.5 104
rRAPTOR 8 • • • ◦ 203.4 1 812.5 1 179
rRAPTOR 8 • • • • 203.4 1 579.6 878
rRAPTOR 16 • • • • 206.4 1 634.0 922
mcpCSA-CT 8 • • • – 203.4 15 299.8 255
mcpCSA-CT-SSE 8 • • • – 203.4 1 912.5 221
mcpCSA-CT-SSE 16 • • • – 206.4 3 824.9 466

4 User-Constrained Multimodal Route Planning
In this section, we present UCCH, the first multimodal speedup technique that handles arbitrary
mode-sequence constraints as input to the query—a feature unavailable from previous techniques.
Unlike Access-Node Routing [30], it also answers local queries correctly and requires significantly less
preprocessing effort. We revisit one technique, namely node contraction, that has proven successful
in road networks in the form of Contraction Hierarchies, introduced by Geisberger et al. [46]. By
ensuring that shortcuts never span multiple modes of transport, we extend Contraction Hierarchies
in a sound manner. Moreover, we show how careful engineering further helps our scenario. Our
experimental study shows that, unlike previous techniques, we can handle an intercontinental
instance composed of cars, railways and flights with over 50 million nodes, 125 million edges, and
30 thousand stations. With only 557MiB of auxiliary data, we achieve query times that are fast
enough for interactive scenarios.

Related Work For an overview on unimodal speedup techniques, we direct the reader to [11, 33].
Most techniques are composed of the following ingredients: Bidirectional search, goal-directed
search [52, 57, 62, 85], hierarchical techniques [13, 14, 46, 53, 80], and separator-based techniques [25,
26, 59]. Combinations have been studied [16, 81].

Regarding multimodal route planning less work exists. An elegant approach to restricting modal
transfers is the label constrained shortest paths problem (LCSPP) [68]: Edges are labeled, and
the sequence of edge labels must be element of a formal language (passed as query input) for any
feasible path. A version of Dijkstra’s algorithm can be used, if the language is regular [10, 68]. An
experimental study of this approach, including basic goal-directed techniques, is conducted in [9].
In [74] it is concluded that augmenting preprocessing techniques for LCSPP is a challenging task.

A first efficient multimodal speedup technique, called Access-Node Routing (ANR), has been
proposed in [30]. It skips the road network during queries by precomputing distances from every
road node to all its relevant access points of the public transportation network. It has the fastest
query times of all previous multimodal techniques which are in the order of milliseconds. However,
the preprocessing phase predetermines the modal constraints that can be used for queries. Also, it
cannot compute short-range queries and requires a separate algorithm to handle them correctly.

Another approach adapts ALT by precomputing different node potentials depending on the mode
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Table 4: Evaluating other instances. Start criterion and trip flags are always used.
Germany Europe

#L.Cmp. Time #L.Cmp. Time
Algorithm #

Tr
.

Ar
r.

Tr
an
.

Pr
of
.

On
e.

# Jn. p. Stop [ms] #Jn. p. Stop [ms]
TE – • ◦ ◦ ◦ 1.0 317.0 117.1 0.9 288.6 624.1
TD-col – • ◦ ◦ ◦ 1.0 11.9 3.5 0.9 10.0 21.6
CSA – • ◦ ◦ ◦ 1.0 228.7 3.4 0.9 209.5 19.5
TE – • ◦ ◦ • 1.0 29.8 11.7 0.9 56.3 129.9
TD-col – • ◦ ◦ • 1.0 6.8 2.0 0.9 5.3 11.5
CSA – • ◦ ◦ • 1.0 40.8 0.8 0.9 74.2 8.3
pCSA-CT – • ◦ • – 20.2 429.5 4.9 11.4 457.6 46.2
rRAPTOR 8 • • • ◦ 29.4 752.1 161.3 17.2 377.5 421.8
rRAPTOR 8 • • • • 29.4 640.1 123.0 17.2 340.8 344.9
mcpCSA-CT-SSE 8 • • • – 29.4 429.5 17.9 17.2 457.6 98.2

of transport, called SDALT [61]. It has fast preprocessing, but both preprocessing space and query
times are high. Also, it cannot handle arbitrary modal restrictions as query input. By combining
SDALT with a label-correcting algorithm, the query time can be improved by up to 50% [60].

Finally, in [78] a technique based on contraction is presented that handles arbitrary Kleene
languages as user input. The authors use them to exclude certain road categories. They report
speedups of 3 orders of magnitude on a continental road network. However, Kleene languages are
rather restrictive: In a multimodal context, they only allow excluding modes of transportation
globally. In particular, they cannot be used to define feasible sequences of transportation modes.

Outline This work is organized as follows. Section 4.1 sets necessary notation, summarizes graph
models we use, precisely defines the problem we are solving, and also recaps Contraction Hierarchies.
Section 4.2 introduces our new technique. Finally, Section 4.3 presents experiments to evaluate our
algorithm, while Section 4.4 concludes this work and mentions interesting open problems.

4.1 Preliminaries
Throughout this work G = (V,E) is a directed graph where V is the set of nodes and E ⊆ V × V
the set of edges. For an edge (u, v) ∈ E, we call u the tail and v the head of the edge. The degree
of a node u ∈ V is defined as the number of edges e ∈ E where u is either head or tail of e. The
reverse graph ←−G = (V,←−E ) of G is obtained from G by flipping all edges, i. e., (u, v) ∈ E if and only
if (v, u) ∈ ←−E . Note that we use the terms graph and network interchangeably. To distinct between
different modes of transport, our graphs are labeled by node labels lbl : V → Σ and edge labels
lbl : E → Σ. Often Σ is called the alphabet and contains the available modes of transport in G, for
example, road, rail, flight. All edges in our graphs are weighted by periodic time-dependent
travel time functions f : Π→ N0 where Π depicts a set of time points (think of it as the seconds of
a day). If f is constant over Π, we call f time-independent. Respecting periodicity in a meaningful
way, we say that a function f has the FIFO property if for all τ1, τ2 ∈ Π with τ1 ≤ τ2 it holds that
f(τ1) ≤ f(τ2) + (τ2 − τ1). In other words, waiting never pays off. Moreover, the link operation of
two functions f1, f2 is defined as f1 ⊕ f2 = f1 + (id +f1) ◦ f2, and the merge operation min(f1, f2)
is defined as the element-wise minimum of f1 and f2. Note that to depict the travel time function
f(τ) of an edge e ∈ E, we sometimes write len(e, τ), or just len(e) if it is clear from the context
that len(e, τ) is constant.

In time-dependent graphs there are two types of queries relevant to this work: A time-query has
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as input s ∈ V and a departure time τ . It computes a shortest path tree to every node u ∈ V when
departing at s at time τ . In contrast, a profile-query computes a shortest path graph from s to all
u ∈ V , consisting of shortest paths for all departure times τ ∈ Π.

Whenever appropriate, we use some notion of formal languages. A finite sequence w = σ0σ1 . . . σk
of symbols σi ∈ Σ is called a word. A not necessarily finite set of words L is called formal language
(over Σ). A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, S, F ) characterized
by the set Q of states, the transition relation δ ⊆ Q× Σ×Q, and sets S ⊆ Q of initial states and
F ⊆ Q of final states. A language L is called regular if and only if there is a finite automaton AL
such that AL accepts L.

4.1.1 Models

Following [30], our multimodal graphs are composed of different models for each mode of transporta-
tion. We briefly introduce each model and explain how they are combined.

In the road network, nodes model intersections and edges depict street segments. We either label
edges by car for roads or foot for pedestrians. Our road networks are weighted by the average
travel time of the street segment. For pedestrians we assume a walking speed of 4.5 kph. Note that
our road networks are time-independent.

Regarding the railway network, we use the coloring model [28] which is based on the well-known
realistic time-dependent model [77]. It consists of station nodes connected to route nodes. Trains
are modeled between route nodes via time-dependent edges. Different trains use the same route
node as long as they are not conflicting. In the coloring model conflicting trains are computed
explicitly which yields significantly smaller graphs compared to the original realistic time-dependent
model (without dropping correctness). Moreover, to enable transfers between trains, some station
nodes are interconnected by time-independent foot paths. See [28] for details. We label nodes and
edges with rail. Note that we also use this model for bus networks.

Finally, to model flight networks, we use the time-dependent phase II model [31]. It has small
size and models airport procedures realistically. Nodes and edges are labeled with flight.

Note that the travel time functions in our networks are a special form of piecewise linear functions
that can be efficiently evaluated [77, 27]. Also all edges in our networks have the FIFO property.

Merging the Networks To obtain an integrated multimodal network G = (V,E), we merge
the node and edge sets of each individual network. Detailed data on transfers between modes of
transport was not available to us. Thus, we heuristically add link edges labeled link. More precisely,
we link each station node in the railway network to its geographically closest node of the road
network. We also link each airport node of the flight network to their closest nodes in the road and
rail networks. Thereby we only link nodes that are no more than distance δ apart, a parameter
chosen for each instance. The time to traverse a link edge is computed from its geographical length
and a walking speed of 4.5 kph.

4.1.2 Path Constraints on the Sequences of Transport Modes

Since the naïve approach of using Dijkstra’s algorithm on the combined network G does not incor-
porate modal constraints, we consider the Label Constrained Shortest Path Problem (LCSPP) [10]:
Each edge e ∈ E has a label lbl(e) assigned to it. The goal is to compute a shortest s-t-path P
where the word w(P ) formed by concatenating the edge labels along P is element of a language L,
a query input.

Modeling sequence constraints is done by specifying L. For our case, regular languages of the
following form suffice. The alphabet Σ consists of the available transport modes. In the corresponding
NFA AL, states depict one or more transport modes. To model traveling within one transport
mode, we require (q, σ, q) ∈ δ for those transport modes σ ∈ Σ that q represents. Moreover, to allow
transfers between different modes of transport, states q, q′ ∈ Q, q 6= q′ are connected by link labels,
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(a) foot-and-rail.
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Figure 1: Two example automata. In the right figure, light edges are labeled as link.

i. e., (q, link, q′) ∈ δ. Finally, states are marked as initial/final if its modes of transport can be used
at the beginning/end of the journey. Example automata are shown in Figure 1.

We refer to this variant of LCSPP as LCSPP-MS (as in Modal Sequences). In general, LCSPP is
solvable in polynomial time, if L is context-free. In our case, a generalization of Dijsktra’s algorithm
works [10].

4.1.3 Contraction Hierarchies (CH)

Our algorithm is based on Contraction Hierarchies [46]. Preprocessing works by heuristically ordering
the nodes of the graph by an importance value (a linear combination of edge expansion, number
of contracted neighbors, among others). Then, all nodes are contracted in order of ascending
importance. To contract a node v ∈ V , it is removed from G, and shortcuts are added between
its neighbors to preserve distances between the remaining nodes. The index at which v has been
removed is denoted by r(v). To determine if a shortcut (u,w) is added, a local search from u is run
(without looking at v), until w is settled. If len(u,w) ≤ len(u, v) + len(v, w), the shortcut (u,w) is
not added, and the corresponding shorter path is called a witness.

The CH query is a bidirectional Dijkstra search operating on G, augmented by the shortcuts
computed during preprocessing. Both searches (forward and backward) go “upward” in the hierarchy:
The forward search only visits edges (u, v) where r(u) ≤ r(v), and the backward search only visits
edges where r(u) ≥ r(v). Nodes where both searches meet represent candidate shortest paths with
combined length µ. The algorithm minimizes µ, and a search can stop as soon as the minimum
key of its priority queue exceeds µ. Furthermore, we make use of stall-on-demand: When a node v
is scanned in either query, we check for all its incident edges e = (u, v) of the opposite direction if
dist(u) + len(e) < dist(v) holds (dist(v) denotes the tentative distance at v). If this is the case, we
may prune the search at v. See [46] for details.

