
FP7-ICT-2011-7 288094 - eCOMPASS

eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

FP7 - Information and Communication Technologies

Grant Agreement No: 288094
Collaborative Project

Project start: 1 November 2011, Duration: 38 months

D2.4 – Final Assessment of Eco-friendly Vehicle Routing Algorithms

Workpackage: WP2 – Algorithms for Vehicle Routing
Due date of deliverable: 30 November 2014
Actual submission date: 30 November 2014

Responsible Partner: CTI
Contributing Partners: CERTH, CTI, ETHZ, KIT

Nature: � Report � Prototype � Demonstrator � Other

Dissemination Level:
� PU: Public
� PP: Restricted to other programme participants (including the Commission Services)
� RE: Restricted to a group specified by the consortium (including the Commission Services)
� CO: Confidential, only for members of the consortium (including the Commission Services)

Keyword List: Algorithms, heuristics, experimental evaluation, route planning, traffic pre-
diction, time-dependent shortest path, customizable contraction hierarchies, alternative routes,
robust routes, fleets of vehicles.

The eCOMPASS project (www.ecompass-project.eu) is funded by the European
Commission, DG CONNECT (Communications Networks, Content and Technol-
ogy Directorate General), Unit H5 - Smart Cities & Sustainability, under the FP7
Programme.

D2.4: Page 1 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

The eCOMPASS Consortium

Computer Technology Institute & Press ’Diophantus’ (CTI) (coordinator),
Greece

Centre for Research and Technology Hellas (CERTH), Greece

Eidgenössische Technische Hochschule Zürich (ETHZ), Switzerland

Karlsruhe Institute of Technology (KIT), Germany

TOMTOM INTERNATIONAL BV (TOMTOM), Netherlands

PTV PLANUNG TRANSPORT VERKEHR AG. (PTV), Germany

D2.4: Page 2 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Document history
Version Date Status Modifications made by

1.0 13.11.2014 First draft sent to reviewers Spyros Kontogiannis, CTI
1.0 17.11.2014 Reviewers send comments Andreas Gemsa, KIT

Stefanos Makris, CERTH
1.1 18.11.2014 Reviewers’ comments incorporated

(sent to PQB)
Spyros Kontogiannis, CTI

1.1 20.11.2014 PQB sends comments
1.2 21.11.2014 PQB’s comments incorporated Spyros Kontogiannis, CTI
1.3 30.11.2014 Final (approved by PQB, sent to the

Project Officer)
Christos Zaroliagis, CTI

Deliverable manager

• Spyros Kontogiannis, CTI

List of Contributors

• Julian Dibbelt, KIT

• Dimitris Gkortsilas, CTI

• Kalliopi Giannakopoulou, CTI

• Dionisis Kehagias, CERTH

• Spyros Kontogiannis, CTI

• Sandro Montanari, ETHZ

• Georgia Papastavrou, CTI

• Andreas Paraskevopoulos, CTI

• Ben Strasser, KIT

• Christos Zaroliagis, CTI

List of Evaluators

• Andreas Gemsa, KIT

• Stefanos Makris, CERTH

Summary

The purpose of this deliverable is to present the outcomes of the assessment of success for the
algorithmic solutions developed within WP2 in the actual implementation environments of WP5,
discuss possible modifications w.r.t. the original solutions, and identify the technically most robust
solutions.

D2.4: Page 3 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Contents

1 Introduction 6
1.1 Objectives and scope of D2.4 . 6
1.2 Structure of the Document . 7

2 Traffic Prediction 7
2.1 Parametric Approach . 7
2.2 Non-Parametric Approach . 9

3 Time-Dependent Shortest Paths 10
3.1 Preliminaries . 14
3.2 Time-Dependent Oracles . 15

3.2.1 Approximate Travel-Time Functions via the Trapezoidal Method 16
3.2.2 Query Algorithms . 16
3.2.3 Heuristic Improvements . 17

3.3 Experimental Evaluation . 17
3.3.1 Preprocessing The Road Instance . 18
3.3.2 Experimental Setup . 19
3.3.3 Measurements and Evaluation of Speedups and Approximation Guarantees . 19
3.3.4 Methodology and Measurements for Assessing the Eco-Footprint 21

4 Fast, Dynamic and Highly User-Configurable Route Planning 23
4.1 Experiments . 24

4.1.1 Orders . 24
4.1.2 CH Construction . 25
4.1.3 CH Size . 25
4.1.4 Triangle Enumeration . 28
4.1.5 Customization . 29
4.1.6 Query Performance . 30
4.1.7 Optimizing Eco-friendliness . 34

5 Alternative Route Planning 35
5.1 Introduction . 35
5.2 Preliminaries . 37
5.3 Our Improvements . 38

5.3.1 Pruning . 38
5.3.2 Filtering and Fine-tuning . 40

5.4 Experimental Results . 41
5.4.1 Performance . 41
5.4.2 Eco-Footprint Evaluation . 44

5.5 Visualization of Alternative Graphs . 45

6 Robust Route Planning 47
6.1 Introduction . 47
6.2 Computing the Pareto front . 48
6.3 Computational results . 49

6.3.1 Results . 50
6.3.2 Eco-footprint of robust routes . 51

6.4 Further improvements . 51
6.4.1 Experimental results . 52

D2.4: Page 4 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

7 Fleet-of-Vechiles Route Planning 52
7.1 Vehicle Routing Problem Data . 52
7.2 Laboratory test data compared to real life data . 53
7.3 Richness of real world problems in VRP . 53
7.4 Operative setting of real world problems . 53
7.5 Synthetic Laboratory Test Data . 53
7.6 eCOMPASS Approach Regarding Fleets of Vehicles 54
7.7 Experimental Study and Data Sets . 54

7.7.1 Milan Dataset . 55
7.7.2 Munich Dataset - Parcel Delivery . 55
7.7.3 Munich Dataset - Furniture Delivery . 56

7.8 Experiments with Large Datasets . 57
7.8.1 Partitioning Methods. 57
7.8.2 Time Windows and Dynamic Scenarios. 58

8 Conlusions 59

D2.4: Page 5 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

1 Introduction

This deliverable presents extensive experimental evaluation of the most mature algorithmic solutions
that have been developed within eCOMPASS, with emphasis on the eco-footprint awareness for the
provided solutions for private vehicles and fleets of vehicles. It describes how the algorithmic
solutions developed for the problems related to WP2 were improved and extended in order to yield
better solutions in a more efficient way.

1.1 Objectives and scope of D2.4

The goal of WP2 is to develop novel algorithmic methods for optimization of problems related to
routing of private vehicles and fleets of vehicles in urban areas, considering the environmental impact
as one of the main parameters of the optimization objective. This document contains extensive ex-
perimental evaluations for the most mature algorithmic solutions provided within eCOMPASS/WP2
for the last 20 months.

The present deliverable is the outcome of the following tasks:

• Task 2.2: Eco-friendly private vehicle routing algorithms. Task 2.2 aims at designing routing
algorithms for private vehicles. The computed routes should be optimized also with respect to
their environmental footprint and should take into consideration traffic prediction techniques
as well. Furthermore, the trade-off between data precision and solution robustness is also
investigated in the context of this task.

• Task 2.3: Eco-friendly routing algorithms for fleets of vehicles. Task 2.3 aims at designing
routing algorithms for fleets of vehicles. The application scenario for this task is a transporta-
tion company wishing to schedule the delivery or collection of goods in the most efficient and
environmentally-friendly way as possible.

The algorithms developed for Task 2.2 and Task 2.3 should be designed in such a way that the
environmental impact of the computed routes is taken into account, while aiming at outperforming
the state-of-art techniques for classical routing problems in terms of quality (i.e., precision) and
efficiency. Since the environmental impact was not opted as a essential optimization criterion in
the User Requirements Analysis of eCOMPASS (c.f. Deliverable D1.1), our strategic choice was
to assure eco-awareness by assessing and reporting to the driver the eco-footprint of the proposed
routes. Moreover, our Traffic Prediction mechanism provides the driver with a visualized forecast
for the evolution of congestion, in order to possibly incentivise the selection of Alternative Routes
which might then not be so much worse (e.g., by means of actual travel-time) as estimated by the
(static) historic traffic data.

Furthermore, dynamic scenarios should be taken into account, wherein the input is not statically
predetermined but depends on several factors, like the time at which a query has been issued, or
the current road traffic conditions. In scenarios where deriving optimum solutions in an efficient
manner is not feasible, the computation of approximate solutions is taken into account. Towards
this direction, within eCOMPASS we have proposed algorithmic solutions for (i) proposing routes
with respect to the (time-dependent travel-time metric), and (ii) for creating metric-independent
orders for the vertices so that the Contraction Hierarchies technique works efficiently under various
graph metrics.

All our experimental evaluations have demonstrated significant improvements in execution times,
compared to existing state-of-art approaches in the literature. Moreover, the deviations of the pro-
posed routes by our algorithms, from environmentally-optimal routes, is rather limited. Addition-
ally, in cases where approximately optimal solutions are proposed (e.g., when optimizing travel-times
for the time-dependent shortest path problem), the proposed routes, apart from being much more
efficient to compute than the optimal routes, they also achieve extremely good stretch factors with
respect to the chosen optimization criterion (e.g., travel-time), whereas the additional deviations

D2.4: Page 6 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

from the environmentally optimal routes is also negligible when compared to the deviations of the
optimal routes for the chosen optimization criterion.

1.2 Structure of the Document

The remaining sections of this document present extensive experimental assessments of the algo-
rithms developed within the scope of the project. Section 2 deals with the experimental evaluation
of the most prominent traffic prediction techniques. Section 3 describes experiments on various
oracles for efficiently answering shortest path queries under the time-dependent travel-time metric
for the city of Berlin. Section 4 experiments on precomputing the graph of Western Europe so
as to create a metric-independent order of the vertices, to be fed in the Contraction Hierarchies
approach so that efficient responses to arbitrary queries are achieved, under various scalar metrics
(e.g. distance and constant travel-times). Section 5 experiments on the computation of alternative
routes under a static travel-time metric. Section 6 considers the issues arising in the computation
of routes when the data is noisy or not completely reliable, namely, it addresses computation of
so-called robust routes. Section 7 illustrates the eCOMPASS approach for the computation of routes
for delivery companies that need to schedule the delivery of goods over fleets of vehicles. Finally,
Section 8 concludes this document.

2 Traffic Prediction

This section presents the results of the experiments conducted for the evaluation of the performance
of the traffic predictions algorithms that were developed within WP2. The details of the algorithms
are included in deliverable D2.2.1.

2.1 Parametric Approach

The first time series-based technique that also comprises an improvement of the previously de-
veloped Lag-STARIMA technique, was evaluated against five benchmark methods: (a) a Random
Forest algorithm (RF non-parametric) (b) k-Nearest Neighbor (kNN non-parametric) (c) Historic
Average (naive) (d) a classic STARIMA model which uses the Euclidean distance to estimate the
neighbor matrix W (parametric) and (e) a lag-STARIMA model which uses CoD for the same
reason (parametric). The last two STARIMA models are applied on time series as a whole (not
segmented as the enhanced version).

The overall metric that characterizes the efficiency of the prediction and concerns the end-users
is the estimated travel time and the goal is to minimise the predicted travel time error. The
predicted speeds are transformed into travel time (expressed in minutes per km) by inverting and
multiplying by 60. These values are compared to the travel time values that correspond to the
actual speed values for a specific road and time interval using the RMSE metric which is calculated
by:

RMSE =

√√√√ 1

N

N∑
j=1

(x̂i,j − xi,j)2
, (1)

where xi,j and x̂i,j are the real and the predicted travel time values respectively for road i at interval
j. The travel time is obtained by the formula xi,j = 60/Vi,j where Vi,j is the speed value of road i
at time interval j.

In order to implement the procedure described in the previous sections there are many param-
eters that need to be tuned. These are the threshold of the segmentation algorithm, the outlier
detection filter threshold, the number of the clusters used for the imputation and the window size
of the moving average filter that is used in order to smooth the time series. The values of these

D2.4: Page 7 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 1: Model Parameters
Parameter Name Parameter Value

Segment Maximum Threshold 40 km/h
Outlier detection filter 20 km/h

Number of clusters 200
Window size of the moving average filter 30 intervals

Table 2: Comparison of the Implemented Algorithm with the 2 benchmark methods for all days of
the week.
Average RMSE RF kNN Historic Average STARIMA Lag-STARIMA SLS

Monday 2.81608 2.80217 2.73945 2.5786 2.5429 2.35826
Tuesday 2.92331 2.78204 2.73707 2.58007 2.56447 2.37272

Wednesday 2.94556 2.92513 2.81248 2.69253 2.66009 2.65601
Thursday 3.06745 3.10003 3.00367 2.95759 2.92381 2.78093

Friday 2.95898 2.963 2.90613 2.71091 2.67041 2.6289
Saturday 2.99586 2.77798 2.58505 2.44476 2.41561 2.42171
Sunday 3.09342 2.50968 2.32077 2.17002 2.13472 2.02932

Figure 1: Comparison of the implemented algorithm with the benchmark methods for all days of
the week

parameters were found mostly by trial and error but since the model was trained and tested for
all days of the given dataset, which is two weeks in total, the values that were chosen are pretty
robust. For example for the threshold of the segmentation algorithm, since periodicity of traffic
is not optimal as noted before, intuitively a small threshold value that produces a large number
of segments will be outperformed by a value that produces only a few segments that capture the
general trend of the series. As a result, after a few tests, the value of 40 km/h was chosen as the
segmentation threshold. A list of all the parameter values is shown in the following table:

The average RMSE for different forecasting periods and for all the roads of the Berlin dataset
for each day of the week are presented on 2 and Fig. 1. The results indicate that SLS outperforms
all its competitors (has a lower average RMSE) for all days of the week except of Saturday where
is ranked second (first is Lag-STARIMA).