Partial Hierarchy If the preprocessing is aborted prematurely, i. e., before all nodes are contracted,
we obtain a partial hierarchy (PCH). Let r(v) =∞ if and only if v is never contracted, then the
same query algorithm as for Contraction Hierarchies is applicable and yields correct results. We call
the induced subgraph of all uncontracted nodes the core, and the remaining (contracted) subgraph
the component. Note that both core and component can contain shortcuts not present in the original
graph.

Performance Both preprocessing and query performance of CH depend on the number of shortcuts
added. It works well if the network has a pronounced hierarchy, i. e., far journeys eventually converge
to a “freeway subnetwork” which is of a small fraction in size compared to the total graph [3]. Note
that if computing a complete hierarchy produces too many shortcuts, one can always abort early
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and compute a partial hierarchy. A possible stopping criterion is the average node degree on the
core that is approached during the contraction process.

4.2 Our Approach
We now introduce our basic approach and show how CH can be used to compute shortest path with
restrictions on sequences of transport modes. We first argue that applying CH on the combined
multimodal graph G without careful consideration either yields incorrect results to LCSPP-MS
or predetermines the automaton A during preprocessing. We then introduce UCCH: A practical
adaption of Contraction Hierarchies to LCSPP-MS that enables arbitrary modal sequence constraints
as query input. Further improvements that help accelerating both preprocessing and queries are
presented in Section 4.2.3.

4.2.1 Contraction Hierarchies for Multimodal Networks

Let G = (V,E) be a multimodal network. Recall that G is a combination of time-independent
and time-dependent networks (for example, of road and rail), hence, contains edges having both
constants and travel time functions associated with them. Applying CH to G already requires
some engineering effort: Shortcuts may represent paths containing edges of different type. In
order to compute the shortcuts’ travel time functions, these edges have to be linked, resulting
in inhomogeneous functions that slow down both preprocessing and query performance. More
significantly, when a path P = (e1, . . . , ek) is composed into a single shortcut edge e′, its labels
need to be concatenated into a super label lbl(e′) = lbl(e1) · · · lbl(ek). In particular, if there are
subsequent edges ei, ej in P where lbl(ei) 6= lbl(ej), the shortcut induces a modal transfer. Running
a query where this particular mode change is prohibited potentially yields incorrect results: The
shortcut must not be used but the label constrained path (i. e. the one without this transfer) may
have been discarded during preprocessing by the witness search (see Section 4.1.3). Note that the
partial time-dependent nature of G further complicates things. A shortcut e′ = (u, v) needs to
represent the travel time profile from u to v, that is, the underlying path P depends on the time of
day. As a consequence, the super label of e′ is time-dependent as well.

If the automaton A is known during preprocessing, we can modify CH preprocessing to yield
correct query results with respect to A. While contracting node v ∈ G and thereby considering
to add a shortcut e′ = (u,w), we look at its super label lbl(e′) = (lbl1, . . . , lblk). To determine if
e′ has to be inserted, we run multiple witness searches as follows: For each state q ∈ A where q
represents lbl(v), we run a multimodal profile-search from u (ignoring v). We run it with q as initial
state and all those states q′ ∈ A as final state, where q′ is reachable from q in A by applying lbl(e′).
Only if for all these profile-searches dist(w) ≤ len(e′) holds, the shortcut e′ is not required: For
every relevant transition sequence of the automaton, there is a shorter path in the graph. Note that
shortcuts e′ = (u,w) may be required even if an edge from u to w already existed before contraction.
This results in parallel edges for different subsequences of the constraint automaton.

This approach which we call State-Dependent CH (SDCH) has some disadvantages, however.
First, witness search is slow and less effective than in the unimodal scenario, resulting in many more
shortcuts. This hurts preprocessing and query performance. Adding to it the more complicated
data structures required for inhomogeneous travel time functions and arbitrary label sequences,
SDCH combines challenges of both Flexible CH [45] and Timetable CH [44]. As a result we expect a
significant slowdown over unimodal CH on road networks. But most notably, SDCH predetermines
the automaton A during preprocessing.

4.2.2 UCCH: Contraction for User-Constrained Route Planning

We now introduce User-Constrained Contraction Hierarchies (UCCH). Unlike SDCH, it can handle
arbitrary sequence constraint automata during query and has an easier witness search. We first turn
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(a) Input graph.
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(b) Graph after contraction.

Figure 2: Contracting only route nodes in the realistic time-dependent rail model [77]. The bottom
row of nodes are station nodes, while the top row are route nodes contracted in the order depicted
by their labels. Grey edges represent added shortcuts. Note that these shortcuts are required as
they incorporate different transfer times (for boarding and exiting vehicles at different stations).

towards preprocessing and then we go into the details of the query algorithm.

Preprocessing The main reason behind the disadvantages discussed in Section 4.2.1 is the
computation of shortcuts that span over boundaries of different modal networks. Instead, let Σ be
the alphabet of labels of a multimodal graph G. We now process each subnetwork independently.
We compute—in no particular order—a partial Contraction Hierarchy restricted to the subgraph
Glbl = (Vlbl, Elbl) (for every lbl ∈ Σ). Here, Glbl is exactly the original graph of the particular
transportation mode (before merging). We keep the contraction order with the exception of transfer
nodes: Nodes which are incident to at least one edge labeled link in G. We fix the rank of all such
nodes v to infinity, i. e., they are never contracted. Note that all other nodes have only incident
edges labeled by lbl in G. As a result, shortcuts only span edges within one modal network. Hence,
we neither obtain inhomogeneous travel time functions nor “mixed” super labels. We set the label
of each shortcut edge e′ to lbl(e), where e is an arbitrary edge along the path, e′ represents.

To determine if a shortcut e′ = (u,w) is required (when contracting a node v), we restrict the
witness search to the modal subnetwork Glbl of v. Restricting the search space of witness searches
does not yield incorrect query results: Only too many shortcuts might be inserted, but no required
shortcuts are omitted. In fact, this is a common technique to accelerate CH preprocessing [46]. Note
that broadening the witness search beyond network boundaries is prohibitive in our case: It may
find a shorter u-v-path using parts of other modal networks. However, such a path is not necessarily
a witness if one of these other modes is forbidden during the query. Thus, we must not take it into
account to determine if e′ can be dropped.

Our preprocessing results in a partial hierarchy for each modal network of G. Its transfer nodes
are not contracted, thus, stay at the top of the hierarchy. Recall that we call the subgraph induced
by all nodes v with r(v) =∞ the core. Because of the added shortcuts, the shortest path between
every pair of core nodes is also fully contained in the core. As a result, we achieve independence
from the automaton A during preprocessing.

A Practical Variant Contraction is independent for every modal network of G: We can use any
combination of partial, full or no contraction. Our practical variant only contracts time-independent
modal networks, that is, the road networks. Contracting the time-dependent networks is much less
effective. Recall that we do not contract station nodes as they have incident link edges. Applying
contraction only on the non-station nodes, however, yields too many shortcuts (see Figure 2 and [44]).
It also hides information encoded in the timetable model (such as railway lines), further complicating
query algorithms [18].
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Query Our query algorithm combines the concept of a multimodal Dijkstra algorithm with
unimodal CH. Let s, t ∈ V be source and target nodes and A some finite automaton with respect to
LCSPP-MS. Our query algorithm works as follows. First, we initialize distance values for all pairs of
(v, q) ∈ V×A with infinity. We now run a bidirectional Dijkstra search from s and t. Each search
runs independently and maintains priority queues −→Q and ←−Q of tuples (v, q) where v ∈ V and q ∈ A.
We explain the algorithm for the forward search; the backward search works analogously. The
queue −→Q is ordered by distance and initialized with (s, q) for all initial states q in A (the backward
queue is initialized with respect to final states). Whenever we extract a tuple (v, q) from Q, we
scan all edges e = (v, w) in G. For each edge, we look at all states q′ in A that can be reached
from q by lbl(e). For every such pair (w, q′) we check whether its distance is improved, and update
the queue if necessary. To use the preprocessed data, we consider the graph G, augmented by all
shortcuts computed during preprocessing. We run the aforementioned algorithm, but when scanning
edges from a node v, the forward search only looks at edges (v, w) where r(w) ≥ r(v). Similarly,
the backward search only looks at edges (v, w) where r(v) ≥ r(w). Note that by these means we
automatically search inside the core whenever we reach the top of the hierarchy. Thereby we never
reinitialize any data structures when entering the core like it is typically the case for core-based
algorithms, e. g., Core-ALT [33]. The stopping criterion carries over from basic CH: A search stops
as soon as its minimum key in the priority queue exceeds the best tentative distance value µ. We
also use stall-on-demand, however, only on the component.

Intuitively, the search can be interpreted as follows. We simultaneously search upward in those
hierarchies of the modal networks that are either marked as initial or as final in the automaton A.
As soon as we hit the top of the hierarchy, the search operates on the common core. Because we
always find correct shortest paths between core nodes in any modal network, our algorithm supports
arbitrary automata (with respect to LCSPP-MS) as query input. Note that our algorithm implicitly
computes local queries which use only one of the networks. It makes the use of a separate algorithm
for local queries, as in [30], unnecessary.

Handling Time-Dependency Some of the networks in G are time-dependent. Weights of
time-dependent edges (u, v) are evaluated for a departure time τ . However, running a reverse
search on a time-dependent network is non-trivial, since the arrival time at the target node is not
known in advance. Several approaches, such as using the lower-bound graph for the reverse search,
exist [29, 15], but they complicate the query algorithm. Recall that in our practical variant we do
not contract any of the time-dependent networks, hence, no time-dependent edges are contained in
the component. This makes backward search on the component easy for us. We discuss search on
the core in the next section.

4.2.3 Improvements

We now present improvements to our algorithm, some of which also apply to CH.

Average Node Degree Recall that whenever we contract a modal network, we never contract
transfer nodes, even if they were of low importance in the context of that network. As a result, the
number of added shortcuts may increase significantly. Thus, we stop the contraction process as soon
as the average node degree in the core exceeds a value α. By varying α, we trade off the number of
core nodes and the number of core edges: Higher values of α produce a smaller core but with more
shortcut edges. We evaluate a good value of α experimentally.

Edge Ordering Due to the higher average node degree compared to unimodal CH, the search
algorithm has to look at more edges. Thus, we improve performance of iterating over incident
edges of a node v by reordering them locally at v: We first arrange all outgoing edges, followed
by all bidirected edges, and finally, all incoming edges. By these means, the forward respective
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backward search only needs to look at their relevant subsets of edges at v. The same optimization
is applied to the stalling routine. Preliminary experiments revealed that edge reordering improves
query performance up to 21%.

Node Ordering To improve the cache hit rate for the query algorithm, we also reorder nodes such
that adjacent nodes are stored consecutively with high probability. We use a DFS-like algorithm to
determine the ordering [24]. Because most of the time is spent on the core, we also move core nodes
to the front. This improves query performance up to a factor of 2.

Core Pruning Recall that a search stops as soon as its minimum key from the priority queue
exceeds the best tentative distance value µ. This is conservative, but necessary for CH (and UCCH)
to be correct. However, UCCH spends a large fraction of the search inside the core. We can easily
expand road and transfer edges both forward and backward, but because of the conservative stopping
criterion, many core nodes are settled twice. To reduce this amount, we do not scan edges of core
nodes v, where v has been settled by both searches and did not improve µ. A path through v is
provably not optimal. This increases performance by up to 47%. Another alternative is not applying
bidirectional search on the core at all. The forward search continues regularly, while the backward
search does not scan edges incident to core nodes. This approach turns out most effective with a
performance increase by a factor of 2.

State Pruning Recall that our query algorithm maintains distances for pairs (v, q) where v ∈ V
and q ∈ A. Thus, whenever we scan an edge (u, v) ∈ E resulting in some state q ∈ A, we update
the distance value of (v, q) only if it is improved, and discard (or prune it) it otherwise. However,
we can even make use of a stronger state pruning rule: Let qi and qj be two states in A. We say
that qi dominates qj if and only if the language LA(qj) accepted by A with modified initial state
qj is a subset of the language LA(qi) accepted by A with modified initial state qi. In other words,
any feasible mode sequence beginning with qj is also feasible when starting at qi. As a consequence,
when we are about to update a pair (v, qj), we can additionally prune (v, qj) if there exists a state
qi that dominates qj and where (v, qi) has smaller distance: Any shortest path from v is provably
not using (v, qj). As an example, consider the first automaton in Figure 1. Let its states be denoted
by {q0, q1, q2}, from left to right. Here, q0 dominates q2 with respect to our definition: Any foot
path beginning at state q2 is also a feasible (foot) path beginning at state q0. Therefore, any pair
(v, q2) can be pruned if (v, q0) has better distance than (v, q2). State pruning improves performance
by ≈ 10%.

State-Independent Search in Component Automata are used to model sequence constraints,
however, by definition their state may only change when traversing link edges. In particular, when
searching inside the component, there is never a state transition (recall that all link edges are inside
the core). Thus, we use the automaton only on the core. We start with a regular unimodal CH-query.
Whenever we are about to insert a core node v into the priority for the first time on a branch of the
shortest path tree, we create labels (v, q) for all initial/final states q (regarding forward/backward
search). Because the amount of settled component nodes on average is small compared to the total
search space, we do not observe a performance gain. However, on large instances with complicated
query automata we save several gigabytes of RAM during query by keeping only one distance value
for each component node. Recall that component nodes constitute the major fraction of the graph.

Parallelization In general, the multimodal graph G is composed of more than one contractable
modal subnetwork, for instance foot and car. In this case, we have to run the aforementioned
unimodal CH-query on every component individually. Because these queries are independent from
each other, we are able to parallelize them easily. In a first phase, we allocate one thread for every
contracted network which then runs the unimodal CH-query on its respective component until it
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Table 5: Comparing size figures of our input instances. The column “col.” indicates whether we
use the coloring approach (see Section 4.1.1) to model the railway subnetwork. The bottom two
instances are taken from [30].

Public Transportation Road
network stations connections col. nodes edges density
ny-road-rail 16 897 2 054 896 • 579 849 1 527 594 1 : 56
de-road-rail 6 822 489 801 • 5 055 680 12 378 224 1 : 749
europe-road-rail 30 517 1 621 111 • 30 202 516 72 586 158 1 : 1 133
wo-road-rail-flight 31 689 1 649 371 • 50 139 663 124 625 598 1 : 1 846
de-road-rail(long) 498 16 450 ◦ 5 055 680 12 378 224 1 : 10 711
wo-road-flight 1 172 28 260 ◦ 50 139 663 124 625 598 1 : 139 277

hits the core. In the second phase, we synchronize the threads, and continue the search on the core
sequentially. Note that we only need to run the first phase on those components that are represented
by an initial or final state in the input automaton A.

Combining all improvements yields a speedup of up to factor 4.9.

4.3 Experiments
We conducted our experiments on one core of an Intel Xeon E5430 processor running SUSE Linux
11.1. It is clocked at 2.66GHz, has 32GiB of RAM and 12MiB of L2 cache. The program was
compiled with GCC 4.5, using optimization level 3. Our implementation is written in C++ using
the STL and Boost at some points. As a priority queue we use a 4-ary heap.

Inputs We assemble a total of six multimodal networks where two are imported from [30]. Their
size figures are reported in Table 5. For ny-road-rail, we combine New York’s foot network with
the public transit network operated by MTA [69]. We link bus and subway stops to road intersections
that are no more than 500m apart. The de-road-rail network combines the pedestrian and railway
networks of Germany. The railway network is extracted from the timetable of the winter period
2000/01. It includes short and long distance trains, and we link stations using a radius of 500m.
The europe-road-rail network combines the road (as in car) and railway networks of Western
Europe. The railway network is extracted from the timetable of the winter period 1996/97 and
stations are linked within 5 km. The wo-road-rail-flight network is a combination of the road
networks of North America and Western Europe with the railway network of Western Europe and
the flight network of Star Alliance and One World. The flight networks are extracted from the
winter timetable 2008. As radius we use 5 km.

Both de-road-rail(long) and wo-road-flight stem from [30]. The data of the Western
European and North American road networks (thus Germany and New York) was kindly provided to
us by PTV AG [76] for scientific use. The timetable data of New York is publicly available through
General Transit Feeds [48], while the data of the German and European railway networks was kindly
provided by HaCon [54]. Unfortunately, the New York timetable did not contain any foot path data
for transfers. Thus, we generated artificial foot paths with a known heuristic [28].

Our instances have varying fractional size of their public transit parts. We call the fraction of
linked nodes in a subgraph density (see last column of Table 5). Our densest network is ny-road-rail,
which also has the highest number of connections. On the other hand, de-road-rail(long) and
wo-road-flight are rather sparse. However, we include them to compare our algorithm to Access
Node Routing (ANR). Also note that for this reason we do not use the improved coloring model
(see Section 4.1.1) on these two instances.

We use the following automata as query input. The foot-and-rail automaton allows either
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Table 6: Comparing preprocessing performance of UCCH on de-road-rail with varying average
core degree limit. For queries we use the foot automaton. We also report numbers for unconstrained
unimodal CH.

Preprocessing Query
avg core- core- shortcut- time settled relaxed touched time

degree nodes edges [min] nodes edges edges [ms]

UCCH

10 30 908 42.3% 6 15 531 27 506 155 776 5.85
15 16 003 43.1% 7 8 090 16 844 121 631 3.11
20 12 239 43.7% 9 6 240 14 425 124 201 2.82
25 10 635 44.2% 10 5 465 13 687 135 151 2.80
30 9 742 44.7% 12 5 049 13 486 148 735 2.96
35 9 171 45.1% 14 4 794 13 598 163 376 3.15
40 8 788 45.4% 15 4 628 13 787 179 483 3.38

PCH 13 10 635 41.7% 6 5 567 11 402 71 860 1.93
PCH 15 6 750 41.8% 7 3 636 7 970 53 655 1.37
CH — 0 41.8% 9 677 1 290 11 434 0.25

walking, or walking, taking the railway network and walking again. Similarly, the car-and-rail
automaton uses the road network instead of walking, while the car-and-flight automaton uses
the flight network instead of the railway network. The hierarchical automaton is our most
complicated automaton. It hierarchically combines road, railways and flights (in this order). All
modal sequences are possible, except of going up in the hierarchy after once stepping down. For
example, if one takes a train after a flight, it is impossible to take another flight. Finally, the
everything automaton allows arbitrary modal sequences in any order. See Figure 1 for transition
graphs of foot-and-rail and hierarchical.

Methodology We evaluate both preprocessing and query performance. The contraction order is
always computed according to the aggressive variant from [46]. We report the time and the amount
of computed auxiliary data. Queries are generated with source, target nodes and departure times
uniformly picked at random. For Dijkstra we run 1 000 queries, while for UCCH we run a superset
of 100 000 queries. We report the average number of: (1) extracted nodes in the implicit product
graph from the priority queue (settled nodes), (2) priority queue update operations (relaxed edges),
(3) touched edges, (4) the average query time, and (5) the speedup over Dijkstra. Note that we only
report the time to compute the length of the shortest path. Unpacking of shortcuts can be done
efficiently in less than a millisecond [46].

4.3.1 Evaluating Average Core Degree Limit

The first experiment evaluates preprocessing and query performance with varying average core
degree. We abort contraction as soon as the average node degree in the core exceeds a limit α.
In our implementation we compute the average node degree as follows. We divide the number of
edges by the number of nodes in our graph data structure. Note that we use edge compression [22]:
Whenever there are edges e = (u, v) and e′ = (v, u) where len(e) = len(e′), we combine both edges
in a single entry at u and v. As a result, the number we report may be smaller than the true average
degree (at most by a factor of 2) which is, however, irrelevant for the result of this experiment.

Table 6 shows preprocessing and query figures on de-road-rail. We use an automaton that does
not use public transit edges. With higher values of α more nodes are contracted, resulting in higher
preprocessing time and more shortcuts (we report them as a fraction of the input’s size). At the
same time, less nodes (but with higher degree) remain in the core. Setting α =∞ is infeasible. The
amount of shortcuts explodes, and preprocessing does not finish within reasonable time. Interestingly,
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Table 7: Preprocessing figures for UCCH and Access-Node Routing on the road subnetwork. Figures
for the latter are taken from [30]. We scale the preprocessing time with respect to running time
figures compared to Dijkstra.

UCCH Access-Node
avg core- core nodes shortcuts shortcuts time space time

network degree total ratio percent [MiB] [min] [MiB] [min]
ny-road-rail 8 11 057 1:52 48.3% 8 < 1 — —
de-road-rail 25 10 635 1:475 44.2% 63 10 — —
europe-road-rail 25 39 665 1:761 39.0% 324 38 — —
wo-road-rail-flight 30 38 610 1:1 298 39.1% 558 87 — —
de-road-rail(long) 35 996 1:5 075 42.3% 60 10 504 26
wo-road-flight 35 727 1:68 967 38.0% 542 78 14 050 184

the query time decreases (with smaller core size) up to α ≈ 25 and then increases again. Though we
settle less nodes, the increase in shortcuts results in more touched edges during query, that is, edges
the algorithm has to iterate when settling a node. We conclude that for de-road-rail the trade-off
between number of core nodes and added shortcut edges is optimal for α = 25. Hence, we use this
value in subsequent experiments. Accordingly, we determine α for all instances.

Comparison to Unimodal CH In Table 6 we also compare UCCH to CH when run on the
unimodal road network. Computing a full hierarchy results in queries that are faster by a factor
of 11.2. Since UCCH does not compute a full hierarchy by design, we evaluate two partial CH
hierarchies: The first stops when the core reaches a size of 10 635—equivalent to the optimal core
size of UCCH. We observe a query performance almost comparable to UCCH (slightly faster by
45%). The second partial hierarchy stops with a core size of 6 750 which is equal to the number of
transfer nodes in the network (i. e., the smallest possible core size on this instance for UCCH). Here,
CH is a factor of 2 faster than UCCH. Recall that UCCH must not contract transfer nodes. In
road networks these are usually unimportant: Long-range queries do not pass many railway stations
or bus stops in general, which explains that UCCH’s hierarchy is less pronounced. However, for
multimodal queries transfer nodes are indeed very important, as they constitute the interchange
points between different networks. To enable arbitrary automata during query, we overestimate their
importance by not contracting them at all, which is reflected by the (relatively small) difference in
performance compared to CH.

4.3.2 Preprocessing

Table 7 shows preprocessing figures for UCCH on all our instances. Besides the average degree we
evaluate the core in terms of total and fractional number of core nodes, and the amount of added
shortcuts. Added shortcuts are reported as percentage of all road edges and in total MiB. We observe
that the preprocessing effort correlates with the graph size. On the small ny-road-rail instance it
takes less than a minute and produces 8MiB of data. On our largest instance, wo-road-rail-flight,
we need 1.5 hours and produce 558MiB of data. Because the size of the core depends on the size of
the public transportation network, we obtain a much higher ratio of core nodes on ny-road-rail
(1 : 52) than we do, for example, on wo-road-rail-flight (1 : 1 298).

Comparing the preprocessing effort of UCCH to scaled figures of ANR, we observe that UCCH
is more than twice as fast and produces significantly less amount of data: on de-road-rail(long)
by a factor of 8.4, while on wo-road-flight, ANR requires 14GiB of space. Here, UCCH only uses
542MiB, a factor of 26. Concluding, UCCH outperforms ANR in terms of preprocessing space and
time.
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Table 8: Query performance of UCCH compared to plain multimodal Dijkstra and Access-Node
Routing. Figures for the latter are taken from [30]. We scale the running time with respect to
Dijkstra.