D2.4: Page 8 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 3: Comparison of the benchmark algorithms for various forecasting periods

RMSE 5min 10min 15min 20min 25min 30min 35min 40min 45min 50min 55min 60min

Historic Av-

erage

3.06 3.06 3.02 3.05 3.07 3.08 3.12 3.13 3.13 3.15 3.15 3.14

kNN 2.84 2.84 2.82 2.83 2.85 2.85 2.89 2.92 2.93 2.94 2.95 2.92
RF 2.76 2.81 2.81 2.82 2.85 2.87 2.86 2.85 2.85 2.82 2.86 2.86
STARIMA 2.63 2.65 2.64 2.67 2.65 2.69 2.72 2.78 2.78 2.74 2.74 2.69
Lag-

STARIMA

2.52 2.54 2.55 2.53 2.49 2.49 2.52 2.53 2.53 2.60 2.55 2.57

SDST(FS2,

Naive

Random

Number

generator)

2.44 2.46 2.42 2.40 2.41 2.41 2.43 2.46 2.48 2.52 2.50 2.45

SDST(FS1,

Sophis-

ticated

Random

Number

generator)

2.31 2.32 2.30 2.29 2.29 2.29 2.31 2.33 2.35 2.37 2.34 2.35

SDST(FS3,

Sophis-

ticated

Random

Number

generator)

2.29 2.29 2.27 2.26 2.27 2.27 2.30 2.32 2.34 2.36 2.33 2.35

2.2 Non-Parametric Approach

This section presents the results of the experimental evaluation procedure for the new non-parametric
traffic prediction technique that was developed in WP2. We compared this non-parametric ap-
proach, namely Speed Dynamic Short-Term (SDST) forecasting technique to a set of techniques
selected from the literature. In particular we used for benchmarking the following techniques: (non-
parametric) kNN [1], Random Forest [3], and (parametric) STARIMA [4], Lag-STARIMA [2]. We
have also included our technique with the three highest information gain feature sets: FS1, FS2,
FS3 described in Table 2.

The overall accuracy of all benchmarked techniques is shown in Figure 2 that presents all
techniques in ranked order based on their accuracy.

The metric used for evaluating the performance of the proposed and benchmark techniques is
the Root Mean Square Error (RMSE), which was selected over other metrics, such as the Mean
Average Precision Error (MAPE), since it is robust with near to zero values. The RMSE for a
specific period forecasting (e.g. 5-min. forecasting) is defined by (1).

Table 3 depicts the predicted traffic values for all benchmarked techniques and for multiple five-
minutes steps, up to 12 steps ahead (next 5, 10, 15, , 60 minutes). Traffic is expressed as average
travel time (min/km). Figure 2 shows the average RMSE for different forecasting periods and for all
roads in the Berlin dataset. As it seems from Table 3 the version of the proposed method (SDST)
which uses the feature set FS3 and the sophisticated random number generator outperforms both
all benchmark methods and the other versions (FS1 and FS2) of our technique when forecasting is
concerned at each forecasting step.

This is also illustrated in Figure 2, which shows the comparison between all five benchmark
algorithms and the three variations of SDST based on the average RMSE, i.e. the mean value of
RMSE of all steps ahead and for the whole network.

D2.4: Page 9 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 2: Comparison of the implemented algorithm with benchmark methods in terms of RMSE

3 Time-Dependent Shortest Paths

Distance oracles are succinct data structures encoding shortest path information among a carefully
selected subset of pairs of vertices in a graph. The encoding is done in such a way that the oracle
can efficiently answer shortest path queries for arbitrary origin-destination pairs, exploiting the pre-
processed data and/or local shortest path searches. A distance oracle is exact (resp. approximate) if
the returned distances by the accompanying query algorithm are exact (resp. approximate). A bulk
of important work (e.g., [33, 32, 28, 29, 34, 35, 7]) is devoted to constructing distance oracles for
static (i.e., time-independent), mostly undirected networks in which the arc-costs are fixed scalars,
providing trade-offs between the oracle’s space and query time and, in case of approximate oracles,
also of the stretch. For an overview of distance oracles for static networks, the reader is deferred
to [31] and references therein.

Considerable experimental work on routing in large-scale road networks has also appeared in
recent years, with remarkable achievements that have been demonstrated on continental-size road-
network instances. The goal is again to preprocess the distance metric and then propose query
algorithms (known as speedup techniques in this framework) for responding to shortest path queries
in time that is several orders of magnitude faster than a conventional Dijkstra run. An excellent
overview of this line of research is provided in [8]. Once more, the bulk of the literature concerns
static distance metrics, with only a few exceptions (e.g., [10, 17, 46]) that will be discussed later in
more detail.

D2.4: Page 10 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Modelling the Time-Variance of the Cost Metric. In many real-world applications, the arc
costs may vary as functions of time (e.g., when representing the variability of arc traversal times,
temporal unavailability of a particular arc, etc.) giving rise to time-varying network models. A
striking example is route planning in road networks where the travel-time for traversing an arc uv
(modelling a road segment) depends on the temporal traffic or availability conditions while attempt-
ing to traverse uv, and thus on the departure time from its tail u. Consequently, the min-cost path
from an origin o to a destination d may vary with the departure-time to from the origin. In this work,
we consider the time-dependent network model, in which every arc uv comes with an arc-traversal-
time function D[uv], whereas each path-traversal-time function is simply the composition of the
corresponding arc-traversal-time functions of its constituent arcs. The Time Dependent Shortest
Path (TDSP) problem concerns computing an od−path attaining the earliest arrival time at d, for
an arbitrary triple (o, d, to) of an origin-destination pair of vertices (o, d) ∈ V ×V and departure-time
to ∈ R from the origin, in a time-dependent network model (G = (V,A), (D[a] : R→ R>0)a∈A) . The
problem has been studied since a long time ago (see e.g., [12, 20, 47]). The shape of arc-travel-time
functions and the waiting policy at vertices may considerably affect the tractability of the prob-
lem [47]. It is customary to consider as arc-travel-time functions the continuous, piecewise linear
(pwl) interpolants of periodically sampled arc-travel-times. Regarding the waiting policy, a crucial
assumption is that each arc obeys the FIFO property, according to which the earliest-arrival-time
function of an arc uv is an increasing function of its departure time tu from the tail u. Non-FIFO
policies may lead to NP−hard cases [30]. On the other hand, in FIFO network models in which all
the arc-travel-time functions possess the FIFO property, there is no need for waiting at either the
origin or at intermediate nodes of the chosen path. Then, the problem can be solved in polynomial
time by a straightforward variant of Dijkstra’s algorithm (we call it TDD), which relaxes arcs by
computing the arc costs “on the fly”, when settling their tails [20].

Apart from the theoretical challenge, the time-dependent network model with FIFO-abiding,
continuous, pwl arc-travel-time functions, is also much more appropriate with respect to handling
the historic traffic data that the route planning vendors have to digest in order to provide their
customers with fast route plans within milliseconds. For example, TomTom’s LiveTraffic service1

provides real-time estimations of average travel-time values, collected by periodically sampling the
average speed of each road segment in a city, using the connected cars to the service as sampling
devices. The crux is how to exploit all this historic traffic information in order to provide efficiently
route plans that will adapt to the departure-time from the origin.

Related Work. Until recently, most of the previous work on the time-dependent shortest path
problem concentrated on computing an optimal origin-destination path providing the earliest-arrival
time at destination when departing at a given time from the origin, neglecting the computational
complexity of providing succinct representations of the entire earliest-arrival-time (or equivalently
for FIFO networks, shortest-travel-time) functions for all departure-times from the origin. Such
representations, apart from allowing rapid answers to several queries for selected origin-destination
pairs but for varying departure times, would also be valuable for the construction of travel-time
summaries (a.k.a. route planning maps, or search profiles) from central vertices (e.g., landmarks
or hubs) towards other vertices in the network, providing a crucial ingredient for the construction
of oracles to support real-time responses to arbitrary queries (o, d, to) ∈ V × V × R.

The complexity of succinctly representing earliest-arrival-time functions was first questioned in
[13, 15, 14], but was solved only recently by a seminal work [22]. In particular, it was shown that,
for FIFO-abiding pwl arc-travel-time functions, the problem has space-complexity (1+K) ·nΘ(logn)

for a single origin-destination pair, where n is the number of vertices and K is the total number
of breakpoints of all the continuous, pwl arc-travel-time functions. Polynomial-time algorithms
(or even PTAS) for constructing point-to-point (1 + ε)-approximate shortest-travel-time functions
are provided in [22, 16], delivering point-to-point travel-time values at most 1 + ε times the true

1http://www.tomtom.com/livetraffic/

D2.4: Page 11 of 64

http://www.tomtom.com/livetraffic/

FP7-ICT-2011-7 288094 - eCOMPASS

values. These functions indeed possess succinct representations, since they require only O(1 +K)
breakpoints per origin-destination pair. It is also easy to verify that K could be substituted by
the number K∗ of concavity-spoiling breakpoints of the arc-travel-time functions (i.e., breakpoints
at which the arc-travel-time slopes increase). Of course, the succinctness in this representation
heavily depends on the value of K∗. E.g., for K∗ ∈ O(polylog(n)), clearly these point-to-point
approximation methods would work very well. Things become harder though for instances with
more concavity-spoiling breakpoints, e.g. when K∗ ∈ Ω(n).

Due to the above mentioned hardness of providing succinct representations of exact shortest-
travel-time functions, the only realistic alternative is to use approximations of these functions for
computing (in a preprocessing phase) travel-time summaries from properly selected vertices to all
other vertices in the network, which is a crucial ingredient for constructing distance oracles in
time-dependent networks.

Exploiting a PTAS (such as that in [22]) for computing travel-time summaries, one could provide
a trivial oracle with query-time complexity Q ∈ O(log log(K∗)), at the cost of an exceedingly high
space-complexity S ∈ O

(
(1 +K∗) · n2

)
, by precomputing and storing travel-time summaries from

all possible origins. At the other extreme, one might use the minimum possible space complexity
S ∈ O(n+m+K) for just storing the input, at the cost of suffering a query-time complexity
Q ∈ O(m+ n log(n)[1 + log log(1 +Kmax)]) (i.e., respond to each query by running TDD in real-
time using a predecessor search structure for evaluating continuous, pwl functions). Kmax denotes
the maximum number of breakpoints in an arc-travel-time function. The main challenge for a
time-depenent oracle is thus to smoothly close the gap between these two extremes, i.e., to achieve
a better (e.g., sublinear) query-time complexity, while consuming smaller space-complexity, e.g.,
o
(
n2
)
, for succinctly representing travel-time summaries, while enjoying a small, e.g., close to 1,

approximation guarantee (stretch factor). It would also be crucial to avoid the dependence on
the amount of discncavity in the travel-time metric, as expressed by the value of K∗, at least for
instances in which K∗ ∈ Ω(n).

Providing distance oracles for time-dependent networks with provably good approximation guar-
antees, small preprocessing-space complexity and sublinear query time complexity, has only been re-
cently investigated in [23, 24]. In particular, the first approximate distance oracle for sparse directed
graphs with time-dependent arc-travel-times was presented in [24], providing (1 + σ)−approximate
travel-times in query-time that is sublinear in the network size, and preprocessing time and space
that are subquadratic in the network size, when the total number of concavity-spoiling break-
points in the instance is sufficiently small, e.g. when K∗ ∈ O(polylog(n)). The oracle uses
a novel one-to-all method (called Bisection – BIS) to produce (1 + ε)−approximate landmark-
to-vertex travel-time summaries, for a randomly selected landmark set. It also guarantees ei-
ther constant approximation ratio (a.k.a stretch) via the FCA query algorithm, or stretch at most
1+σ = 1+ε·(1+ε/ψ)r+1/[(1+ε/ψ)r+1−1] via the RQA query algorithm, where ψ is a fixed constant
depending on the characteristics of the arc-travel-time functions but is independent of the network
size, and r ∈ O(1) is the recursion depth of RQA. In [23], another oracle is proposed, providing
both constant and (1 +σ)−approximate travel-times in query-time that is sublinear in the network
size, and preprocessing time and space that are subquadratic in the network size, independently of
the amount of disconcavity K∗ in the network instance at hand. This is achieved by combining
BIS with another one-to-all method (called Trapezoidal – TRAP) to produce (1 + ε)−approximate
landmark-to-vertex travel-time summaries.

A few time-dependent variants of well-known speedup techniques for road networks have also
appeared in the literature (e.g., [10, 17, 46]). All of them were experimentally evaluated on syn-
thetic time-dependent instances of the European and German road networks, with impressive per-
formances. For example, in [10] methods are provided that respond to arbitrary queries of the
German road network (4.7 million vertices and 10.8 million arcs) in less than 1.5ms and prepro-
cessing space requirements of less than 1GB. A point-to-point travel-time summary (a.k.a. search
profile) can also be constructed in less than 40ms, when the departure times interval is a single

D2.4: Page 12 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

day. For point-to-point approximate travel-time summaries, with experimentally observed stretch
at most 1%, the construction time is less than 3.2ms. Their approach is based on the so-called
time-dependent Contraction Hierarchies [36], along with several heuristic improvements both on
the preprocessing step and on the query method.

Our Contribution. Our goal in this work is to provide a thorough experimental evaluation of
the time-dependent distance oracles that were proposed and analysed in [24]. The main obstacle
towards this direction is the dependence of the required preprocessing time and space on the number
K∗ of concavity-spoiling breakpoints in the raw traffic data.

Inspired by the theoretical analysis of [23], our first contribution is to propose a new time-
dependent distance oracle whose preprocessing phase for computing landmark-to-vertex approxi-
mate travel-time summaries is solely based on a new approximation technique [23], the trapezoidal
(TRAP) method. This method is significantly simpler than BIS and reduces dramatically the required
space. In particular, TRAP avoids any kind of dependence on the number K∗ of concavity-spoiling
breakpoints, which are completely neglected during the preprocessing and need not be computed
at all. Based on TRAP, we build new time-dependent distance oracles, which preprocess landmark-
to-vertex approximate travel-time summaries for various landmark sets, and again employ the FCA

and RQA query algorithms that were proposed in [24]. Additionally, we propose another quite simple
query algorithm, FCA+. Although the theoretical guarantee of its stretch factor is analogous to that
of FCA, in practice it behaves very well, sometimes even better than RQA.

Our second contribution is an extensive experimental study of the above mentioned query algo-
rithms for six different landmark sets, achieving remarkable speedups over TDD on truly real-world
time-dependent data sets. In particular, we conduct our experimental evaluation on the historic
traffic data for the city of Berlin, kindly provided to us by TomTom within [21]. The input instance
is a directed graph with 478, 989 vertices and 1, 134, 489 arcs. The provided raw traffic data for the
arcs were stored as integer values for two different levels of resolution, one considering 10.3msec,
and another using 2.64sec, as the time unit. We created six different landmark sets with 1000 or
2000 landmarks, which were chosen either randomly, or as the boundary vertices of appropriate
METIS [5] or KaHIP [6] partitions of the Berlin graph. The speedups that we observed for our
query algorithms over the average time of a TDD run, vary from 397 times (using 1000 randomly
chosen landmarks and FCA), to 723 times (using 2000 randomly chosen landmarks and FCA), for
10.3ms resolution in the approximate travel-time summaries. In both cases the average relative
error is less than 1.634%. Analogous speedups are observed if our quality measure is not the com-
putational time, but the (machine-independent) number of settled vertices (a.k.a. Dijkstra rank)
of the query algorithms. The best possible observed relative error is indeed much better than the
theoretical bounds provided by the analysis of the query algorithms. In particular, it is as small as
0.382% for 1000 KaHIP landmarks, or 0.298% for 2000 KaHIP landmarks, for 10.3ms resolution
in the approximate travel-time summaries. The corresponding speedups are 38 for the former, and
118 for the latter.

If we focus on the absolute response times, we manage to provide responses (via FCA) to arbitrary
queries, in times less than 0.4ms for all landmark sets that we used, with relative error no more
than 2.201%. For relative error at most 0.701%, we can provide answers in no more than 1.345ms
using FCA+, for all the considered landmark sets.

As for the preprocessed data, we create and succinctly store roughly 300K approximate travel-
time summaries from a given landmark, in average sequential time less than 40sec. That is, the
amortized sequential time per approximate travel-time summary is no more than 0.134ms.

Finally, with respect to the eco-footprint of the suggested routes we observed that our query
algorithms, despite being significantly faster than TDD, they achieve not only extremely good ap-
proximation guarantees for the travel-time metric, but are also comparable with TDD by means of
eco-footprint measurements. Of course, both the proposed routes by our query algorithms and the
ones proposed by TDD are typically suboptimal for the eco-footprint metric, since this is not their

D2.4: Page 13 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

optimization criterion. On the other hand, the eco-footprint deviation of all these algorithms is not
dramatic (roughly speaking, up to 15% deviation), whereas the average deviation of an optimum
route with respect to eco-footprint has a much more significant deviation (more than 27%) from
the optimal route with respect to the travel-time metric.

3.1 Preliminaries

We consider directed graphs G = (V,A) with |V | = n vertices and |A| = m arcs, where each arc a ∈
A is accompanied with a continuous, periodic, piecewise linear (pwl) arc-travel-time (or arc-delay)
function defined as follows: ∀k ∈ N,∀t ∈ [0, T), D[a](kT + t) = d[a](t), where d[a] : [0, T)→ [1,Ma]
such that limt↑T d[a](t) = d[a](0), for some fixed integer Ma denoting the maximum possible travel
time ever observed at arc a. Notice that the minimum arc travel time value in the entire network
is also normalized to 1. Each arc-travel-time function D[a] can be represented succinctly as a list
of Ka breakpoints defining d[a]. Let K =

∑
a∈AKa be the number of breakpoints to represent

all of them, Kmax = maxa∈AKa, and K∗ be the number of concavity-spoiling breakpoints, i.e.,
those in which the arc-travel-time slopes increase. Clearly, K∗ ≤ K, and K∗ = 0 for concave pwl
arc-travel-time functions.

The arc-arrival-time functions are defined as Arr[a](t) = t+D[a](t), ∀t ∈ [0,∞). An assumption
that we make is that each arc-arrival-time function is strictly increasing, in order to satisfy the strict
FIFO property. The path-arrival-time function of a given path p = 〈a1, . . . , ak〉 in G (represented as
a sequence of arcs) is defined as the composition of the arc-arrival-time functions for the constituent
arcs of p: Arr[p](t) = Arr[ak](Arr[ak−1](· · · (Arr[a1](t)) · · ·)) . The path-travel-time function is
then D[p](t) = Arr[p](t) − t. Finally, between any origin-destination pair of vertices, (o, d) ∈
V ×V , Po,d denotes the set of all od−paths in G, and the earliest-arrival-time / shortest-travel-time
functions are defined as follows: ∀to ≥ 0, Arr[o, d](to) = minp∈Po,d

{Arr[p](to)} and D[o, d](to) =
minp∈Po,d

{D[p](to)} = Arr[o, d](to)− to .
For any arc a = uv ∈ A and any departure-times subinterval [ts, tf) ⊆ [0, T), we consider the

free-flow and maximally-congested travel-times for this arc, defined as follows:

• Free-flow arc-travel-time:

D[uv](ts, tf) := min
tu∈[ts,tf)

D[uv](tu) .

• Maximally-congested arc-travel-time:

D[uv](ts, tf) := max
tu∈[ts,tf)

D[uv](tu) .

We also denote D[uv] := D[uv](0, T) and D[uv] := D[uv](0, T). When [ts, tf) = [0, T), we refer
to the (static) free-flow and full-congestion travel-time metrics D and D, respectively. These
definitions also extend naturally to path-travel-times and shortest-travel-times between arbitrary
origin-destination pairs of vertices.

For a point (o, to) ∈ V × [0, T) and β ∈ N, let B[o](to;β) be the set of the first β vertices settled
by TDD, when growing a ball from (o, to). Analogously, B[o](β) and B[o](β) are the corresponding
sets under the free-flow and fully-congested metrics D and D, respectively.

For an arbitrary pair (o, d) ∈ V × V of origin-destination vertices, a succinctly represented
(1 + ε)-upper-approximation of ∆[o, d], is a continuous pwl function, hopefully with a small number
of breakpoints, such that ∀to ≥ 0, D[o, d](to) ≤ ∆[o, d](to) ≤ (1 + ε) ·D[o, d](to) .

We adopt two assumptions from [24] and one additional assumption from [23], on the kind of
shortest-travel-time functions that may appear in the time-dependent network instance at hand.
All of them are quite natural and justified in urban-traffic road networks. Indeed, we conducted
an experimental analysis on the real-world instance of Berlin that we had at our disposal, which

D2.4: Page 14 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

verified the validity of the assumptions. Technically, these assumptions allow the smooth transition
from static metrics on undirected graphs towards time-dependent metrics on directed graphs. For
a more thorough justification, the reader is deferred to [24, 23].

The first assumption asserts that the partial derivatives of the shortest-travel-time functions
between any origin-destination pair are bounded in a fixed interval [Λmin,Λmax].

Assumption 3.1 (Bounded Travel-Time Slopes) There are constants Λmin ∈ [0, 1) and Λmax ≥
0 s.t.: ∀(o, d) ∈ V × V, ∀t1 < t2, (D[o, d](t1)−D[o, d](t2)) /(t1 − t2) ∈ [−Λmin,Λmax] .

It is mentioned that the lower-bound of −1 in the shortest-travel-time function slopes is indeed
a direct consequence of the strict FIFO property, which is typically assumed to hold in several
time-dependent networks and allows for the use of time-dependent variants of classical shortest-
path computation techniques, such as Dijkstra’s and Bellman-Ford algorithms. Our experimental
analysis on the historic traffic data for the city of Berlin, in which the maximum value of Λmax in
a series of 10, 000 randomly chosen origin-destination pairs was always less than 0.19.

The second assumption asserts that for any given departure time, the shortest-travel-time from
o to d is not more than a constant ζ ≥ 1 times the shortest-travel-time in the opposite direction
(but not necessarily along the reverse path). This is quite natural in road networks. E.g., it is most
unlikely that a trip in one direction is more than, say, 10 times longer than the trip in the opposite
direction for the same departure time. The assumption was also confirmed by our experimental
analysis on the historic traffic data for the city of Berlin, in which the maximum value of ζ in a
series of 10000 randomly chosen origin-destination pairs was always less than 1.5.

Assumption 3.2 (Bounded Opposite Trips) There is a constant ζ ≥ 1 such that: ∀(o, d) ∈
V × V, ∀t ∈ [0, T), D[o, d](t) ≤ ζ ·D[d, o](t) .

One last assumption concerns the relation of the Dijkstra ranks (i.e., number of settled vertices,
up to termination) of cocentric balls in the network, with respect to the (static) free-flow metric
implied by the time-dependent instance at hand:

Assumption 3.3 (Growth of Free-Flow Balls) For any vertex ` ∈ V and positive integer F ∈
N, assume growing a free-flow Dijkstra ball B[`](F) around `, of size F . Let R[`] = max{D[`, v] :
v ∈ B[`](F)} be the free-flow radius in B[`](F). Also let R[`] = max{D[`, v] : v ∈ B[`](F)} be the
full-congestion radius in B[`]. Finally, B′ = {v ∈ V : D[`, v](0, T) ≤ R[`]} is the free-flow ball with
radius R[`] around `. Then it holds that |B′[`]| ∈ O(F · polylog(F)).

This assumption has also been experimentally tested in the Berlin instance, for various initial ball
sizes. In all cases the scaling factor of the ball size was less than 2.

3.2 Time-Dependent Oracles

In [23] time-dependent distance oracles are proposed and theoretically analysed, which preprocess
the travel-times metric using both the BIS method (for nearby destinations) proposed in [24] and
the novel TRAP method (for faraway destinations) to approximate shortest travel-time functions, and
then use one of two query algorithms (FCA or RQA) for efficiently responding to arbitrary queries.
The novelty of these oracles is that they assure subquadratic storage space and sublinear query
complexity, irrespectively of the degree of disconcavity of the travel-time metric, measured by the
value of K∗. In this work we experimentally evaluate these oracles exploiting exclusively the TRAP

method for creating travel-time summaries, and also experiment with an additional query algorithm,
called FCA+, that we propose.

All the oracles start by selecting a subset L ⊂ V of landmarks. This can be done either randomly
(e.g., by deciding for each vertex i.u.r with probability ρ ∈ (0, 1) whether it belongs to L), or by
selecting L from the vertices in the cut sets provided by some graph partitioning algorithm. In
this work we consider appropriate METIS and KaHIP partitions of the Berlin graph. After L is

D2.4: Page 15 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

determined, a preprocessing phase is performed in which, ∀` ∈ L and ∀v ∈ V , all `-to-v (1 +
ε)−upper-approximating travel-time functions (we call them approximate travel-time summaries)
are computed and stored, based on the TRAP method. Consequently, one of the three different query
algorithms, FCA, FCA+, or RQA is used for providing in sublinear time guaranteed approximations of
the actual shortest travel time values, for arbitrary queries (o, d, to) ∈ V × V × [0, T). In a final
step, a path-construction routine is run to provide an od-path with actual path-travel-time at most
equal to the predicted one. In this section, we briefly review the above mentioned ingredients of
our oracles.

3.2.1 Approximate Travel-Time Functions via the Trapezoidal Method

We briefly present here the novel preprocessing step of our oracles which, based on the TRAP method,
constructs (1 + ε)−upper-approximations of shortest travel-time functions (cf. [23] for a detailed
presentation and analysis). The performance of this new preprocessing phase is practically inde-
pendent of the degree of disconcavity of the instance as expressed by K∗.

TRAP splits the entire period [0, T) into small, consecutive subintervals of length τ > 0 each. It
then provides a crude approximation of the unknown shortest-travel-time functions in each interval,
solely based on Assumption 3.1 concecning the boundedness of the shortest travel-time slopes in the
instance. After sampling the travel-time values of each destination v ∈ V , for a given origin u ∈ V ,
we consider each pair of consecutive sampling times ts < tf and the semilines with slopes Λmax

from ts and −Λmin from tf . The considered upper-approximating function D[u, v] within [ts, tf) is
then (a refinement of) the lower-envelope of these two lines. Analogously, a lower-approximating
function D[u, v] is the upper-envelope of the semilines that pass through ts with slope −Λmin, and
from tf with slope Λmax. Depending on the value of the absolute error and the minimum possible
value of D[u, v] in this interval, we can decide whether D[u, v] is a (1 + ε)-upper-approximating
function of D[u, v]. Any destination vertex that has such a (1+ε)-upper-approximating function for
each subinterval of [0, T), clearly has a (1 + ε)-upper-approximating function for the entire period
as well. The proof of correctness of TRAP is provided in [23].