Dijkstra Access-Node UCCH
settled time settled time speed- settled time speed-

network automaton nodes [ms] nodes [ms] up nodes [ms] up

ny-road-rail foot-and-rail 404 816 226 — — — 25525 13.61 17
de-road-rail foot-and-rail 2 611 054 2 005 — — — 18275 12.78 157
europe-road-rail car-and-rail 30 021 567 23 993 — — — 90579 53.78 446
wo-road-rail-flight car-and-flight 36 053 717 33 692 — — — 42056 26.72 1 260
wo-road-rail-flight hierarchical 36 124 105 35 261 — — — 126 072 70.52 500
wo-road-rail-flight everything 25 267 202 23 972 — — — 71389 50.77 472

de-road-rail(long) foot-and-rail 2 735 426 2 075 13 524 3.45 602 12 509 3.13 663
wo-road-flight car-and-flight 36 582 904 33 862 4 200 1.07 31 551 1 647 0.67 50 540

4.3.3 Query Performance

In this experiment we evaluate the query performance of UCCH and compare it to Dijkstra and ANR
(where applicable). Figures are presented in Table 8. We observe that we achieve speedups of several
orders of magnitude over Dijkstra, depending on the instance. Generally, UCCH’s speedup over
Dijkstra correlates with the ratio of core nodes after preprocessing (thus, indirectly with the density
of transfer nodes): the sparser our networks are interconnected, the higher the speedups we achieve.
On our densest network, ny-road-rail, we have a speedup of 17, while on wo-road-flight we
achieve query times of less than a millisecond—a speedup of over 50 540. Note that most of the time
is spent inside the core (particularly, in the public transit network), which we do not accelerate.
Comparing UCCH to ANR, we observe that query times are in the same order of magnitude, UCCH
being slightly faster. Note that we achieve these running times with significantly less preprocessing
effort.

4.4 Conclusion
In this work we introduced UCCH: The first, fast multimodal speedup technique that handles
arbitrary modal sequence constraints at query time—a problem considered challenging before.
Besides not determining the modal constraints during preprocessing, its advantages are small space
overhead, fast preprocessing time and the ability to implicitly handle local queries without the need
for a separate algorithm. Its preprocessing can handle huge networks of intercontinental size with
many more stations and airports than those of previous multimodal techniques. For future work we
are interested in augmenting our approach to more general scenarios such as profile or multi-criteria
queries. We also like to further accelerate search on the uncontracted core—especially on the rail
networks. Moreover, we are interested to improve the contraction order. In particular, we like to
use ideas from [30] to enable contraction of some transfer nodes in order to achieve better results,
especially on more densely interlinked networks.

5 Multi-Criteria Search: Finding (All) the Good Options
As mentioned before, meaningful multimodal optimization needs to take more criteria into account,
such as walking duration and costs. Some people are happy to walk 10 minutes to avoid an
extra transfer, while others are not. In fact, some will walk half an hour to avoid using public
transportation at all. Taking a taxi all the way to the airport is a good solution for some; users on a
budget may prefer a cheaper solution. Not only do these additional criteria significantly increase
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the Pareto set [34, 45], but some of the resulting journeys tend to look unreasonable, as Figure 5 in
Section 5.1.1 illustrates.

As a result, recent research efforts tend to avoid multicriteria search altogether [12], looking for
reasonable routes by other means. A natural approach is to work with a weighted combination of
all criteria, transforming the search into a single-criterion problem [4, 7, 70, 86]. When extended
to find the k-shortest paths [20, 42], this method can even take user preferences into account.
Unfortunately, linear combination may produce undesired results [21] (see Section 5.1.1 for an
example). To avoid such issues, another line of multimodal single-criterion research considers the
computation of label-constrained quickest journeys [10, 68]. The idea is to label edges according
to the mode of transportation and require paths to obey a user-defined pattern (often given as
regular expressions), typically enforcing a hierarchy of modes [20, 86] (such as “no car travel between
trains”). The main advantage of this strategy is that preprocessing techniques developed for road
networks carry over [9, 30, 37, 60, 61]. This approach, however, can hide interesting journeys (for
example, taking a taxi between train stations in Paris may be an option). In fact, this exposes a
fundamental conceptual problem with label-constrained optimization: It essentially relies on the
user to know his options before planning the journey.

5.1 Computing and Evaluating Multimodal Journeys
Given the limitations of current approaches, we revisit the problem of finding multicriteria mul-
timodal journeys on a metropolitan scale. Instead of optimizing each mode of transportation
independently [40], we argue in Section 5.1.1 that most users optimize three criteria: travel time,
convenience, and costs. While this produces a large Pareto set, we propose using fuzzy logic [41, 88]
to filter it in a principled way to a modest-sized set of representative journeys. This postprocessing
step is not only quick, but can also be user-dependent, incorporating personal preferences. As
Section 5.1.2 shows, recent algorithmic developments [32, 37, 47] allow us to answer exact queries
optimizing time and convenience in less than two seconds within a large metropolitan area, for
the simpler scenario of walking, cycling, and public transit. Unfortunately, this is not enough
for interactive applications, and becomes much slower when additional criteria, such as costs, are
incorporated. We therefore also propose (in Section 5.1.3) heuristics (still multicriteria) that are
significantly faster, and closely match the top journeys in the Pareto set. Section 5.1.4 presents a
thorough experimental evaluation of all algorithms in terms of both solution quality and performance,
and shows that our approach can be fast enough for interactive applications. Moreover, since it
does not rely on heavy preprocessing, it can be used in fully dynamic scenarios.

5.1.1 Problem Statement

We want to find journeys in a network built from several partial networks. The first is a public
transportation network representing all available schedule-based means of transportation, such as
trains, buses, rail, or ferries. We can specify this network in terms of its timetable, which is defined
as follows. A stop is a location in the network (such as a train platform or a bus stop) at which a
user can board or leave a particular vehicle. A route is a fixed sequence of stops for which there
is scheduled service during the day; a typical example is a bus or subway line. A route is served
by one or more distinct trips during the day; each trip is associated with a unique vehicle, with
fixed (scheduled) arrival and departure times for every stop in the route. Each stop may also keep a
minimum change time, which must be obeyed when changing trips.

Besides the public transportation network, we also take as input several unrestricted networks,
with no associated timetable. Walking, cycling, and driving are modeled as distinct unrestricted net-
works, each represented as a directed graph G = (V,A). Each vertex v ∈ V represents an intersection
and has associated coordinates (latitude and longitude). Each arc (v, w) ∈ A represents a (directed)
road segment and has an associated duration dur(v, w), which corresponds to the (constant) time to
traverse it.
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p1 p2 p3

J1 = (dep: 0, arr: 10, cost: 90)

J2 = (dep: 0, arr: 20, cost: 20)

J3 = (dep: 0, arr: 90, cost: 10)

J4 = (dep: 10, arr: 20, cost: 90)

J5 = (dep: 15, arr: 40, cost: 10)

J6 = (dep: 90, arr: 180, cost: 10)

Figure 3: Problem of linear combination search in time-dependent multimodal networks.

The integrated transportation network is the union of these partial networks with appropriate
link vertices, i. e., vertices (or stops) in different networks are identified with one another to allow
for changes in modes of transportation. Note that, unlike previous work [13, 28, 32, 39, 77], we do
not necessarily require explicit footpaths in the public transportation networks (to walk between
nearby stops). For pure public transport optimization, adding these footpaths is often done by the
operator of the network or by heuristics [28].

A query takes as input a source location s, a target location t, and a departure time τ , and it
produces journeys that leave s no earlier than τ and arrive at t. A journey is a valid path in the
integrated transportation network that obeys all timetable constraints.

Criteria. We still have to define which journeys the query should return. We argue that users
optimize three natural criteria in multimodal networks: arrival time, costs, and “convenience”. For
our first (simplified) scenario (with public transit, cycling, and walking, but no taxi), we work with
three criteria. Besides arrival time, we use number of trips and walking duration as proxies for
convenience. We add cost for the scenario that includes taxi.

Given this setup, a first natural problem we need to solve is the full multicriteria problem, which
must return a full (maximal) Pareto set of journeys. We say that a journey J1 dominates J2 if J1 is
strictly better than J2 according to at least one criterion and no worse according to all other criteria.
A Pareto set is a set of pairwise nondominating journeys [73, 56]. If two journeys have equal values
in all criteria, we only keep one.

Shortcomings of Existing Approaches As discussed above, a different approach to multi-
modal journey planning is computing a weighted combination of all criteria under consideration
and then running a single-criterion search. However, especially for time-dependent problems (such
as ours), the weighted combination of travel time with other criteria may yield bad journeys. For
example, preferring cheaper subpaths might make us miss the last bus home, forcing us to take an
expensive taxi.

Figure 3 shows a more concrete example. The Pareto-optimal set from stop p1 to p2 when
departing at time τ = 0 contains three journeys. Concatenating J1 + J4 yields an arrival time of 20
and a cost of 180, J1 + J5 yields 40 and 100, and J3 + J6 yields 180 and 20. Note that J2 is never
used. Now, for the weighted linear optimization of α · (arr− dep) + (1− α) · cost (with α ∈ [0, 1]),
one might expect we can obtain these journeys for different values of α. However, for α ∈ [0, 0.125]
we get J3 + J6, for α ∈ (0.125, 0.875] we get J2 + J6, and for α ∈ (0.875, 1] we obtain J1 + J4. So,
we do not find J1 + J5, which provides a reasonable tradeoff between arrival time and costs. Even
worse, for most values of α we get a journey that is not part of the Pareto set.

Fuzzy Dominance. Solving the full multicriteria problem, however, can lead to solution sets
that are too large for most users. Moreover, many solutions provide undesirable tradeoffs, such as
journeys that arrive much later to save a few seconds of walking (or walk much longer to save a few
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seconds in arrival time). Intuitively, most criteria are diffuse to the user, and only large enough
differences are significant. Pareto optimality fails to capture this.

To formalize the notion of significance, we propose to score the journeys in the Pareto set in
a post-processing step using concepts from fuzzy logic [88] (and fuzzy set theory [87]). Loosely
speaking, fuzzy logic generalizes Boolean logic to handle (continuous) degrees of truth. For example,
the statement “60 and 61 seconds of walking are equal” is false in classical logic, but might be
considered “almost true” in fuzzy logic. Formally, a fuzzy set is a tuple S = (U , µ), where U is a set
and µ : U → [0, 1] a membership function that defines “how much” each element in U is contained
in S. Mostly, we use µ to refer to S. Our application requires fuzzy relational operators µ<, µ=,
and µ>. For any x, y ∈ R, they are evaluated by µ<(x − y), µ>(y − x), and µ=(x − y). We use
the well-known [88] exponential membership functions for the operators: µ=(x) := exp( ln(χ)

ε2 x2),
where 0 < χ < 1 and ε > 0 control the degree of fuzziness. The other two operators are derived
by µ<(x) := 1 − µ=(x) if x < 0 (0 otherwise) and µ> := 1 − µ=(x) if x > 0 (0 otherwise). A
triangular norm (short: t-norm) T : [0, 1]2 → [0, 1] is a commutative, associative, and monotone (i. e.,
a ≤ b, x ≤ y ⇒ T (a, x) ≤ T (b, y)) binary operator to which 1 is the neutral element. If x, y ∈ [0, 1]
are truth values, T (x, y) is interpreted as a fuzzy conjunction (and) of x and y. Given a t-norm T ,
the complementary conorm (or s-norm) of T is defined as S(x, y) := 1− T (1− x, 1− y), which we
interpret as a fuzzy disjunction (or). Note that the neutral element of S is 0. Two well-known pairs
of t- and s-norms are (min(x, y),max(x, y)), called minimum/maximum norms, and (xy, x+ y−xy),
called product norm/probabilistic sum.