The problem with the trapezoidal approximation is that, by construction, it is not possible to
provide (1 + ε)-approximate travel-time functions for “nearby” destination vertices, which are too
close to the origin. In [23] these “nearby” vertices of each landmark are either handled by the BIS

method [24], or are left to be handled by local TDD searches “on the fly”. Here we resolve this issue
exclusively with TRAP, starting with a large subinterval length, and then recursively dividing by 2
the lengths of those subintervals containing vertices which have not been sufficiently approximated
yet, until all landmark-to-vertex (1 + ε)-approximate travel-time summaries have been successfully
created. This proved to be extremely space- and time-efficient in practice.

3.2.2 Query Algorithms

For efficiently responding to arbitrary origin/destination/departure-time queries (o, d, to), three
approximation algorithms are considered. The first one, called FCA, is a simple sublinear -time
constant-approximation algorithm, which works as follows. It grows a ball Bo ≡ B[o](to) =
{x ∈ V : D[o, x](to) ≤ D[o, `o](to)} from (o, to), by running TDD until either d or the closest land-
mark `o ∈ arg min`∈L{D[o, `](to)} is settled. It then returns either the exact travel-time value, or
the approximate travel-time value via `o, achieving a 1 + ε + ψ approximation guarantee as was
shown in [24], where ψ is a constant depending on ε, ζ, and Λmax, but not on the size of the network.

The second query algorithm, called FCA+, is a variant of FCA which keeps growing a TDD ball
from (o, to) until either d or a given number N of landmarks is settled. FCA+ returns the smallest
via-landmark approximate travel-time value, along all these settled landmarks. The approximation
guarantee is the same as that of FCA, but in practice it performs quite well, in certain cases even
better than RQA, as it will be demonstrated in the experimental evaluation.

D2.4: Page 16 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

The third algorithm, called RQA, is indeed a PTAS for computing shortest travel-time functions.
In particular, it improves the approximation guarantee of the chosen od−path to 1+σ = 1+ε · [(1+
ε/ψ)r+1]/[(1 + ε/ψ)r+1 − 1], by exploiting carefully a number r ∈ N (called the recursion budget)
of recursive accesses to the preprocessed information, each of which produces (via calls to FCA)
additional candidate od−paths soli. RQA works as follows. As long as the destination vertex within
the explored area around the origin has not yet been discovered, and there is still some remaining
recursion budget, it “guesses” (by exhaustively searching for it) the next vertex wk of the boundary
set of touched vertices (i.e., still in the priority queue) along the unknown shortest od−path. Then,
it grows an outgrowing TDD ball from the new center (wk, tk = to+D[o, wk](to)), until it reaches the
closest landmark `k to it, at travel-time Rk = D[wk, `k](tk). This new landmark offers an alternative
od−path solk = Po,k • Qk • Πk by a new application of FCA, where Po,k ∈ SP [o, wk](to), Qk ∈
SP [wk, `k](tk), and Πk ∈ ASP [`k, d](tk + Rk) is the approximate suffix subpath provided by the
preprocessed data of the oracle (in case of the TRAP scenario, it has to be computed “on-the-fly”.
Observe that solk uses a longer (optimal) prefix-subpath Pk which is then completed with a shorter
approximate suffix-subpath Qk •Πk. This is exactly the main idea behind its analysis for improving
the provided approximation guarantee. RQA finally responds with a (1+σ)−approximate travel-time
to the query in sublinear time, for any constant σ > ε.

A more detailed presentation of FCA and RQA, along with the proofs of correctness and their time
complexities, are provided in [24]. As for the approximation guarantee of FCA+, it is straightforward
to observe that, at least theoretically, it is as small as that of FCA, whereas its time complexity is
comparable to that of RQA.

3.2.3 Heuristic Improvements

The TRAP approximation method introduces at least one intermediate (possibly two) breakpoint per
interval that does not yet meet the required approxmation guarantee. This is certainly unnecessary
for intervals in which the actual shortest-travel-time functions are almost constant. To avoid the
blow-up of the preprocessing space required, we heuristically make an arbitrary “guess” that we
have to deal with an “almost constant” shortest-travel-time function D[`, v] within a given interval
[ts, tf), if the following holds: D[`, v](ts) = D[`, v](tf) = D[`, v] ((ts + tf)/2). This is justified by
the fact that D[`, v] is a continuous pwl function, along with the fact that already tf = ts + τ for
some small value τ > 0. Of course, one could easily construct artificial examples for which this
criterion is violated, e.g., by providing a properly chosen periodic function with period τ . On the
other hand, one can easily tackle this by considering a randomly perturbed sampling period τ + δ,
for some arbitrarily small but positive random variable δ.

Another improvement that we adopt is that, rather than splitting the entire period [0, T) in a
flat manner into equal-size intervals, we start with a coarse partitioning based on a large length
and then in each inteval and for each destination vertex we check for the provided approximation
guarantee by TRAP. All the vertices which are already satisfied by this guarantee with respect to
the current interval, become inactive for this and all its subsequent subintervals. We then proceed
by splitting in the middle every subinterval that contains at least one still active destination vertex,
and repeating the check for all active vertices within the new subintervals.

3.3 Experimental Evaluation

The purpose of this section is to provide all the details of the experimental evaluation that we
conducted on the three query algorithms that we propose, and for the TRAP-based preprocessing
phase executed on six properly chosen landmark sets, of either 1, 000 or 2, 000 landmarks each.

D2.4: Page 17 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

3.3.1 Preprocessing The Road Instance

The Berlin instance, kindly provided by TomTom within [21], consists of a directed graph with
478, 989 vertices and 1, 134, 489 arcs. We focused only on the strongly connected component of
this input graph, consisting of 473, 253 vertices and 1, 126, 468 arcs. 924, 254 of the arcs have
constant arc-travel-times. For the remaining 202, 214 arcs, continuous pwl arc-travel-time func-
tions are provided, concerning an entire weekday (Tuesday). The maximum arc-travel-time slope is
0.0166667, whereas the minimum slope is −0.0133333. The succinct representation of these func-
tions requires a total number of 3, 234, 213 breakpoints. We substituted each maximal path in the
network consisting of intermediate vertices with no intersections (i.e., would have degree 2 in the
simple, undirected version of the graph), with a single shortcut arc of arc-travel-time function equal
to the corresponding (exact) path-travel-time function. This resulted in a reduced graph consisting
of 299, 693 vertices and 950, 504 arcs.

We generated two data formats suitable as input for our query algorithms. The first concerns the
arc-travel-time functions and the second the preprocessed travel-time summaries (i.e., landmark-
to-vertex (1 + ε)-approximate shortest travel-time functions).

Arc-Travel-Time Functions. The raw-traffic data set is provided as a collection of arrays with
average speed estimations. Each row of such an array corresponds to a particular arc indicating
a road segment. The columns provide a partition of the entire one-day period into 288 timeslots
of 5-minutes each. The arc-travel-time value of an arc a = uv for a timestlot i is computed as
length/[S(a,i) × (free flow speed)a], where free flow speed denotes the top speed that can be
achieved with zero congestion along a, while S(a,i) denotes a scale factor dependent on the road traf-
fic status of timeslot i. Therefore, for arc a a sequence 〈 (departure-timei , arc-travel-timei)i∈[288] 〉
of breakpoints is created, where departure-timei is the starting point of the corresponding times-
lot, and arc-travel-timei is the estimated time to traverse it when the departure time is exactly
departure-timei.

In order to avoid wasting space, for each arc and arc-travel-time value per timeslot, consecutive
timeslots having the same arc-travel-time value were merged. Optionally, one could perform a
broader merging of consecutive timeslots having absolute difference in arc-travel-time values less
than a small constant (e.g. < 1min resolution bound). However, in our experiments we chose
to preserve the maximum possible resolution of the raw-traffic data. This proved to be extremely
efficient by means of approximation guarantees, for different levels of resolution for the approximate
travel-time summaries. The eventual space required for all the raw-traffic data provided as input,
is roughly 225MB.

The arc-travel-time function d[a](t) is simply the continuous, pwl interpolant of all the break-
points corresponding to arc a. D[a](t) is then the periodic repetition of d[a](t).

Preprocessed Landmark Information. In order to create all the landmark-to-vertex (1 + ε)-
approximate shortest travel-time summaries, we call TRAP, which is a one-to-all approximation
method, once per landmark. Upon completion of this preprocessing phase, we collect the (1 + ε)-
approximate travel-time summaries for all the landmark-vertex pairs in the Berlin graph. For
each such pair (`, v) ∈ L× V , we store a sequence 〈 (Dep[`]i , Arr[`, v]i)i 〉 of breakpoints, where
Dep[`]i denotes a departure-time from landmark ` and Arr[`, v]i denotes the corresponding earliest-
arrival-time at v. The interpolation of all these breakpoints produces the overall (1 + ε)-upper-
approximating travel-time summary (continuous, pwl function) ∆[`, v](t). With |L| landmarks and
p breakpoints (on average) per approximate travel-time summary, the preprocessing space required
for storing all the landmark-to-vertex approximate travel-time summaries is O(|L|pn).

Our approach is focused on achieving a cost-effective storage of these summaries, while keeping
a sufficient precision. The key is that some specific features can be exploited in order to reduce
the required space. The main observation is that, for a one-day time period, departure-times and
arrival-times have a bounded value range. In particular, when the considered precision of the traffic

D2.4: Page 18 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

data is within seconds we handle time-values as integers in the range [0 , 86, 399], for milliseconds
as integers in [0 , 86, 399, 999], etc.

Any (real) time value within a single-day period, represented as a floating-point number tf ,
can thus be converted to an integer ti with fewer bytes and a given unit of measure. For a unit
measure (or scale factor) s, the resulting integer is ti = dtf/se. In this manner, ti needs size
dlog2(tf/s)/8e bytes. The division tf/s has quotient π and remainder υ. Thus, tf = s · π + υ
and ti = d(s · π + υ)/se = dπ + υ/se, with υ < s. Therefore, converting tf to ti results to an
absolute error of at most 2s. In the reverse process, for extracting the stored value, the conversion
is t

′

f = ti · s. In our experiments, for storing the time-values of approximate travel-time summaries,
we have considered two different resolutions:

(a) 2.64sec resolution, corresponding to a scale factor s = 1.32 (when counting time in seconds),
requiring 2 bytes per time-value, and

(b) 10.3ms resolution, corresponding to a scale factor s = 5.15 (when counting time in millisec-
onds), requiring 3 bytes per time-value.

3.3.2 Experimental Setup

All algorithms were implemented using C++ (gcc, version 4.6.3). To support all graph-operations
we used the PGL library [25]. All experiments were executed by a CPU of 3.40GHz×8, using
16GB of RAM, on Ubuntu 12.04 LTS. All our algorithms are executed sequentially. Exploitation of
parallelism is left for future implementations and is anticipated to reduce dramatically the execution
times, particularly for the preprocessing phase and the query algorithm RQA for which parallelism
would apply quite naturally.

3.3.3 Measurements and Evaluation of Speedups and Approximation Guarantees

We now proceed with the presentation and discussion of our findings in the experimental evaluation
that we conducted on the data set of Berlin, for the three query algorithms and the six landmark
sets that we considered.

Preprocessing Phase: Creation of Approximate Travel Time Summaries. Our prepro-
cessing phase took as input six different landmark sets for the Berlin graph: R1000 and R2000

correspond to 1, 000 and 2, 000 landmarks chosen uniformly at random from the entire vertex set.
M1000 and M2000 correspond to 1, 021 and 2, 072 landmarks chosen as the boundary vertices of
appropriate METIS partitions. K1000 and K2000 correspond to 1, 016 and 2, 024 landmarks chosen
as the boundary vertices of appropriate KaHIP partitions.

For the production of the approximate travel-time summaries for each of the landmark sets,
a total amount of less than 13 hours (for small sets) and 26 hours (for large sets) of sequential
computational time was consumed. In particular, the average time per landmark, for producing
its approximate travel-time summaries towards all possible destinations is less than 43sec, and the
amortized time for constructing a single landmark-to-vertex approximate travel-time summary is
less than 0.1435ms.

The required storage space is less than 35MB per landmark for 2.64sec resolution, and 55MB
per landmark for the 10.3ms resolution.

Query Phase: Responding to Arbitrary Shortest-Path Queries. The query execution
times and relative errors of the produced solutions, for all possible landmark sets and the two
different resolutions that we consider for the approximate travel-time summaries, are presented
in Tables 4 and 5. Moreover, Table 6 presents the speedups of the query algorithms, measured
by the machine-independent criterion of Dijkstra-rank, i.e., the number of settled vertices during

D2.4: Page 19 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

execution. All reported values are averages over 1, 000 randomly chosen queries from the Berlin
instance. We note that for RQA the recursion budget was set to 1. For fairness of comparison, the
parameter N (number of landmarks) in FCA+ was set equal to the number of landmarks settled by
RQA.

It should be noted that for the query algorithms we only count the required computational
time for providing an upper bound on the earliest-arrival-time at the destination. In particular, we
exclude the time required for the construction time of a path with the discovered guarantee (which
is anyway negligible) and the time required for accessing from the hard disk the approximate travel-
time summaries of the involved landmarks. The latter is done for two reasons: First, we wish our
comparison to be as independent as possible of the characteristics of the machine, and in particular
of the size of the main memory. For example, the reported times would be as they appear in
Tables 4 and 5 in exactly the same machine but with sufficiently large main memory. Second,
our main quality measure is the achieved speedup versus the average performance of TDD. Clearly,
TDD produces no disk I/O accesses when being executed, and the comparison would be misleading
for the query algorithms, simply due to poor hardware characteristics. We wish to have a clear
comparison of the algorithms themselves, which is irrelevant of the hardware platform.

Apart from query-times, we also report the observed relative errors of the produced solutions.
The relative error for a given od−path p is the percentage of surplus from the exact shortest travel-
time (as computed by TDD), i.e.:

100 · [travel time of p− shortest travel time from (o, to) to d]/[shortest travel time from (o, to) to d]

With respect to the observed query times, in all cases FCA is the fastest query method, but with
the highest relative error, compared to the other two methods. For example, it returns answers
with relative error 1.634% in 0.195ms (i.e., a speedup more than 397 over the runtime of TDD), for
R1000 and 10.3ms-resolution. The response time for R2000 and 10.3ms-resolution is 0.107ms (i.e.,
speedup more than 723) with relative error 1.065%. Similar performance is observed also for the
cases of preprocessing with 2.64sec-resolution. For the other two query algorithms, FCA+ is always
faster than RQA, the latter being at most two times slower than the former. This can be justified by
the fact that FCA+ grows a unique Dijkstra ball from the origin, and thus acts like a label-setting
algorithm. On the other hand, RQA may visit and update the labels of the same vertices more
than once, since at the second level of the recursion the labels of the settled nodes are not always
shortest travel-times from the origin, but shortest travel-times via particular parents. On the other
hand, it should be noted that RQA is amenable to parallelization due to its recursive flavor. This is
anticipated to speedup significantly the average query time in forthcoming implementations of RQA,
which will then be comparable to that of FCA.

With respect to the relative error, we observe that for all the random landmark sets FCA+ pro-
vides smaller values, of 0.449% for 1000 random landmarks and 0.389% for 2000 random landmarks.
For the rest of the landmark sets, RQA is the best option with respect to the relative error, achieving
values 0.314% for 1000 KaHIP landmarks and 0.298% for 2000 KaHIP landmarks. That is, the
oriented expansion of the Dijkstra tree provided by RQA performs better in cases of landmark sets
created from well structured partitions, whereas the brute-force expansion of FCA+ is better for
randomly chosen landmarks in the network.

As for the machine-independent performance of Dijkstra-ranks (cf. Table 6), we observe that
the reported average speedups of our query algorithms, compared to a typical TDD run, are even
better. For example, using FCA on R1000 and R2000 produce speedups larger than 429 and 889 times
respectively. This is indeed quite encouraging, since all the proposed query algorithms are based
on label-settings, just as TDD, and this performance measure is truly machine independent.

A final remark is the sensitivity of our algorithms to the choice of resolution for the values of the
approximate travel-time summaries that are created during the preprocessing phase. Observe that
if the performance measure is the Dijkstra-rank, then the choice of resolution, which only affects the
approximate values of the landmark-to-destination travel-times, is irrelevant of the rank measure,

D2.4: Page 20 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

because the Dijkstra balls grow over the raw traffic data for which we have preserved the maximum
possible accuracy. Even when we account for computational times of the query algorithms, we
observe that the difference in the relative errors is rather negligible, and in a few cases the coarser
resolution of 2.64sec results in smaller relative-error values. This is due to the path reconstruction
method that we use, which also takes into account the values of the approximate landmark-to-vertex
travel-time values. The main reason for this insensitivity in the chosen resolution is that it is only
the last part of the chosen path that is indeed affected, by only a small additive term of few seconds,
or even milliseconds.

TDD FCA FCA+ RQA

Time Rel.Error Time Rel.Error Time Rel.Error Time Rel.Error
(ms) (%) (ms) (%) (ms) (%) (ms) (%)

R1000 77.424 0
0.195 1.634 1.345 0.449 1.692 0.575

M1000 0.381 2.201 1.313 0.698 2.349 0.483
K1000 0.362 2.165 1.223 0.506 2.015 0.382
R2000 0.107 1.065 0.71 0.389 0.771 0.445
M2000 0.152 1.115 0.582 0.336 0.7 0.314
K2000 0.148 1.405 0.599 0.367 0.655 0.298

Table 4: Query performances for 10.3ms-resolution of the raw traffic data.

TDD FCA FCA+ RQA

Time Rel.Error Time Rel.Error Time Rel.Error Time Rel.Error
(ms) (%) (ms) (%) (ms) (%) (ms) (%)

R1000 77.424 0
0.198 1.634 1.345 0.449 1.712 0.574

M1000 0.381 2.199 1.287 0.7 2.09 0.487
K1000 0.348 2.171 1.197 0.512 1.834 0.381
R2000 0.108 1.065 0.694 0.382 0.769 0.442
M2000 0.156 1.116 0.589 0.346 0.767 0.314
K2000 0.148 1.401 0.591 0.366 0.721 0.295

Table 5: Query performances for 2.64sec-resolution of the raw traffic data.

TDD FCA FCA+ RQA

Rank Speedup Rank Speedup Rank Speedup Rank Speedup
R1000 149397 1

348 429.302 2628 56.848 4261 35.061
M1000 713 209.533 2517 59.355 5304 28.167
K1000 657 227.393 2353 63.492 4660 32.059
R2000 168 889.268 1251 119.422 1820 82.086
M2000 252 592.845 1039 143.789 1646 90.764
K2000 247 604.846 1002 149.099 1522 98.158

Table 6: Query performances with respect to the numbers of settled vertices.

3.3.4 Methodology and Measurements for Assessing the Eco-Footprint

We have calculated the CO2 emissions of any computed route considering an average private car, in
particular a 5-door Opel-Astra, which has an average fuel-consumption of 4.2 litres/ 100 km. Based
on the information provided by the EN 16258:2012 – Methodology for Calculation and Declaration of
Energy Consumption and GHG Emissions of Transport Services (Freight and Passenger), published

D2.4: Page 21 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

by CEN2, we considered the greenhouse gas (GHG) emissions (calculated as CO2 equivalents) and
specifically the well-to-wheels value, measured as kg CO2e / km. Table 7, extracted from the EN
16258 standard, was used in our calculations. Since the fuel-consumption of the vehicle is considered

Factors for the calculation of energy consumption and greenhouse gas emissions (calculated as
CO2 equivalents) in accordance with EN 16258

Example: a vehicle needs 406l to drive from A->B

TTW GHG emissions: GT = F x gT = 406 l x 2.67 kg CO2e/l = 1,084 kg CO2e
WTW GHG emissions: GW = F x gW = 406 l x 3.24 kg CO2e/l = 1,316 kg CO2e

Table 7: Factors for the calculation of energy consumption and greenhouse gas emissions (calcu-
lated as CO2 equivalents) in accordance with EN 16258

to be an average (constant) value, the amount of the resulting CO2 emissions depends solely on
the length of the computed route. As a result, we adopt the GHG emissions of the shortest path
with respect to the distance (rather than travel-times) metric, from an origin o to a destination d,
as the baseline in our experiments.

The corresponding shortest-distance od-route is of course expected to provide the minimum eco-

2http://www.transport2020.org/newsitem/cen-publishes-european-standard-for-calculation-of-ghg-emissions

D2.4: Page 22 of 64

http://www.transport2020.org/newsitem/cen-publishes-european-standard-for-calculation-of-ghg-emissions

FP7-ICT-2011-7 288094 - eCOMPASS

footprint, but on the other hand it is typically a suboptimal route with respect to travel-times. The
average deviation of the eco-footprint for a proposed route from o to d is compared with respect
to this baseline GHG emission, and it is provided for all the time-dependent algorithms that we
experimentally tested, namely, TDD, FCA, FCA+, and RQA. In all our experiments we consider Diesel to
be the type of fuel used by the vehicle, which means that the well-to-wheel value is gw = 3.24CO2e.
In each case, the computation of the total CO2e emissions of a path p turns out to be rather simple:

CO2e(p) = total fuel consumption · gw = distance(p) · fuel consumption per km · gw

Table 8 demonstrates the comparison of all these algorithms for the most prominent (with respect
to the observed approximation guarantee with respect to travel-times) KaHIP K2000landmark set.
Table 9 demonstrates the comparison of all these algorithms for the most prominent (with respect
to the observed approximation guarantee with respect to travel-times) KaHIP K2000landmark set.

Shortest-Distance-Dijkstra TDD FCA RQA FCA+

time (msec) 77.583 92.883 0.151 0.747 0.616
Dijkstra rank 215, 297 201, 209 352 2, 260 1, 452

travel time deviation (%) 27.115 0 1.354 0.308 0.327
eco-footprint (CO2e) 19.17 21.828 22.003 21.854 21.864

eco-footprint deviation (%) 0 14.729 16.017 15.006 15.061

Table 8: Eco-footprint reports for 1000 random queries and the K2000 landmark set.

For both landmark sets we observe that, as expected, the route achieving the (exact) shortest
travel time, reported by TDD, is already suboptimal with respect to the baseline eco-footprint of
the shortest-distance route. Quite interestingly, the proposed query algorithms FCA, FCA+ and
RQA, which definitely achieve extremely good approximations of travel times, also demonstrate
performance with respect to the eco-footprint which is pretty close to that of TDD. On the other
hand, the optimal route with respect to the eco-footprint is a rather prohibitively bad approximation
of the optimum travel-times achieved by TDD.

Shortest-Distance-Dijkstra TDD FCA RQA FCA+

time (msec) 77.583 92.883 0.105 0.832 0.754
Dijkstra rank 215, 297 201, 209 235 2, 567 1, 766

travel time deviation (%) 27.115 0 1.209 0.384 0.402
eco-footprint (CO2e) 19.17 21.828 21.916 21.847 21.858

eco-footprint deviation (%) 0 14.729 15.632 14.873 14.917

Table 9: Eco-footprint reports for 1000 random queries and the R2000 landmark set.

4 Fast, Dynamic and Highly User-Configurable Route Plan-
ning

We perform extensive experiments to determine the performance of Customizable Contraction Hi-
erarchies on real world networks. For an algorithmic description, see Deliverable D2.2.1 and [44].
Our experiments show that the performance is completely independent of the metric used, as long
as it is constant per weight. This makes it a prime technique to cope with complex personalized
shortest path metrics that besides static travel time take vehicle restrictions, user preferences such
aus avoid highways, current traffic conditions, or eco-friendly energy-consumption into account.

D2.4: Page 23 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 10: Instances. We report the number of vertices and of directed arcs of the benchmark
graphs. We further present the number of edges in the induced undirected graph.

Instance # Vertices # Arcs # Edges

Karlsruhe 120 412 302 605 154 869
Europe 18 010 173 42 188 664 22 211 721

Figure 3: All vertices in the PTV-Europe graph.

4.1 Experiments

Compiler and Machine We implemented our algorithms in C++, using g++ 4.7.1 with -O3 for
compilation. The customization and query experiments were run on a dual-CPU 8-core Intel Xeon
E5-2670 processor (Sandy Bridge architecture) clocked at 2.6 GHz, with 64 GiB of DDR3-1600
RAM, 20 MiB of L3 and 256 KiB of L2 cache. The order computation experiments (see Table 11)
were run on a single core of an Intel Core i7-2600K CPU processor.

Instances We consider two large instances of practical relevance (see Table 10): The Europe
graph was made available by PTV3 for the DIMACS challenge [43]. The vertex positions are
depicted in Figure 3. It is the standard benchmarking instance used by road routing papers over
the past few years. Note that besides roads it also contains a few ferries to connect Great Britain
and some other islands with the continent. The Europe graph analyzed here is its largest strongly
connected component (a common method to remove bogus vertices). It is directed, and we consider
two different weights. The first weight is the travel time and the second weight is the straight line
distance between two vertices on a perfect sphere. The Karlsruhe graph is a subgraph of the PTV
graph for a larger region around Karlsruhe. We consider the largest connected component of the
graph induced by all vertices with a latitude between 48.3° and 49.2°, and a longitude between 8°
and 9°. Table 10 reports the instance sizes.

4.1.1 Orders

We analyze three different vertex orders: 1) The greedy order is an order in the spirit of [45]. 2) The
Metis graph partitioning package contains a tool called ndmetis to create ND-orders. 3) KaHIP
provides just graph partitioning tools. As far as we know tools to directly compute ND-orders are
planned by the authors but not yet finished. We therefore implemented a very basic program on
top of it. For every graph we compute 10 bisections with different random seeds using the “strong”
configuration. We recursively bisect the graph until the parts are too small for KaHIP to handle
and assign the order arbitrarily in these small parts. We set the imbalance for KaHIP to 20%.
Note that our program is purely tuned for quality. It is certainly possible to trade much speed
for a negligible (or even no) decrease in quality. Table 11 reports the times needed to compute

3http://www.ptvgroup.com

D2.4: Page 24 of 64

http://www.ptvgroup.com

FP7-ICT-2011-7 288094 - eCOMPASS

Table 11: Orders. Duration of order computation in seconds. No parallelization was used.