We now recap the concept of fuzzy dominance in multicriteria optimization, which is introduced
by Farina and Amato [41]. Given journeys J1 and J2 with M optimization criteria, we denote
by nb(J1, J2) the (fuzzy) number of criteria in which J1 is better than J2. More formally, nb(J1, J2) :=∑M
i=1 µ

i
<(κi(J1), κi(J2)), where κi(J) evaluates the i-th criterion of J and µi< is the i-th fuzzy less-

than operator. (Note that each criterion may use different fuzzy operators.) Analogously, we
define ne(J1, J2) for equality and nw(J1, J2) for greater-than. By definition, nb + ne + nw = M .
Hence the Pareto dominance can be generalized to obtain a degree of domination d(J1, J2) ∈ [0, 1],
defined as (2nb + ne −M)/nb if nb > (M − ne)/2 (and 0 otherwise). Here, d(J1, J2) = 0 means
that J1 does not dominate J2, while a value of 1 indicates that J1 Pareto-dominates J2. Otherwise,
we say J1 fuzzy-dominates J2 by degree d(J1, J2). Figure 4 shows contour lines for values of d
between 0 and 1 when using the maximum norm and two exemplary criteria: arrival time and
walking duration (with fuzziness parameters set as in Section 5.1.4). In the figure we fix the criteria
of J1 to (0, 0). The area right-above each contour line t then contains all journeys J2 (with respective
values for their criteria) which are dominated by J1 with degree at least t. For example, a journey is
still dominated by J1 with degree 0.4 if it has 10 minutes less walking while arriving 5 minutes later.

Now, given a (Pareto) set J of n journeys J1, . . . , Jn, we define a score function sc : J → [0, 1]
that computes the degree of domination by the whole set for each Ji. More precisely, sc(J) :=
1− S(J1, . . . , Jn). Note that if we set S to be the maximum norm, the score is based on the (one)
journey that dominates J most. On the other hand, with the probabilistic sum the score may be
based on several fuzzily dominating journeys.

We finally use the score to order the journeys by significance. One may then decide to only show
the k journeys with highest score to the user.

Fuzzy Dominance Example Figure 5 shows a (quite representative) location-to-location
query from William Road (near Warren Street Station) to Caxton Street (near Westminster Abbey)
on our London instance using public transit, walking, and taxi with optimization criteria arrival time,
number of transfers, walking duration, and cost (in pounds). The departure time is 4:27 pm. The
left figure shows all nondominating journeys of the full Pareto set (there are 65 in total), while the
right figure shows the three journeys with highest score from the (same) Pareto set, when our fuzzy
dominance approach is used (cf. Section 5.1.1). This example clearly demonstrates that we obtain
too many nondominating solutions (left figure), a known problem for multicriteria search. But not
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Figure 4: Contour lines of the fuzzy dominance function d(J1, J2) = t for different values t and a
fixed journey J1 = (0, 0) when considering two exemplary criteria: arrival time and walking duration.
The thick black line marks the classical Pareto-dominance (t = 1).

Figure 5: Exemplary multicriteria multimodal query on London with criteria arrival time, number of
transfers, walking duration, and cost. The left figure shows the full Pareto set (65 journeys), while
the right figure shows the three journeys with highest score (cf. Section 5.1.1). Each dot represents a
transfer and included transportation modes are walking (thin black), taxi (thick purple), buses (thin
red), and tube (other thick colors).

D3.3.2: Page 28 of 49



FP7-ICT-2011-7 288094 - eCOMPASS

only is the number of solutions too high for presentation to a user, in fact, most of the journeys are
not meaningful. Some of them take considerable detours (for example north of the source location),
just to save some (insignificant) amount of walking. In contrast, our scoring approach by fuzzy
domination (right figure) is able to identify the significant solutions in the Pareto set, resulting in
three meaningful journeys: One taking taxi the full way (purple), one taking the subway (blue)
which is faster at the cost of more walking (black), and one taking the bus (red) which takes longer
but with significantly less total walking (4min instead of 14min).

5.1.2 Exact Algorithms

This section considers exact algorithms for the multicriteria multimodal problem. Sections 5.1.2
and 5.1.2 propose two solutions, each building on a different algorithm for multicriteria optimization
on public transportation networks (MLC [77] and RAPTOR [32]). Section 5.1.2 then describes
an acceleration technique that applies to both. To simplify the discussion (and notation), we first
describe the algorithms in terms of our simplest scenario, considering only the (timetable-based)
public transit network and the (unrestricted) walking network. Section 5.1.2 explains how to handle
cycling and taxis, which are unrestricted but have special properties.

Multi-label-correcting Algorithm Traditional solutions to the multicriteria problem on public
transportation networks typically model the timetable as a graph [18, 28, 44, 72]. A particularly
effective approach is to use the time-dependent route model [72]. For each stop p, we create a single
stop vertex linked by time-independent transfer edges to multiple route vertices, one for each route
serving p. We also add route edges between route vertices associated to consecutive stops within the
same route. To model the trips along a route, the cost of a route edge is given by a piecewise linear
function reflecting the traversal time (including waiting for the next departure).

A journey in the public transportation network corresponds to a path in this graph. The
multi-label-correcting (MLC) [72] algorithm uses this to find full Pareto sets for arbitrary criteria
that can be modeled as edge costs. MLC extends Dijkstra’s algorithm [38] by operating on labels
that have multiple values, one per criterion. Each vertex v maintains a bag B(v) of nondominated
labels. In each iteration, MLC extracts from a priority queue the minimum (in lexicographic
order) unprocessed label L(u). For each arc (u, v) out of the associated vertex u, MLC creates a
new label L(v) (by extending L(u) in the natural way) and inserts it into B(v); newly-dominated
labels (possibly including L(v) itself) are discarded, and the priority queue is updated if needed.
MLC can be sped up with target pruning and by avoiding unnecessary domination checks [39].

To solve the multimodal problem, we extend MLC: It suffices to augment its input graph to
include the walking network. We combine the original graphs by merging (public transportation)
stops and (walking) intersections that share the same location (and keeping all edges). These
link vertices are then used to switch between modes of transportation. The MLC query remains
essentially unchanged, and still processes labels in lexicographic order. Although labels can now be
associated to vertices in different networks, they can all share the same priority queue.

Round-based Algorithm A drawback of MLC (even restricted to public transportation
networks) is that it can be quite slow: Unlike Dijkstra’s algorithm, MLC may scan the same vertex
multiple times (the exact number depends on the criteria being optimized), and domination checks
make each such scan quite costly. Delling et al. [32] have recently introduced RAPTOR (Round
bAsed Public Transit Optimized Router) as a faster alternative. The simplest version of the algorithm
optimizes two criteria: arrival time and number of transfers. Unlike MLC, which searches a graph,
RAPTOR uses dynamic programming to operate directly on the timetable. It works in rounds,
with round i processing all relevant journeys with exactly i− 1 transfers. It maintains one label per
round i and stop p representing the best known arrival time at p for up to i trips. During round i,
the algorithm processes each route once. It reads arrival times from round i−1 to determine relevant
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trips (on the route) and updates the labels of round i at every stop along the way. Once all routes
are processed, the algorithm considers potential transfers to nearby (predefined) stops in a second
phase. Simpler data structures and better locality make RAPTOR an order of magnitude faster
than MLC. Delling et al. [32] have also proposed McRAPTOR, which extends RAPTOR to handle
more criteria (besides arrival times and number of transfers). It maintains a bag (set) of labels with
each stop and round.

Even with multiple modes of transport available, one trip always consists of a single mode. This
motivates adapting the round-based paradigm to our scenario. We propose MCR (multimodal multi-
criteria RAPTOR), which extends McRAPTOR to handle multimodal queries. As in McRAPTOR,
each round has two phases: the first processes trips in the public transportation network, while the
second considers arbitrary paths in the unrestricted networks. We use a standard McRAPTOR
round for the first phase (on the timetable network) and MLC for the second (on the walking
network). Labels generated by one phase are naturally used as input to the other. During the second
phase, MLC extends bags instead of individual labels. To ensure that each label is processed at
most once, we keep track of which labels (in a bag) have already been extended. The initialization
routine (before the first round) runs Dijkstra’s algorithm on the walking network from the source s
to determine the fastest walking path to each stop in the public transportation network (and to t),
thus creating the initial labels used by MCR. During round i, the McRAPTOR subroutine reads
labels from round i− 1 and writes to round i. In contrast, the MLC subroutine may read and write
labels of the same round if walking is not regarded as a trip.

Contracting the Unrestricted Networks As our experiments will show, the bottleneck of the
multimodal algorithms is processing the walking network G = (V,A). We improve performance
using a quick preprocessing technique [37]. For any journey involving public transportation, walking
between trips always begins and ends at the restricted set K ⊂ V of link vertices. During queries,
we must only be able to compute the pairwise distances between these vertices. We therefore use
preprocessing to compute a smaller core graph [81] that preserves these distances. More precisely,
we start from the original graph and iteratively contract [47] each vertex in V \K in the order given
by a rank function r. Each contraction step (temporarily) removes a vertex and adds shortcuts
between its uncontracted neighbors to maintain shortest path distances (if necessary). It is usually
advantageous to first contract vertices with relatively small degrees that are evenly distributed
across the network [47]. We stop contraction when the average degree in the core graph reaches
some threshold (we use 12 in our experiments) [37].

To run a faster multimodal s–t query, we use essentially the same algorithm as before (based on
either MLC or RAPTOR), but replacing the full walking network with the (smaller) core graph.
Since the source s and the target t may not be in the core, we handle them during initialization.
It works on the graph G+ = (V,A ∪A+) containing all original arcs A as well as all shortcuts A+

added during the contraction process. We run upward searches (only following arcs (u, v) such
that r(u) > r(w)) in G+ from s (scanning forward arcs) and t (scanning reverse arcs); they reach
all potential entry and exit points of the core, but arcs within the core are not processed [37]. These
core vertices (and their respective distances) are used as input to MCR’s (or MLC’s) standard
initialization, which can operate on the core from this point on.

The main loop works as before, with one minor adjustment. Whenever MLC extracts a label L(v)
for a scanned core vertex v, we check if it has been reached by the reverse search during initialization.
If so, we create a temporary label L′(t) by extending L(v) with the (already computed) walking
path to t and add it to B(t) if needed. MCR is adjusted similarly, with bags instead of labels.

Beyond Walking We now consider other unrestricted networks (besides walking). In particular,
our experiments include a bicycle rental scheme, which can be seen as a hybrid network: It does not
have a fixed schedule (and is thus unrestricted), but bicycles can only be picked up and dropped off
at designated cycling stations. Picking a bike from its station counts as a trip. To handle cycling
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within MCR, we consider it during the first stage of each round (together with RAPTOR and before
walking). Because bicycles have no schedule, we process them independently (from RAPTOR) by
running MLC on the bicycle network. To do so, we initialize MLC with labels from round i− 1 for
all relevant bicycle stations and, during the algorithm, we update labels of (the current) round i.

We consider a taxi ride to be a trip as well, since we board a vehicle. Moreover, we also optimize
a separate criterion reflecting the (monetary) cost of taxi rides. If taxis were not penalized in any
way, an all-taxi journey would almost always dominate all other alternatives (even sensible ones),
since it is fast and has no walking. Our round-based algorithms handle taxis as they do walking,
except that in the taxi stage labels are read from round i− 1 and written into round i. Note that we
link the taxi network to public transit stops as well as bicycle stations and that—unlike with rental
bicycles—we also allow taking a taxi as the first and/or last leg of any location-to-location query.
Dealing with personal cars or bicycles is simpler. Assuming that they are only available for the first
or last legs of the journey, we must only consider them during initialization. Initialization can also
handle other special cases, such as allowing rented bicycles to be ridden to the destination (to be
returned later).