Instance Greedy Metis KaHIP

Karlsruhe 4.1 0.5 1 532
Europe 813.5 131.3 249 082

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●
●
●●●
●●

●●

●
●

●
●●

●

●

●

●●

●
●●●●

●●●
●

●●
●
●
●
●●●●
●
●●●

●

●●●
●

●

●●●

●●●

●
●
●
●
●

●

●

●●●
●

●

●

●
●
●
●
●
●
●

●●
●
●
●
●●
●

●
●
●

●●
●

●
●●

●

●

●●

●
●

●

●
●

●●

●●●●

●

●
●
●
●
●
●●●●●●
●

●

●●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●
●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●
●
●●
●●
●
●
●

●

●●
●
●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●●●
●
●

●
●
●

●

●●

●
●●
●

●●
●
●
●●

●

●

●

●●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●●
●●
●
●
●
●
●

●

●

●

●
●

●

●

●
●●
●●
●●
●
●●●
●●

●

●

●●●

●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●
●
●
●
●

●●●●

●
●
●●
●

●●
●
●

●

●
●
●
●
●●

●●
●

●
●
●
●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●●

●●

●

●

●
●
●●
●●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●
●●
●
●

●
●

●

●

●
●
●

●●

●●
●
●

●

●
●

●●

●

●

●●
●
●
●●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●●●
●

●●

●
●
●
●●
●
●
●
●
●
●
●
●●●
●

●

●●
●
●
●●
●
●

●

●

●
●

●
●
●

●

●
●

●
●
●
●
●

●

●

●●

●
●

●

●●
●

●

●●

●

●
●

●
●
●●●●

●
●

●

●
●●●

●
●
●

●
●●
●●

●

●

●

●

●●
●
●
●

●●
●

●
●

●

●

●●
●

●●

●●

●

●

●
●●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●
●●

●
●

●

●
●
●
●

●

●
●

●●
●

●
●
●●
●●

●

●
●●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●
●
●

●

●
●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●
●
●
●●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●

●●
●

●

●

●

●

●
●

●●

●●●●●

●

●

●

●
●
●
●●
●
●●
●●

●
●

●
●

●

●
●●
●●●
●
●
●

●
●

●
●
●
●●

●

●

●
●

●

●
●●
●
●●●

●●

●
●

●
●

●

●

●

●

●

●

●
●●●●

●

●
●

●
●
●

●
●
●
●

●

●

●
●

●
●

●●●

●

●●
●
●

●
●

●●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●
●●
●
●

●

●●●●

●

●
●
●●
●
●
●●
●

●●
●

●●

●

●
●●
●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●●

●
●
●
●●
●●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●●●●

●

●

●●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●
●●

●
●

●

●

●
●●
●

●

●●●

●

●
●

●
●●

●

●
●

●

●
●●

●

●●●
●
●

●

●●●●

●
●

●●

●
●

●
●
●
●●

●●

●
●
●

●

●
●

●●

●
●●
●
●●●●●
●

●

●

●
●
●
●
●●●●●●●
●
●●

●

●
●
●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●●

●
●

●

●●●
●

●
●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●
●
●
●
●

●

●

●
●
●
●

●●

●
●

●

●●
●
●
●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

●●
●
●●
●
●
●
●
●
●●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●●
●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●
●

●●
●
●
●

●
●●

●

●

●
●
●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●

●
●●●
●

●
●
●
●

●

●●

●
●●●

●
●●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●
●

●●●●

●●

●

●
●
●

●

●
●

●

●
●
●●

●

●●
●

●●

●
●
●
●

●

●
●
●

●
●
●●

●

●

●
●
●●
●

●

●

●

●
●
●
●
●

●●●
●●
●●

●
●
●

●
●
●●

●
●

●●
●

●●

●

●

●●

●●

●
●●

●
●

●
●●●

●

●

●
●
●
●●●

●

●
●
●

●

●

●
●
●●
●

●

●
●

●

●
●●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●
●●

●

●●

●●
●
●
●
●
●●●
●
●●

●●●

●●

●

●

●

●

●●

0

10

20

30

40

0 25,000 50,000 75,000 100,000 125,000

(a) Karlsruhe

●

●
●

●

●●
●

●
●
●●●
●
●●●
●

●●
●
●
●●
●
●●

●

●●
●●
●●●
●

●●
●●
●
●●●

●
●
●

●●●
●

●
●●●●

●●
●
●
●●
●
●●
●
●●
●

●

●
●
●●
●
●●
●●●
●●
●●
●●●●
●
●●
●●●●
●●

●●

●
●●●●●●●

●●
●●
●
●●
●●●●

●●●●●●

●

●
●
●●
●●
●●
●●

●

●

●

●●●
●●
●●●●●
●
●●
●●
●●●
●●

●
●
●●
●
●●●
●●●
●
●
●●
●
●

●
●

●
●
●●
●
●●●●●●●●
●●●
●●●

●
●
●●

●

●
●
●
●

●●●●

●●
●
●●
●
●●

●
●●●●

●

●
●
●●
●●●●●
●
●●

●
●●●●
●

●
●

●
●

●●
●
●
●●●

●
●●
●
●

●
●
●
●●●●●

●
●
●
●

●●●
●●
●●●●●
●●●●●●●●
●●●●●●
●●●●●
●
●●●●
●●●

●●●

●●

●
●
●●●●●●

●
●●●●
●
●
●
●●

●●●

●●●●
●●●
●●●
●●●●●
●

●
●●

●

●
●

●

●

●
●●●●●
●

●●

●
●

●●●
●●
●●
●
●
●

●●
●

●
●
●

●●●
●●
●●●●

●●

●●

●

●●●

●

●
●●

●

●

●●

●●●●
●
●●●
●
●●●●

●●
●
●●

●
●●●●

●●

●●
●

●●

●
●●●

●

●●●
●
●
●●
●●●●●

●

●

●●●
●●●●
●●●
●●
●
●●

●●
●●

●

●●

●

●

●●
●
●
●

●

●

●●

●●●
●●●

●

●●●
●
●●●
●●

●
●
●●
●
●
●●●●●●●
●
●●

●
●
●●●
●
●
●●
●●

●
●●●●●
●
●●●●●●
●
●

●
●
●
●●●●

●

●●
●
●
●●●●●
●●
●●●●
●
●
●

●

●●●●

●
●
●●
●
●
●

●●●●
●
●●●
●
●
●
●
●●●
●
●

●

●

●●
●
●

●●

●
●

●

●●●
●

●

●●●●
●
●

●●
●
●

●

●
●

●

●

●
●

●●●

●
●●●

●
●

●

●●●●●●

●

●
●●●●

●●

●
●●●●
●

●
●

●●●
●
●
●●●●●●
●

●
●
●
●●●●

●

●
●●●

●
●●

●

●

●

●

●

●●
●●●●●●●
●
●●

●
●●

●●
●●●●●●

●
●●●●●●●
●
●●
●●●●●●●●●●●●
●●
●●
●●●●●

●●

●
●

●●
●
●●
●
●●●
●
●

●
●●●
●
●
●
●●●

●

●
●●●●●
●●●●
●●●
●●
●
●●●●●
●●●●●●

●

●

●●
●●

●●
●
●●●
●●●

●
●●
●

●
●●
●●
●
●
●
●
●●
●●
●●
●
●
●
●●●●●
●●●●

●
●●●
●
●●●
●
●●

●

●

●●
●●●●●
●●●
●●●
●●●●

●
●
●●●●●
●●

●

●●●●
●

●

●●●●●●
●●
●
●●●● ●

●

●
●●●
●●●
●●●●●
●
●

●●●●
●●●●
●

●
●
●
●●
●
●●●
●

●
●●

●●
●
●

●●●

●
●●●
●●●●●●●●

●●
●●●
●

●

●●●●

●
●
●

●
●●●●●●
●●●●●
●●●●●●
●●●
●
●●●●●
●
●
●
●
●●●
●
●●●●

●●●●●●●●
●●●●
●●●
●
●●●●
●●
●●
●●●●
●●
●●●●
●●

●

●●

●

●
●●●●●
●
●●

●
●●
●
●●
●
●●●

●
●●●●●●●●●●●●

●
●
●●
●
●●
●●
●●●●●●

●

●●
●●
●
●●
●
●●●●●

●

●●●●●●●●
●
●●
●
●●

●
●●
●●●
●
●●

●

●●●●●
●●
●●

●
●●

●
●
●
●●●
●
●
●
●

●
●●●●
●●
●●
●
●●●
●●
●
●
●●●●●
●●●●●●
●
●
●
●●●●●●●●●●

●
●
●●●●
●

●●
●
●●●●●●●●●
●●
●●●●●●●●
●
●●
●●●

●
●

●

●●●
●●●
●
●●
●●●
●●●●●
●

●
●
●●●●
●●
●

●
●●

●

●●
●●
●●●●
●●●●●●●

●●●

●●●●
●●●
●●●●●
●
●●

●●●
●

●
●●●
●
●
●●●
●●●●●
●
●●●●●●

●●●

●●
●●
●●●●●
●

●●
●●●
●
●
●
●

●
●●●●
●●●
●●●●●
●
●●●
●
●●●●

●
●
●●

●●●●●
●
●

●
●
●●●●●

●●●●
●●●●●
●●●●
●●●●
●●
●●●●●● ●

●

●●●
●

●●
●●
●●
●●
●

●●
●●

●
●●●
●
●●●●

●

●●●
●
●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●
●
●●
●
●●
●
●

●
●
●

●●●●●●
●
●●●●

●

●
●●●●●●
●●
●

●●●●●●●●●●●●●●
●●●●●●●

●

●
●
●●●
●●●●●●

●●
●●●●
●
●

●●
●●●●

●
●
●
●●●●●●●●
●●●●●●●●
●●

●
●

●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●
●●
●
●
●
●
●●
●

●

●
●●●●●●●
●●●
●●●●●
●
●●●●●●
●●●●
●
●
● ●

●●
●
●●●●
●
●
●●●
●●●●●●
●
●●●

●
●●●●●
●●●●

●
●●
●●
●
●●●●●
●●●●●●●●●●
●
●
●
●●●●●●●●●
●●●●●●●●
●●
●

●
●●●

●

●
●

●
●

●●●●●●●●●

●●●

●

●
●
●●●
●
●●

●
●●
●
●●●
●●
●●●●
●●
●●●

●●

●●
●●
●
●●
●●●●

●
●
●●
●
●●●●●●●●●●●●
●

●
●

●
●●●●
●●

●

●
●

●●●●
●
●●●●●●
●●

●●
●
●●●●
●

●●●●●
●
●●
●●
●●●
●
●●●

●
●

●

●●

●
●●●
●
●●
●●●●●
●●
●
●
●●●●●●●●●●

●
●
●
●
●
●
●●
●●●●●

●

●●
●●

●●

●●●●●
●●●

●●
●●●●●●
●

●
●●●●●●

●●●●●●●●

●
●●●
●

●●
●

●●● ●

●
●

●

●
●
●

●
●●
●●●
●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●
●
●●●
●

●●●●●●●

●●●

●●●
●
●●
●
●
●●●●●●●●●●
●
●●●●
●
●●
●

●

●●
●
●
●●●●●●●
●
●●●●●●●●●●●

●

●●●
●●●●●●●●
●
●
●●
●
●●●●
●

●

●
●●●●
●●
●

●
●

●
●●●●●
●●●●
●●●●●●●

●●●●●
●●●

●

●●●
●
●●
●●
●●
●●●●●

●

●
●
●
●●●●
●●
●
●
●●
●●●
●
●●●
●●
●●●●

●
●●●●
●
●●●●●●●●
●●
●
●●
●●●●●
●●
●●●●
●
●●
●●
●●●●

●

●
●
●
●●●
●
●●●
●
●●●●●
●●●●●●
●●
●●●●
●
●
●
●●●

●●●
●
●
●
●●
●●
●●
●
●

●●
●●
●
●●
●
●●●
●
●

●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●

●●●●●
●●
●
●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●

●

●
●
●●●●
●●●
●●●●●
●
●●●
●●
●
●●●●●
●●●
●●
●●●●●●●

●
●
●
●●●●●●
●

●●
●●●●●●●●
●●●●●●●●●●●●

●
●
●●●●●●●●●●●
●
●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●0

100

200

300

400

500

0 5,000,000 10,000,000 15,000,000

(b) Europe

Figure 4: The amount of vertices in the separator (vertical) vs the number of vertices in the
subgraph being bisected (horizontal). We only plot the separators for (sub)graphs of at least 1000
vertices. The red hollow circles is KaHIP and the blue filled triangles is Metis.

the orders. Interestingly, Metis outperforms even the greedy strategy. Figure 4 shows the sizes of
the computed separators. As expected KaHIP results in better quality. The road graphs seem to
have separators following a Θ(3

√
n)-law. On Karlsruhe the separator sizes steadily decrease (from

the top level to the bottom level). The KaHIP separators on the Europe graph have a different
structure on the top level. The separators first increase before they get smaller. This is because of
the special structure of the European continent. For example the cut separating Great Britain and
Spain from France is far smaller than one would expect for a graph of that size. In the next step
KaHIP cuts Great Britain from Spain which results in one of the extremely thin cuts observed in
the plot. Interestingly Metis is not able to find these cuts that exploit the continental topology.

4.1.2 CH Construction

Table 12 compares the performance of our specialized Contraction Graph datastructure to the
dynamic adjacency structure (see [45]) to compute undirected and unweighted CHs. We do not
report numbers for the hash-based approach (see [50]) as it is fully dominated. Our datastructure
dramatically improves performance that it also requires less memory). However to be fair, our
approach cannot immediately be extended to directed or weighted graphs (i. e., without employing
customization).

4.1.3 CH Size

In Table 13 we report the resulting CH sizes for various approaches. Computing a CH on Europe
without witness search with the greedy order is infeasible even using the Contraction Graph datas-
tructure. This is even true if we only want to count the number of arcs: We aborted calculations

D2.4: Page 25 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 12: Construction of the Contraction Hierarchy. We report the time in seconds required to
compute the arcs in G∧π given a KaHIP ND-order π. No witness search is performed. No weights
are assigned (yet).

Instance Dyn. Adj. Array Contraction Graph

Karlsruhe 0.6 <0.1
Europe 305.8 15.5

Table 13: Size of the Contraction Hierarchies for different instances and orders. We report the
number of undirected as well as upward directed arcs of the CH, as well as the number of supporting
lower triangles. As an indication for query performance, we report the average search space size
in vertices and arcs (both metric-independent undirected and upward weighted), by sampling the
search space of 1000 random vertices. Metis and KaHIP orders are metric-independent. Greedy
orders are metric-dependent. We report resulting figures after applying different variants of witness
search. A heuristic witness search is one that exploits the metric in the preprocessing phase.

Average search space size

Witness
search

Arcs [·103] # Triangles undirected upward

Order undir. upward [·103] # Vertices # Arcs # Vertices # Arcs

K
ar

ls
ru

h
e Greedy

none 21 926 17 661 37 439 858 5 870 15 786 622 5 246 11 281 564
heuristic — 244 — — — 108 503
perfect — 239 — — — 107 498

Metis
none 478 463 2 590 164 6 579 163 6 411
perfect — 340 — — — 152 2 903

KaHIP
none 528 511 2 207 143 4 723 142 4 544
perfect — 400 — — — 136 2 218

E
u

ro
p

e

Greedy heuristic — 33 912 — — — 709 4 808

Metis
none 70 070 65 546 1 409 250 1 291 464 956 1 289 453 366
perfect — 47 783 — — — 1 182 127 588

KaHIP
none 73 920 69 040 578 248 652 117 406 651 108 121
perfect — 55 657 — — — 616 44 677

after several days. We can however say with certainty that there are at least 1.3× 1012 arcs in the
CH and the maximum upward vertex degree is at least 1.4 × 106. As the original graph has only
4.2× 107 arcs, it is safe to assume that using this order it is impossible to achieve a speedup com-
pared to Dijkstra’s algorithm on the input graph. However, on the Karlsruhe graph we can actually
compute the CH without witness search and perform a perfect witness search. The numbers show
that the heuristic witness search employed by [45] is nearly optimal. Furthermore, the numbers
clearly show that using greedy orders in a metric-independent setting (i. e., without witness search)
results in unpractical CH sizes. However they also show that a greedy order exploiting the weight
structure dominates ND-orders (for a more detailed discussion see below). In Figure 5 we plot the
number of arcs in the search space vs the number of vertices. The plots show that the KaHIP order
significantly outperforms the Metis order on the road graphs. Table 14 examines the elimination
tree. Note that the height of the elimination tree corresponds4 to the number of vertices in the

4The numbers in Table 13 and Table 14 deviate a little because the search spaces in the former table are sampled
while in the latter we compute precise values.

D2.4: Page 26 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●
●

●

● ●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●● ●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

0

2,500

5,000

7,500

10,000

0 50 100 150 200

(a) Karlsruhe

●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●●●

●
●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●● ●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

● ●●

●

●
●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●●●
●

● ●
●●●●

●

●

●

● ●

●●

●

●

●

●●
●

●

●●

●

●

●

● ●●

●
●●

●
●

●

●
●●

●
●

●

●

●
●

●●

● ●

● ●
●

●
●

●

●●
●

●

●

●●

●
●●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●●
● ●

●● ●●

●

●

●
●

●

●
●

●● ●●●●

●●

●

●

●

●●

●

●●●

●●
●

●

●

●
● ●

●

●

●

●
●

●
●

●●
●● ●●

●
●

●●

●

●

●

●

●

●

●
●

●●●

●●● ●

●

●

●

●●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●●●● ●●●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●
●●

●●●

●

●
●

●● ●

●

●

●
●

●●

●
●

●

● ●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

● ●●

●

● ●●

●

●

●

●

●● ● ●

●

●
●●

●

● ●

●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●
●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●●

●

●

●

●

● ●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●●

●

●

●●

●

●
●

●

●

●●

●● ●

●●
● ●● ●●●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●
●

● ●

●

●

●

● ●
●

●

●●

●
●

●● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●●●

●
● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●●

●

●●

●

● ●

●●

● ●●

●

●
●

●

●

●●
● ●

●
●

●●●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●
●

●●

●
●●

●●

●●

●

●

●

●

● ●● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●●
●

●

●

●
●

● ● ●
●●

●
●

●●●

●●●
●

●

●

●●
●●●

●

● ●

●
●

●
●

● ●

●●

●
●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●
●

●●

●

●

●●●

●

●●●● ●

●

●

●●

●●

●●

●●

●
●● ●

●

●

●

●

●

●

●

●●

●

●

● ●●●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●
●

●

●
●

●

●

●
● ●

●
●

●●
●

● ●

●

●

●●● ●●

●

●

●
●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

0

250,000

500,000

750,000

1,000,000

0 500 1,000 1,500 2,000

(b) Europe

Figure 5: The number of vertices (horizontal) vs the number of arcs (vertical) in the search space
of 1000 random vertices. The red hollow circles is KaHIP and the blue filled triangles is Metis.

Table 14: Elimination tree characteristics. Note that unlike in Table 13, these values are exact and
not sampled over a random subset of vertices. We also report upper bounds on the treewidth of
the (undirected) input graphs.

Children Height
Treewidth

(upper bound)Instance Order avg. max. avg. max.

Karlsruhe
Metis 1 5 163.48 211 92
KaHIP 1 5 142.19 201 72

Europe
Metis 1 8 1283.45 2017 876
KaHIP 1 7 654.07 1232 479

(undirected) search space. As the ratio between the maximum and the average height is only about
2 we know that no special vertex exists that has a search space significantly differing from the the
numbers shown in Table 14. The elimination tree has a relatively small height compared to the
number of vertices in G (in particular, it is not just a path).

The treewidth of a graph is a measure widely used in theoretical computer science. Many NP -
hard problems have been shown to be solvable in polynomial time on graphs of bounded treewidth.
The notion of treewidth is deeply coupled with the notion of chordal super graphs and vertex
separators. See [38] for details. The authors show in their Theorem 6 that the maximum upward
degree du(v) over all vertices v in G∧π is an upper bound to the treewidth of a graph G. This
theorem yields a straightforward algorithm that gives us the upper bounds presented in Table 14.

Interestingly these numbers correlate with our other findings: The difference between the bounds
on the road graphs reflect that the KaHIP orders are better than Metis orders. The fact that the
treewidth grows with the graph size reflects that the running times are not independent of the graph
size. These numbers strongly suggest that road graphs are not part of a graph class of constant
treewidth. However, fortunately, the treewidth grows sub-linearly. Our findings from Figure 4
suggest that assuming a O(3

√
n) treewidth for road graphs of n vertices might come close to reality.

Further investigation into algorithms explicitly exploiting treewidth might be promising. The works
of [39, 48] seem like a good start. Also, determining the precise treewidth could prove useful.

In Table 15 we evaluate the witness search performances for different metrics. It turns out that
the distance metric is the most difficult one of the tested metrics. That the distance metric is
more difficult than the travel time metric is well known. However it surprised us, that uniform and
random metrics are easier than the distance metric. We suppose that the random metric contains

D2.4: Page 27 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 15: Detailed analysis of the size of CHs. We evaluate uniform, random and distance weights
on the Karlsruhe input graph. Random weights are sampled from [0, 10000]. The distance weight
is the straight distance along a perfect Earth sphere’s surface. All weights respect one-way streets
of the input graph.

Witness
search

Avg. upward search space

Instance Metric Order # Upward arcs # Vertices # Arcs

Karlsruhe

Distance
Greedy

none 8 000 880 3 276 4 797 224
heuristic 295 759 283 2 881
perfect 295 684 281 2 873

Metis perfect 382 905 159 3 641
KaHIP perfect 441 998 141 2 983

Uniform
Greedy

none 5 705 168 2 887 3 602 407
heuristic 272 711 151 808
perfect 272 711 151 808

Metis perfect 363 310 153 2 638
KaHIP perfect 426 145 136 2 041

Random
Greedy

none 6 417 960 3 169 4 257 212
heuristic 280 024 160 949
perfect 276 742 160 948

Metis perfect 361 964 154 2 800
KaHIP perfect 424 999 138 2 093

Europe Distance
Greedy heuristic 39 886 688 4 661 133 151
Metis perfect 53 505 231 1 257 178 848
KaHIP perfect 60 692 639 644 62 014

a few very long arcs that are nearly never used. These could just as well be removed from the
graph resulting in a thinner graph with nearly the same shortest path structure. The CH of a
thinner graph with a similar shortest path structure naturally has a smaller size. To explain why
the uniform metric behaves more similar to the travel time metric than to the distance metric we
have to realize that highways do not have many degree 2 vertices in the input graph. (Note that
for different data sources this assumption might not hold.) Highways are therefore also preferred
by the uniform metric. We expect a more an instance with more degree 2 nodes on highways to
behave differently. Interestingly the heuristic witness search is perfect for a uniform metric. We
expect this effect to disappear on larger graphs.

Recall that a CH is a DAG, and in DAGs each vertex can be assigned a level. If a vertex can
be placed in several levels we put it in the lowest level. Figure 6 illustrates the amount of vertices
and arcs in each level of a CH. The many highly ranked extremely thin levels are a result of the top
level separator clique: Inside a clique every vertex must be on its own level. A few big separators
therefore significantly increase the level count.

4.1.4 Triangle Enumeration

We first evaluate the running time of the adjacency-array-based triangle enumeration algorithm.
Figure 7 clearly shows that most time is spent enumerating the triangles of the lower levels. This
justifies our suggestion to only precompute the triangles for the lower levels as these are the lev-
els were the optimization is most effective. However, precomputing more levels does not hurt if
enough memory is available. We propose to determine the threshold level up to which triangles are

D2.4: Page 28 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

0

25,000

50,000

75,000

100,000

4 32 256

(a) Karlsruhe/KaHIP

0

25,000

50,000

75,000

100,000

4 32 256

(b) Karlsruhe/Metis

0

5,000,000

10,000,000

15,000,000

4 32 256

(c) Europe/KaHIP

0

5,000,000

10,000,000

15,000,000

4 32 256 2,048

(d) Europe/Metis

Figure 6: The number of vertices per level (blue dotted line), arcs departing in each level (red solid
line) and lower triangles in each level (green dashed line). Warning: In contrast to Figure 7 these
figures have a logarithmic x-scale.

precomputed based on the size of the available unoccupied memory. On modern server machines
such as our benchmarking machine there is enough memory to precompute all levels. The memory
consumption is summarized in Table 16.

4.1.5 Customization

In Table 17 we report the times needed to compute a maximum metric given an initial one. A
first observation is that on the road graphs the KaHIP order leads to a faster customization. Using
all optimizations presented we customize Europe in below one second. When amortized5, we even
achieve 415 ms which is only slightly above the (non-amortized) 347 ms reported in [42] for CRP.
(Note that their experiments were run on a different machine with a faster clock but 2× 6 instead
of 2× 8 cores and use a turn-aware data structure making an exact comparison difficult.)

We report our partial update results in Table 18. The median, average and maximum running
times significantly differ. There are a few arcs that trigger a lot of subsequent changes whereas for
most arcs a weight change has nearly no effect. The explanation is that highway arcs and choke
point arcs are part of many shortest paths and thus updating such an arc triggers significantly more
changes. Interestingly in the worst observed case, using the KaHIP order triggers less changes on
TheFrozenSea graph than using the Metis order but an update needs more time. The reason for

5We refer to a server scenario of multiple active users that require simultaneous customization, e. g., due to traffic
updates.

D2.4: Page 29 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

0

20,000

40,000

0 50 100 150 200

(a) Karlsruhe/KaHIP

0

10,000

20,000

30,000

40,000

0 50 100 150 200

(b) Karlsruhe/Metis

0

2,000,000

4,000,000

6,000,000

8,000,000

0 250 500 750 1,000 1,250

(c) Europe/KaHIP

0

1,000,000

2,000,000

3,000,000

4,000,000

0 500 1,000 1,500 2,000

(d) Europe/Metis

Figure 7: The number of lower triangles per level (blue dashed line) and the time needed to
enumerate all of them per level (red solid line). The time unit is 100 nanoseconds. If the time curve
thus rises to 1 000 000 on the plot the algorithm needs 0.1 seconds. Warning: In contrast to Figure
6 these figures do not have a logarithmic x-scale.

this is that the KaHIP order results in significantly more triangles and thus the work per arc is
higher than what is needed with the Metis order.

For completeness we report the running times of the perfect customizations in Table 19. Note
that a perfect customization is not a necessary step of our proposed tool chain. Hence, optimizing
this code path had a low priority.