Note that contraction can be used for cycling and driving. For every unrestricted network (walking,
cycling, driving), we keep the link vertices (stops and bicycle stations) in one common core and
contract (up to) all other nodes. As before, queries start with upward searches in each relevant
unrestricted network.

5.1.3 Heuristics

Even with all accelerations, the exact algorithms proposed in Section 5.1.2 are not fast enough for
interactive applications. This section proposes quick heuristics aimed at finding a set of journeys
that is similar to the exact solution, which we take as ground truth. We consider three approaches:
weakening the dominance rules, restricting the amount of walking, and reducing the number of
criteria. We also discuss how to measure the quality of the heuristic solutions we find.

Weak Dominance. The first strategy we consider is to weaken the domination rules during the
algorithm, reducing the number of labels pushed through the network. We test four implementations
of this strategy. The first, MCR-hf, uses fuzzy dominance (instead of strict dominance) when
comparing labels during the algorithm: For labels L1 and L2, we compute the fuzzy dominance
value d(L1, L2) (cf. Section 5.1.1) and dominate L2 if d exceeds a given threshold (we use 0.9). The
second, MCR-hb(κ), uses strict dominance, but discretizes criterion κ: before comparing labels L1
and L2, we first round κ(L1) and κ(L2) to predefined discrete values (buckets); this can be extended
to use buckets for several criteria. The third heuristic, MCR-hs(κ), uses strict dominance but adds a
slack of x units to κ. More precisely, L1 already dominates L2 if κ(L1) ≤ κ(L2)+x and L1 is at least
as good L2 in all other criteria. The last heuristic, MCR-ht, weakens the domination rule by trading
off two or more criteria. More concretely, consider the case in which walking (walk) and arrival
time (arr) are criteria. Then, L1 already dominates L2 if arr(L1) ≤ arr(L2)+a·(walk(L1)−walk(L2)),
walk(L1) ≤ walk(L2) + a · (arr(L1)− arr(L2)), and L1 is at least as good as L2 in all other criteria,
for a tradeoff parameter a (we use a = 0.3).

Restricting Walking. Consider our simple scenario of walking and public transit. Intuitively,
most journeys start with a walk to a nearby stop, followed by one or more trips (with short
transfers) within the public transit system, and finally a short walk from the final stop to the
actual destination. This motivates a second class of heuristics, MCR-tx. It still runs three-criterion
search (walking, arrival, and trips), but limits walking transfers between stops to x minutes; in this
case we precompute these transfers. MCR-tx-ry also limits walking in the beginning and end to y
minutes. Note that existing solutions often use such restrictions [13].
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Fewer Criteria. The last strategy we study is reducing the number of criteria considered during
the algorithm. As already mentioned, this is a common approach in practice. We propose MR-x,
which still works in rounds, but optimizes only the number of trips and arrival times explicitly (as
criteria). To account for walking duration, we count every x minutes of a walking segment (transfer)
as a trip; the first x minutes are free. With this approach, we can run plain Dijkstra to compute
transfers, since link vertices no longer need to keep bags. The round index to which labels are
written then depends on the walking duration (of the current segment) of the considered label. A
special case is x =∞, where a transfer is never a trip. Another variant is to always count a transfer
as a single trip, regardless of duration; we abuse notation and call this variant MR-0. We also
consider MR-∞-tx: Walking duration is not an explicit criterion and transfers do not count as trips,
but are limited to x minutes.

For scenarios that include cost as a criterion (for taxis), we consider variants of the MCR-hb
and MCR-hf heuristics. In both cases, we drop walking as an independent criterion, leaving only
arrival time, number of trips, and costs to optimize. We account for walking by making it a (cheap)
component of the costs.

Quality Evaluation To measure the quality of a heuristic, we compare the set of journeys it
produces to the ground truth, which we define as the solution found by MCR. To do so, we first
compute the score of each journey with respect to the Pareto set that contains it (cf. Section 5.1.1).
Then, for a given parameter k, we measure the similarity between the top k scored journeys returned
by the heuristics and the top k scored journeys in the ground truth. Note that the score depends
only on the algorithm itself and does not assume knowledge of the ground truth, which is consistent
with a real-world deployment.

To compare two sets of k journeys, we run a greedy maximum matching algorithm. First, we
compute a k × k matrix where entry (i, j) represents the similarity between the i-th journey in
the first set and the j-th in the second. To measure the similarity, we make use of the same fuzzy
relational operators we use for scoring. More precisely, given two journeys J1 and J2, the similarity
with respect to the i-th criterion is given by ci := µi=(κi(J1) − κi(J2)), where κi is the value of
this criterion and µi= is the corresponding fuzzy equality relation. Then, we define the similarity
between J1 and J2 as T (c1, c2, . . . , cM ), where T is an arbitrary t-norm. We always select T to be
consistent with the s-norm that we use to compute the score values.

After computing the pairwise similarities, we greedily select the unmatched pairs with highest
similarity (by picking the highest entry in the matrix that does not share a row or column with a
previously picked entry). The similarity of the whole matching is the average similarity of its pairs,
weighted by the fuzzy score of the reference journey. This means that matching the highest-scored
reference journey is more important than matching the k-th one.

5.1.4 Experiments

This section presents an extensive evaluation of the methods introduced in this paper. All algorithms
from Sections 5.1.2 and 5.1.3 were implemented in C++ and compiled with g++ 4.6.2 (64 bits,
flag -O3). We ran our experiments on one core of a dual 8-core Intel Xeon E5-2670 clocked at 2.6GHz,
with 64GiB of DDR3-1600 RAM.

Input and Methodology. We focus on the transportation network of London (England); results
for other instances (available in Section 5.1.4) are similar. We use the timetable information made
available by Transport for London (TfL) [63, 83], from which we extracted a Tuesday in the periodic
summer schedule of 2011. The data includes subway (tube), buses, tram, ferries, and light rail (DLR),
as well as bicycle station locations. To model the underlying road network, we use data provided by
PTV AG [76] from 2006, which explicitly indicates whether each road segment is open for driving,
cycling and/or walking. We set the walking speed to 5 km/h and the cycling speed to 12 km/h,
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Table 9: Performance and solution quality on journeys considering walking, cycling, and public
transit. Bullets (•) indicate the criteria taken into account by the algorithm.

Scans Comp. Time Quality-3 Quality-6
Algorithm Ar

r.
Tr
p.

W
lk
.

Rnd. /Ent. /Ent. Jn. [ms] Avg. Sd. Avg. Sd.
MCR-full • • • 13.8 13.8 168.2 29.1 4 634.0 100% 0% 100% 0%
MCR • • • 13.8 3.4 158.7 29.1 1 438.7 100% 0% 100% 0%
MLC • • • — 10.6 1 246.7 29.1 4 543.0 100% 0% 100% 0%
MCR-hf • • • 15.6 2.9 14.3 10.9 699.4 89% 15% 89% 11%
MCR-hb • • • 10.2 2.1 12.7 9.0 456.7 91% 12% 91% 10%
MCR-hs • • • 14.7 2.6 11.1 8.6 466.1 67% 28% 69% 23%
MCR-ht • • • 10.5 2.0 6.4 8.6 373.6 84% 22% 82% 20%
MCR-t10 • • • 13.8 2.7 132.7 29.0 1 467.6 97% 10% 95% 10%
MCR-t10-r15 • • • 10.7 1.7 73.3 13.2 885.0 38% 40% 30% 31%
MCR-t5 • • • 13.8 2.7 126.6 28.9 891.9 93% 16% 92% 15%
MR-∞ • • ◦ 7.6 1.4 4.8 4.5 44.4 63% 28% 63% 24%
MR-0 • • ◦ 13.7 2.1 6.9 5.4 61.5 63% 28% 63% 24%
MR-10 • • ◦ 20.0 1.1 4.8 4.3 39.4 51% 33% 45% 29%
MR-∞-t10 • • ◦ 7.6 1.1 4.8 4.5 22.2 63% 28% 62% 24%

and we assume driving at free-flow speeds. We do not consider turn costs, which are not defined
in the data. The resulting combined network has 564 cycle stations and about 20 k stops, 5M
departure events, and 259 k vertices in the walking network. Exact numbers are given in Table 12 of
Section 5.1.4.

Recall that we specify the fuzziness of each criterion by a pair (χ, ε), roughly meaning that the
corresponding Gaussian (centered at x = 0) has value χ for x = ε. We set these pairs to (0.8, 5) for
walking, (0.8, 1) for arrival time, (0.1, 1) for trips, and (0.8, 5) for costs (given in pounds; times are
in minutes). Note that the number of trips is sharper than the other criteria. Later in this section
we show that our approach is robust to small variations in these parameters, but they can be tuned
to account for user-dependent preferences. If not indicated otherwise, our experiments consider the
minimum/maximum norms by default. We run location-to-location queries, with sources, targets,
and departure times picked uniformly at random (from the walking network and during the day,
respectively).

Algorithms Evaluation. For our first experiment, we use walking, cycling, and the public
transportation network and consider three criteria: arrival time, number of trips, and walking
duration. We ran 1 000 queries for each algorithm. Table 9 summarizes the results (Section 5.1.4 has
additional statistics). For each algorithm, the table first shows which criteria are explicitly taken
into account. The next five columns show the average values observed for the number of rounds,
scans per entity (stop/vertex), label comparisons per entity, journeys found, and running time (in
milliseconds). The last four columns evaluate the quality of the top 3 and 6 journeys found by our
heuristics, as explained in Section 5.1.3. Note that we show both averages and standard deviations.

The methods in Table 9 are grouped in blocks. Those in the first block compute the full Pareto
set considering all three criteria (arrival time, number of trips, and walking). MCR, our reference
algorithm, is round-based and uses contraction in the unrestricted networks. As anticipated, it is
faster (by a factor of about three) than MCR-full (which does not use the core) and MLC (which
uses the core but is not round-based). Accordingly, all heuristics we test are round-based and use
the core.

The second block contains heuristics that accelerate MCR by weakening the domination rules,
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Figure 6: Number of Pareto optimal journeys with score higher than 0.1 for varying fuzziness. We
consider both the maximum norm (left) and probabilistic sum (right). The x axis varies the fuzziness
in the arrival time, while the y axis considers the walking duration. The intensity (color) of the
corresponding entry indicates the average number of journeys in the filtered output.

causing more labels to be pruned (and losing optimality guarantees). As explained in Section 5.1.3,
MCR-hf uses fuzzy dominance during the algorithm, MCR-hb uses walking buckets (discretizing
walking by steps of 5 minutes for domination), MCR-hs uses a slack of 5 minutes on the walking
criterion when evaluating domination, and MCR-ht considers a tradeoff parameter of a = 0.3
between walking and arrival time. All heuristics are faster than pure MCR, and MCR-hb gives the
best quality at a reasonable running time.

The third block has algorithms with restrictions on walking duration. Limiting transfers to 10
minutes (as MCR-t10 does) has almost no effect on solution quality (which is expected in a well-
designed public transportation network). Moreover, adding precomputed footpaths of 10 minutes
is not faster than using the core for unlimited walking (as MCR does). Additionally limiting the
walking range from s or t (MCR-t10-r15) improves speed, but the quality becomes unacceptably low:
The algorithm misses good journeys (including all-walk) quite often. If instead we allow even more
restricted transfers (with MCR-t5), we get a similar speedup with much better quality (comparable
to MCR-hb).

The MR-x algorithms (fourth block) reduce the number of criteria considered by combining trips
and walking. The fastest variant is MR-∞-t10, which drops walking duration as a criterion but limits
the amount of walking at transfers to 10 minutes, making it essentially the same as RAPTOR, with
a different initialization. As expected, however, quality is much lower than for MCR-tx, confirming
that considering the walking duration explicitly during the algorithm is important to obtain a full
range of solutions. MR-10 attempts to improve quality by transforming long walks into extra trips,
but is not particularly successful.

Summing up, MCR-hb should be the preferred choice for high-quality solutions, while MR-∞-t10
can support interactive queries with reasonable quality.

Fuzzy Parameters Evaluation. We also evaluated the impact of the fuzzy parameters on the
number of journeys we obtain. We again use London with walking, public transit, and cycling as
input. Figure 6 shows the number of journeys given a score higher than 0.1 (by the fuzzy ranking
routine) when we vary ε (the level of fuzziness) for two criteria, walking and arrival time. We
set χ = 0.8, as in our main experiments. To not overload the figure, we keep the fuzziness of the
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Figure 7: Evaluating the number of journeys returned by some of our algorithms: For a given n (on
the abscissa), we report the percentage of 1 000 random queries that compute n or more journeys.

third criterion (number of trips) constant.
A comparison between the plots shows that, for the same set of parameters, probabilistic sum

is significantly stricter than the maximum norm, and reduces the number of journeys much more
drastically (for a fixed threshold). Qualitatively, however, they behave similarly. Under both norms,
making the walking criterion fuzzier is more effective at identifying unwanted journeys. A couple of
minutes of fuzziness in the walking criterion is enough to significantly reduce the number of journeys
above the threshold. Adding fuzziness only to the arrival time has much more limited effect on the
results.

Quality of the Heuristics. We here further investigate the quality of our heuristics. We use
London with walking, public transit, and cycling as input. Figure 7 reports the size of the Pareto
set (the input to scoring) for various algorithms, while Figure 8 shows how well the the top k
heuristic journeys match the ground truth, for varying k. We observe that exact MCR (even if
restricted to 5-minute transfers) does indeed produce many journeys, supporting the notion of
ranking them afterwards (by score). A good heuristic, such as MCR-hb, computes much fewer
journeys, but they match the top MCR journeys quite well. An interesting observation is that the
quality of the heuristic hardly depends on the number of journeys we try to match.

Full Multimodal Problem. Our final experiment considers the full multimodal problem, includ-
ing taxis. We add cost as fourth criterion (at 2.40 pounds per taxi trip plus 60 pence per minute).
We do not consider the cost of public transit, since it is significantly cheaper. Table 10 presents
the average performance of some of our algorithms over 1 000 random queries in London. The first
block includes algorithms that optimize all four criteria (arrival time, walking duration, number of
trips, and costs). While exact MCR is impractical, fuzzy domination (MCR-hf) makes the problem
tractable with little loss in quality. Using 5-minute buckets for walking and 5-pound buckets for
costs (MCR-hb) is even faster, though queries still take more than two seconds. The second block
shows that we can reduce running times by dropping walking duration as a criterion (we incorporate
it into the cost function at 3 pence per minute, instead), with almost no loss in solution quality.
This is still not fast enough, though. Using 5-pound buckets (MCR-hb) reduces the average query
time to about 1 second, with reasonable quality.

Detailed Performance Table 11 presents a more detailed analysis of the main experiment in
Section 5.1.4 (without taxis). For each algorithm, it shows the effort (number of scans per vertex
and/or stop, as well as running times in milliseconds) spent in each of the networks (public transit,
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Figure 8: Evaluating the solution quality by matching the top k journeys in the solution with the
top k of the reference algorithm (MCR). The scores and similarity values are obtained by using the
minimum/maximum norms (left) and the product norm/probabilistic sum (right). The legend of
the right plot also applies to the left.

Table 10: Performance on our London instance when taking taxi into account.
Scans Comp. Time Quality-3 Quality-6

Algorithm Ar
r.

Tr
p.

W
lk
.

Co
st

Rnd. /Ent. /Ent. Jn. [ms] Avg. Sd. Avg. Sd.
MCR • • • • 16.3 3.1 369 606.0 1 666.0 1 960 234.0 100% 0% 100% 0%
MCR-hf • • • • 17.1 2.1 137.1 35.2 6 451.6 92% 12% 92% 6%
MCR-hb • • • • 9.9 1.3 86.8 27.6 2 807.7 96% 8% 92% 6%
MCR • • ◦ • 14.6 2.4 7 901.4 250.9 25 945.8 98% 6% 97% 5%
MCR-hf • • ◦ • 12.0 1.4 33.6 17.6 2 246.3 87% 12% 74% 12%
MCR-hb • • ◦ • 9.0 1.0 20.0 11.6 996.4 86% 12% 74% 12%
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Table 11: Detailed performance analysis of our algorithms. The total running time includes additional
overhead, such as for initialization.

Public Transit Walking Cycling Total
Scans Time Scans Time Scans Time Scans Time

Algorithm Ar
r.

Tr
p.

W
lk
.

/ Stop [ms] /Vert. [ms] /Vert. [ms] /Ent. [ms]
MCR-full • • • 32.1 350.6 9.6 3 030.9 43.6 1 203.1 13.8 4 634.0
MCR • • • 32.1 341.4 1.2 889.3 1.7 159.2 3.4 1 438.7
MLC • • • 119.3 — 2.6 — 2.1 — 10.6 4 543.0
MCR-hf • • • 28.1 157.7 1.0 483.9 0.7 25.6 2.9 699.4
MCR-hb • • • 21.1 115.2 0.7 297.4 0.5 19.7 2.1 456.7
MCR-hs • • • 25.1 97.3 0.9 322.2 0.6 16.8 2.6 466.1
MCR-ht • • • 20.2 86.8 0.7 246.4 0.5 17.4 2.0 373.6
MCR-t5 • • • 31.5 318.4 0.5 348.6 1.7 157.2 2.7 891.9
MCR-t10 • • • 31.6 326.2 0.5 913.7 1.7 158.5 2.7 1 467.6
MCR-t10-r15 • • • 20.0 207.5 0.3 554.0 1.2 103.6 1.7 885.0
MR-∞ • • ◦ 14.2 10.0 0.5 31.0 0.3 1.8 1.4 44.4
MR-0 • • ◦ 21.4 13.9 0.7 42.5 0.4 2.4 2.1 61.5
MR-10 • • ◦ 9.7 6.3 0.5 30.5 0.2 1.3 1.1 39.4
MR-∞-t10 • • ◦ 14.4 9.4 0.2 9.5 0.3 1.6 1.2 22.2

walking, and cycling) and in total. The table shows that all round-based algorithms except MR-∞-
t10 spend significantly more time processing the unrestricted networks (walking and cycling) than
dealing with public transportation. This was to be expected: not only are the unrestricted networks
bigger (they have more vertices), but also they must be processed with a (slower) Dijkstra-based
algorithm (as in MLC, rather than RAPTOR). This is the reason for the good performance of the
MR-∞-t10 heuristic.

Additional Inputs In addition to London, we tested inputs representing other large metropolitan
areas (New York, Los Angeles, and Chicago). We built the public transit network from publicly avail-
able General Transit Feeds (GTFS) [49], restricting ourselves to the timetable for August 10, 2011 (a
Wednesday). The walking network data is still given by PTV [76], and these instances do not include
bicycles. Detailed statistics for all instances are presented in Table 12.

Table 13 compares the performance of our algorithms on these inputs. For reference, we
also consider a simplified version of the London network, without bicycles. For each input, we
show the average values (over 1 000 queries) for number of journeys found, running time, and
quality (considering the top 6 journeys). The results are consistent with those obtained for the
full London network, showing that our preferred choice of heuristics also holds here. MCR-hb is
always the best choice in terms of solution quality (among methods with reasonable speedups),
while MR-∞-t10 is preferred if query times should be as low as possible.

5.1.5 Final Remarks

We have studied multicriteria journey planning in multimodal networks. We argued that users
optimize three criteria: arrival time, costs, and convenience. Although the corresponding full Pareto
set is large and has many unnatural journeys, fuzzy set theory can extract the relevant journeys
and rank them. Since exact algorithms are too slow, we have introduced several heuristics that
closely match the best journeys in the Pareto set. Our experiments show that our approach enables
efficient realistic multimodal journey planning in large metropolitan areas. A natural avenue for
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Table 12: Size figures for our input instances. We link every stop and cycle station with the
walking/taxi network.

Figure London New York Los Angeles Chicago
Public Transit
Stops 20 843 17 894 15 003 12 137
Routes 2 184 1 393 1 099 710
Trips 133 011 45 299 16 376 20 303
Daily Departure Events 4 991 125 1 825 129 931 846 1 194 571
Vertices (Route Model) 99 230 66 124 81 657 47 561
Edges (Route Model) 260 583 193 159 214 369 118 452
Walking
Vertices 258 840 255 808 224 053 70 440
Vertices in Core 27 840 25 808 21 053 16 440
Edges 1 433 814 1 586 782 1 395 185 586 979
Footpaths ≤ 5min 150 948 219 040 83 844 122 450
Footpaths ≤ 10min 518 174 670 702 271 444 426 818
Cycling
Cycle Stations 564 — — —
Vertices 23 311 — — —
Vertices in Core 1 311 — — —
Edges 130 971 — — —
Taxi
Vertices 259 122 — — —
Vertices in Core 27 122 — — —
Edges 1 339 487 — — —

Table 13: Evaluating the performance of MCR and MR with different heuristics on other instances.
The quality is determined identically to Table 9 (cf. Section 5.1.4).

New York Los Angeles Chicago
Time Qual. Time Qual. Time Qual.

Algorithm Ar
r.

Tr
p.

W
lk
.

Jn. [ms] Avg. Jn. [ms] Avg. Jn. [ms] Avg.
MCR • • • 25.5 1 703.0 100% 16.7 644.6 100% 22.1 532.8 100%
MCR-hf • • • 8.6 611.0 91% 8.9 445.0 88% 8.3 241.3 72%
MCR-hb • • • 7.2 413.8 94% 7.6 295.8 93% 7.1 160.8 92%
MCR-hs • • • 6.7 414.0 84% 7.4 310.7 62% 6.6 158.8 58%
MCR-ht • • • 6.6 300.9 80% 6.7 228.4 69% 6.2 113.9 79%
MCR-t5 • • • 25.6 695.5 69% 16.6 262.7 93% 21.9 277.7 95%
MCR-t10 • • • 25.3 1 401.4 85% 16.8 424.5 96% 22.0 578.8 98%
MCR-t10-r15 • • • 5.4 677.9 10% 3.9 202.0 13% 9.6 372.7 28%
MR-∞ • • ◦ 3.4 26.3 65% 3.6 21.5 51% 3.3 12.3 63%
MR-0 • • ◦ 3.8 37.6 65% 4.3 28.5 52% 3.7 15.6 63%
MR-10 • • ◦ 6.0 26.1 41% 6.1 26.6 42% 5.1 13.9 50%
MR-∞-t10 • • ◦ 3.6 10.6 60% 3.6 11.0 51% 3.3 7.1 63%
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future research is accelerating our approach further to enable interactive queries with an even richer
set of criteria in dynamic scenarios, handling delay and traffic information. The ultimate goal is to
compute multicriteria multimodal journeys on a global scale in real time.

5.2 Multiobjective Route Planning
In route planning the goal is to find a shortest path between a source node s and a target node t.
In a weighted directed graph typically a single weight or cost is used. Sometimes however, it is not
enough to find the shortest path in terms of a single criterion (e.g distance), but also with regard
to other criteria, such as travel time or energy cost. As a result, the weight function depends on
multiple criteria. For example less travel time can mean more energy cost, but aligned with the
objectives of eCOMPASS we are interested in computing environmentally friendly routes.

A core routine for multimodal and multiobjective route planning is to compute multiobjective
shortest paths. This particular problem appears in applications such as QoS routing in communication
networks, transport optimization and route planning. Even though numerous efficient algorithms
exist for the single criterion shortest path problem, the multicriteria part of the problem is much
harder. In fact, it is NP-complete. In order to deal with multimodal route planning problems,
motivated by a great demand in practical applications to achieve efficiency and optimality, the
NAMOA* algorithm was introduced in [66]. We are able to propose a new implementation of
NAMOA*, enhanced with further heuristic optimizations on a new graph structure, Packed-Memory
Graph (PMG) [65], that is especially suited for large-scale networks.

u0 u1

u4

u3

u2

Figure 9: An example graph.

5.2.1 Graph structure

Packed-Memory Graph. This is a highly optimized graph structure which provides dynamic
memory management of the graph and provides the user the ability to control the storing scheme of
nodes and edges in memory for optimization purposes. It supports optimal scanning of consecutive
nodes and edges and can incorporate dynamic changes in the graph layout in a matter of µs.

The PMG structure consists of an array for storing the nodes, in an arbitrary order, and two
arrays for storing the edges, one considering the edges as outgoing from the nodes and one considering
them as incoming to the nodes. The storing order of the edges follows the order of their base node
in the node array. All three arrays reserve more memory than they need for their elements. The
extra memory cells are evenly distributed throughout the arrays forming holes in them, which can
then be used to efficiently add new elements. An illustration of the PMG structure, for the example
graph of Figure 9, is shown in Figure 10.

The PMG structure includes the following operations. First, it provides internal node reordering.
This means that nodes are stored in consecutive memory addresses, when they are given in an
arbitrary order. As a result the edge arrays have to be reordered as well. This order can be changed
at any time in an online manner. This function helps to increase the locality of references and
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Figure 10: Packed-Memory Graph representation

read/write operations will cause as few memory misses as possible, when an algorithm needs to
configure the ordering of the nodes.

The PMG structure can scan S consecutive nodes or edges in O(S) time and O(S/B) memory
transfers, where B is the size of the block transferred between the memory layers. Hence, during
Dijkstra’s algorithm, it can access all outgoing edges of a node very efficiently. It is shown in [65]
that the time and memory of the update operations are polylogarithmic in the size of the graph.
Further details about PMG can be found in [65].

5.2.2 The heuristic algorithm NAMOA*

Our implementation for finding all Pareto-optimal solutions in the multiobjective shortest path
problem is based on NAMOA* algorithm, which incorporates the A∗ search technique with the
multiobjective Dijkstra’s algorithm along with several optimizations. This approach is strict, has very
good performance and requires little preprocessing. The s-t query is similar to the multiobjective
Dijkstra’s algorithm with some extensions. The main difference is that the priority of a label
(`1, `2, ..., `k) in the queue is modified according to a heuristic function ht : V → Rk. This function
gives a lower bound estimate ht(u) = (w1, w2, ..., wk) for the cost ci(u, t) of a shortest u-t path with
respect to criterion i, that is, wi ≤ ci(u, t),∀u ∈ V and 1 ≤ i ≤ k. By adding this heuristic function
to the priority of each generated label of a node, the search is pulled faster towards the target. The
tighter the lower bound is, the faster the target is reached.

In order for the A∗ search extension to have as large an effect as possible, more modifications
have been introduced to the core multiobjective Dijkstra’s algorithm [66]. First, the list of labels on
a node u are split into two sets, Gop(u) and Gcl(u) where the first contains the labels that are also
present in the queue, and the second contains the rest. This way, when discarding a label from the
list that is also present in the queue, it is discarded from the queue as well.
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Moreover, as soon as the target node is reached through a non-dominated path Pst, this path gets
recorded and then removed from the search space. On each iteration, when a label representing a
path Psu is extracted from the queue, a check takes place; if the label representing Psu is dominated
by the label representing Pst, then there can be no path to t consisting of Psu that is not dominated.
Therefore, the label representing Psu is discarded, and the search is pruned at this point. It is clear
that the fastest a first non-dominated path to t is discovered, the earliest the search will be pruned.
Hence, the heuristic function that pulls the search towards the target is a very important factor
affecting the overall performance of the algorithm.

5.2.3 Computing heuristic functions

TC heuristic. Tung and Chew in [84] have proposed the following heuristic. Let ht(u) =
(w1, w2, ..., wk) be the heuristic function of a node u during a search towards a target node t. The
heuristic function consists of the shortest distances from u to t with respect to only one criterion at
a time. For each criterion i, a single-criterion shortest path tree is grown from t on the reverse graph←−
G = (V,←−E ),←−E = {(v, u)|(u, v) ∈ E} and each shortest path distance c∗i (u, t) is recorded for criterion
i, ∀u ∈ V and 1 ≤ i ≤ k. Then, the heuristic function becomes ht(u) = (c∗1(u, t), c∗2(u, t), ..., c∗k(u, t)).
Clearly, this is a lower bound for any generated distance label of node u using the NAMOA*
algorithm.
Bounded calculation for the TC heuristic. The TC heuristic builds a full reverse single-
criterion shortest path tree for each criterion of the problem. Even though the single-criterion search
is efficient, this process is executed during the query, which clearly must be as fast as possible.
Whereas this process is executed during the query, we have to reduce the search space, in order to
decrease the running time. To achieve this, an improvement on the TC heuristic was presented in
[64]. For simplicity, we shall describe the main idea using h = 2 criteria. The approach can easily
be extended to multiple criteria.

Let c∗1(u, t) be the shortest path cost from u to t with respect to the first criterion. The cost
of this path using the second criterion is denoted as c′

2(u, t), which clearly may not be optimal.
Accordingly, c∗2(u, t) is defined as the cost of the shortest path from u to t with respect to the second
criterion, and the cost of this path under the first criterion is denoted as c′

1(u, t). It has been shown
in [66] that NAMOA* does not consider paths whose costs are dominated by (c′

1(u, t), c′

2(u, t)), since
this can never lead to non-dominated solutions. The approach in [64] called TC-bounded heuristic,
for the computation of ht(u) consists of the following steps:

1. A reverse single-criterion shortest path tree is grown from t using the first criterion. During
the growth of the tree, for each node, the shortest path distance towards t is assigned as the
first criterion heuristic for this node. The search is stopped as soon as it reaches s with cost
c∗1(s, t). The cost of Pst under the second criterion is recorded as c′

2(s, t) and the search is
paused at this point.

2. A reverse single-criterion shortest path tree is grown from t using the second criterion. In the
same manner as in the first step, each node u gets assigned its lower bound for the second
criterion. The search is stopped as soon as the minimum cost in the queue is greater than
c

′

2(s, t). As it can be observed, node s is settled before quitting the search, and gets assigned
the shortest path c∗2(s, t), with c∗2(s, t) ≤ c′

2(s, t). The cost of this path under the first criterion
is recorded as c′

1(s, t).

3. Now, the first search continues from the same point it was paused in Step 1. The search stops
as soon as the minimum cost in the queue is greater than c′

1(s, t).

5.2.4 Extensions of NAMOA*

We have extended the NAMOA* algorithm by enhancing it with several implementation optimiza-
tions that greatly improve memory accesses of any functions used. In particular, we used three
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optimizations which are the following:

1. We do not keep Gop(u) and Gcl(u) as different entities on each node. Instead, we have
combined them into one list of labels, and have extended the actual labels to contain a flag
determining whether a particular label is in the queue or not. A a result, all labels of a node,
either open or closed, reside on consecutive memory addresses, yielding less cache misses.

2. We keep a pointer on each label, pointing to the predecessor node that generated it. In this
way, by following the pointers to the predecessor of a node, we can construct a predecessor
graph and all non-dominated routes.

3. We have made the following observation. Any label L residing on a node u during an iteration
of the algorithm represents a currently non-dominated path Psu. This path might have been the
prefix of more non-dominated paths Psv towards a node v. The paths Psv are a concatenation
of Psu and some path Puv. In case Psu becomes dominated by another path P ′

su, then all paths
Psv will be dominated by P ′

sv consisting of P ′

su and the original Puv. Hence, when discarding
a dominated label L from the list of a node u, we search forward for all subsequent labels of
other nodes v generated by L and discard them both from the lists and from the queue.

5.2.5 Experimental Evaluation

We present an extensive experimental evaluation of our NAMOA* implementation. The experiments
were conducted on an Intel(R) Core(TM) i5-2500K CPU @ 3.30GHz with a cache size of 6144 Kb
and 8 GB of RAM. Our approach was implemented in C++ and compiled by GCC version 4.6.3
with optimization level 3.

To assess the performance of our graph structure and algorithmic implementations, we performed
a series of experiments on the road networks with two criteria. The first criterion is the actual
distance and the second criterion is the travel time between two nodes. The travel time is not
always relative to the actual distance, since different roads have different speed limits. The road
networks for our experiments, were taken from the DIMACS homepage, consist of the cities of New
York, London, Berlin and the state of Florida. The provided graphs are strongly connected and
undirected, so every edge is considered as bidirectional.

We have measured the running times for bounded TC heuristic, which has the best running
times in comparison with other heuristics, such as Great Circle distance heuristic and plain TC
heuristic. The difference from the plain TC heuristic is the initial computation of the heuristics, not
the actual running time of NAMOA*. The running times reported here are the mean values of 10
query repetitions. Table I shows the average running times for all queries on the road maps of New
York, London, Berlin and the state of Florida respectively. The time is measured in seconds and
values that are omitted are running times that exceed the one-hour limit. It is apparent that the
PMG NAMOA* is fast enough to be used in multimodal route planning problems.

Maps Nodes Edges TC Bounded Heuristic Pareto Paths(n) (m) (sec)
Berlin 101,402 253,078 0.3435 38
London 188,333 429,724 0.4915 37

New York 264,346 733,846 5.2700 166
Florida 1,070.376 2,712.798 15.7226 283

Table 14: Performance of PMG NAMOA* in the road maps of New York, London, Berlin and the
state of Florida using the bounded TC heuristic. The execution times are given in seconds. The
Pareto optimal path is measured in nodes.
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5.2.6 Final Remarks

We have presented a first implementation of an exact method for a core problem in multiobjective
and multimodal route planning. The running times of the experiments are very satisfactory and
indicate that this algorithm can be used successfully for multimodal route planning. In the next
period, we plan to enhance the algorithm with further heuristic improvements.

6 Conclusions and Plans for Next Periods
This deliverable presented the main algorithmic achievements obtained during Task 3.3. It started by
discussing the main challenges that we have identified for journey planning in multimodal networks.
At the core of these challenges lies the fact that in multimodal transportation networks there is much
more choice and a multitude of “best” solutions (where “best” relates to hidden user preferences
and is hard to capture as a single metric; in fact, lack of knowledge of what is “best” might well be
the reason for users to adopt a journey planning service in the first place). Unlike in road networks
it does not suffice anymore to only preserve unique shortest paths during preprocessing.

This requires preprocessing techniques, a necessary ingredient to fast query performance, to be
flexible with respect to user constraints that are specified only at query time. Also, query algorithms
are needed that are able to compute all (or some of the many) good journeys through the network. In
this deliverable, we have presented several such approaches that enable efficient realistic multimodal
journey planning in large metropolitan areas. The fastest of these allow us to compute complex
queries that return diverse and relevant sets of journey options in below one seconds or less. Less
complex but still very realistic scenarios can be solved in even a few milliseconds by our algorithms.

A natural direction for future research is accelerating our approach further to enable interactive
queries with an even richer set of criteria. Based on realistic consumption data provided by the transit
operators, we would like to finally include eco-friendliness as a forth optimization criterion. Seeing
all the good solutions for traveling through the urban area, the wealth of choice, should significantly
help users to choose eco-friendly routes. For future work, we are interested in investigating network
decomposition techniques to make our approach more scalable. We are also interested in including
dynamic scenarios, better handling delay and traffic information. Of course, the ultimate goal is to
compute multi-criteria multimodal journeys on a global scale in real time.
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