4.1.6 Query Performance

We experimentally evaluated the running times of the queries algorithms. For this we ran 106

shortest path distance queries with the source and target vertices picked uniformly at random. (For
Europe + Distance we only ran 104 queries.) The presented times are averaged running times on
a single core without any SSE.

In Table 20 we compare the query running times of weighted CHs with Customizable CHs
(CCHs). To construct the weighted CHs we used a (non-perfect) witness search whereas no witness
search was used for the metric-independent CHs. We further reordered the vertices in the metric-
independent CHs by ND-order. Preliminary experiments showed that this reordering results in
better cache behavior and a speed-up of about 2 to 3 because much query time is spent on the
topmost clique. We evaluate the basic query, the stall-on-demand optimization, and the elimination-
tree based query. Note that the latter only works for metric-independent CHs (as the metric-
independent search spaces of weighted CHs get huge).

D2.4: Page 30 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 16: Precomputed triangles. The memory needed is proportional to 2t + m + 1, where t is
the triangle count and m the number of arcs in the CH. We use 4 byte integers. We report t and
m for precomputing all levels (full) and all levels below a reasonable threshold level (partial). We
further indicate how much percent of the total unaccelerated enumeration time is spent below the
given threshold level. We chose the threshold level such that this factor is about 33 %.

Karlsruhe Europe

Metis KaHIP Metis KaHIP
fu

ll

Triangles [10³] 2 590 2 207 1 409 250 578 247
CH arcs [10³] 478 528 70 070 73 920
Memory [MB] 22 19 11 019 4 694

p
a
rt

ia
l

Threshold level 16 11 42 17
Triangles [10³] 507 512 147 620 92 144
CH arcs [10³] 367 393 58 259 59 282
Memory [MB] 5 5 1 348 929
Enum. time [%] 33 32 32 33

Table 17: Customization performance. We report the time needed to compute a maximum cus-
tomized metric given an initial pair of upward and downward metrics. We show the impact of
enabling SSE, precomputing triangles (Pre. trian.), multi-threading (# Thr.), and customizing sev-
eral metric pairs at once.

Karlsruhe Europe

Pre. # Metrics Metis KaHIP Metis KaHIP
SSE trian. # Thr. Pairs time [s] time [s] time [s] time [s]

no none 1 1 0.0567 0.0468 21.90 10.88
yes none 1 1 0.0513 0.0427 19.91 9.55
yes all 1 1 0.0094 0.0091 7.32 3.22
yes all 16 1 0.0034 0.0035 1.03 0.74
yes all 16 2 0.0035 0.0033 1.34 1.05
yes all 16 4 0.0040 0.0048 2.80 1.66

In comparison to the numbers reported in the original CH paper [45] our running times for
weighted CHs tend to be slightly faster. However, our machine is faster which should explain most
differences. The only exception is the Europe graph with the distance metric. Here, our measured
running time of only 0.540 ms is disproportionately faster. We suppose that the reason is that our
order is better as we do not use lazy update and thus have a higher preprocessing time. As already
observed by the original authors we confirm that the stall-on-demand heuristic improves running
times by a factor 2 to 5 compared to the basic algorithm on weighted CHs. When using ND-order
the stalling query is however slower: The search spaces of weighted CHs are spare whereas in the
metric-independent case they are dense. This significantly increases the number of arcs that must
be tested in the stalling test and explains why stalling is not useful.

For the metric-independent CHs the basic query algorithm (i. e., bidirectional search with stop-
ping criterion) visits large portions of the search space, as can be seen by comparing the search
space sizes from Table 13 with the numbers reported in Table 20. For this reason, it pays off to
use the elimination tree based query algorithm. It always visits the whole search space but as we
see these are only slightly more vertices. However, it does not need a priority queue and therefore
spends less time per vertex. Another advantage of the elimination tree based algorithm is that the

D2.4: Page 31 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 18: Partial update performance. We report time required in milliseconds and number of arcs
changed for partial metric updates. We report median, average and maximum over 10000 runs. In
each run we change the upward and the downward weight of a single random arc in G∧π (the arc is
not necessarily in G) to random values in [0, 105]. The metric is reset to initial state between runs.
Timings are sequential without SSE. No triangles were precomputed.

Arcs removed from queue Partial update time [ms]

med. avg. max. med. avg. max.

Karlsruhe
Metis 1 4.1 442 0.001 0.004 0.9
KaHIP 1 3.7 354 0.001 0.003 1.0

Europe
Metis 1 89.3 16997 0.003 1.0 219.3
KaHIP 1 38.8 10666 0.003 0.2 87.2

Table 19: Perfect Customization. We report the time required to turn an initial metric into a
perfect metric. Runtime is given in seconds, without use of SSE or triangle precomputation.

Karlsruhe Europe

Thr. Metis KaHIP Metis KaHIP

1 0.15 0.13 67.01 32.96
16 0.03 0.02 14.41 5.47

code paths do not depend on the metric. This means that query times are completely independent
of the metric as can be seen by comparing the running times of the travel time metric to the dis-
tance metric. For the basic query algorithms the metric has a slight influence on the performance.
A stalling query on the weighted CH with travel time is on Europe about a factor of 5 faster than
the elimination tree based algorithm. However for the distance metric this is no longer the case.
Here, the metric-independent elimination tree based approach is even faster by about 20% because
of the lack of priority queue.

In Table 21, we give a more in-depth experimental analysis of the elimination tree query al-
gorithm. We break the running times up into the time needed to compute the least common
ancestor (LCA), the time needed to reset the tentative distances and the time needed to relax all
arcs. We further report the total distance query time (which is in essence the sum of the former
three) and the time needed to unpack the full path. Our experiments show that the arc-relaxation
phase clearly dominates the running times. It is therefore not useful to further optimize the LCA
computation or to accelerate tentative distance resetting using, e. g., timestamps. The path un-
packing does not use precomputed lower triangles. Using them would result in a further speedup
with a similar trade-off as already discussed for customization.

Fair query time comparisons with CRP [41] are difficult because they nearly only report turn-
aware query running times, whereas the graphs we tested do not use turns. As far as we are aware,
non-turn-aware query performance was only published in [40], but here queries were parallelized
using two cores: The forward and backward searches are run in parallel. The authors report
queries in 0.72 ms for travel time and 0.79 ms for distance metric on Europe. This is slower than
our sequential query times of 0.41 ms and 0.43 ms, respectively. (Note that these experiments were
run on a slightly different machine than ours.)

We have shown in Table 17 that ND-orders can be combined with perfect witness search to get
CHs of smaller search spaces. This could be exploited to achieve (even) faster query times as the
number of arcs decrease by a factor ≈2 on road and ≈4 on game maps. As the elimination-tree
query spends nearly all of its time visiting arcs we expect its running time to go down by about the

D2.4: Page 32 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 20: Contraction Hierarchies query performance. We report the query time in microseconds
as well as the search space visited (we use visited to differentiate from the maximum reachable
search space given in Table 13). For query algorithms that use stalling, we additionally report the
number of vertices stalled after queue removal, as well as the number of arcs touched during the
stalling test. Note that the search space figures do not contain such stalled vertices. All reported
vertex and arc counts only refer to the forward search. We evaluate several algorithmic variants.
Each variant is composed of an input graph, a contraction order, and whether a witness search is
used. “+w” means that a (non-perfect) witness search is used, whereas “-w” means that no witness
search is used. “greedy+w” corresponds to the original CHs. The metrics used for the non-greedy
CHs are directed and maximum.

Visited search space Stalling Time

Instance Metric Variant Algorithm # Vertices # Arcs # Vertices # Arcs [µs]

K
a
rl

sr
u

h
e T

ra
ve

l-
T

im
e

Greedy+w
Basic 81 370 — — 17
Stalling 43 182 167 227 16

Metis-w
Basic 138 5 594 — — 62
Stalling 104 4 027 32 4 278 67
Tree 164 6 579 — — 33

KaHIP-w
Basic 120 4 024 — — 48
Stalling 93 3 051 26 3 244 55
Tree 143 4 723 — — 25

D
is

ta
n

ce

Greedy+w
Basic 208 1978 — — 57
Stalling 69.5 559 46 759 35

Metis-w
Basic 142 5 725 — — 65
Stalling 115 4 594 26 4 804 75
Tree 164 6 579 — — 33

KaHIP-w
Basic 123 4 117 — — 50
Stalling 106 3 480 17 3 564 59
Tree 143 4 723 — — 26

E
u

ro
p

e

T
ra

ve
l-

T
im

e

Greedy+w
Basic 546 3 623 — — 283
Stalling 113 668 75 911 107

Metis-w
Basic 1 126 405 367 — — 2 838
Stalling 719 241 820 398 268 499 2 602
Tree 1 291 464 956 — — 1 496

KaHIP-w
Basic 581 107 297 — — 810
Stalling 418 75 694 152 77 871 857
Tree 652 117 406 — — 413

D
is

ta
n

ce

Greedy+w
Basic 3 653 104 548 — — 2 662
Stalling 286 7 124 426 11 500 540

Metis-w
Basic 1 128 410 985 — — 3 087
Stalling 831 291 545 293 308 632 3 128
Tree 1 291 464 956 — — 1 520

KaHIP-w
Basic 584 108 039 — — 867
Stalling 468 85 422 113 87 315 1 000
Tree 652 117 406 — — 426

D2.4: Page 33 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 21: Detailed elimination tree performance. We report running time in microseconds for the
elimination-tree-based query algorithms. We report the time needed to compute the LCA, the
time needed to reset the tentative distances, the time needed to relax the arcs, the total time of
a distance query, and the time needed for full path unpacking as well as the average number of
vertices on such a path (which is metric-dependent).

Distance query Path

LCA Reset Arc relax Total Unpack Length
[µs] [µs] [µs] [µs] [µs] [vert.]

Karlsruhe
Travel-Time

Metis 0.6 0.8 31.3 33.0 20.5
189.6

KaHIP 0.6 1.4 23.1 25.2 18.6

Distance
Metis 0.6 0.8 31.5 33.2 27.4

249.4
KaHIP 0.6 1.4 23.5 25.7 24.7

Europe
Travel-Time

Metis 4.6 19.0 1471.2 1496.3 323.9
1390.6

KaHIP 3.4 9.9 399.4 413.3 252.7

Distance
Metis 4.7 19.0 1494.5 1519.9 608.8

3111.0
KaHIP 3.6 10.0 411.6 425.8 524.1

Table 22: Customization and query performance on the Europe road network instance using dif-
ferent metrics. Node order was obtained using KaHIP. Customization uses SSE, precomputed tri-
angles, and 16 threads. Queries use the elimination tree-based algorithm and are single-threaded.
We report average performance figures. Query source and destination are sampled uniformly at
random; this implies expected long-distance paths. Performance of local queries, e. g., within a city,
will be much faster.

Query

Customization Visited search space Time
Network Metric Time [s] # Vertices # Arcs [ms]

Europe Travel-Time 0.744 652 117 406 0.413
Europe Distance 0.736 652 117 406 0.426
Europe Emissions 0.742 652 117 406 0.422

same factor. However, a perfect customization is slower by a factor of ≈3 (c. f. Table 19). In total,
combining ND-orders and perfect witness search yields another Pareto-optimal trade-off between
customization time and query time.

4.1.7 Optimizing Eco-friendliness

Our experiments so far show that the performance of our route planning approach is very robust
with respect to the metric used. In the following, we will confirm this observation by applying our
techniques on the computation of emission-optimal routes. We augmented our Europe road network
with emission data by considering, as in Section 3.3.4, a 5-door Diesel Opel Astra with an average
fuel-consumption of 4.2 l/100 km. We considered well-to-wheels greenhouse gas emissions calculated
as CO2 equivalents, for which we obtained a factor of 3.24 kg CO2e/l from EN 16258:2012.

For the resulting emission metric, we reran our customization and query experiments. More
specifically, we based customization on the nested dissection order (c. f. Deliverable D2.2.1, Sec-
tion 4.4) computed by KaHIP and employed the fastest customization variant available, enabling
precomputed triangles, SSE, and multi-core parallelization with 16 threads (c. f. D2.2.1, Sec-

D2.4: Page 34 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

tion 4.7). For the query algorithm we used our elimination tree query variant (c. f. D2.2.1, Sec-
tion 4.8.3).

Table 22 summarizes the results. For comparison, we repeat figures for travel-time and distance
metric from experiments above. Since both our customization algorithm and the elimination-
tree-based query algorithm operate on the input graph in an order independent of the metric
used, the results are not that surprising. One can see that timings for customization and queries
for optimizing eco-friendly routes are almost identical to those of travel-time optimal or distance
optimal routes, except for small measurement uncertainties. Again, customization is done in below
one second, an average random query in below one millisecond. Indeed, the operations count for
the elimination-tree-based query is identical. Clearly, we can gradually increase the complexity of
the emissions model, e. g., by also taking driving speed and slopes into account, without degrading
query performance results as long as the metric is scalar per edge after customization.

The proposed workflow in a production system would then be: When generating a new map
release (e. g., every three months), run the metric-independent preprocessing of the node order.
When a user logs into the service or changes her preferences, run the metric-dependent customization
in below one second. To account for the current traffic situation, either re-run full customization
in below one second or apply our partial update algorithm for only the changed road segments for
an average runtime of below a millisecond (c. f. Table 18). After customization, even long-distance
queries can be answered in below a millisecond on average.

Excursion on electric vehicles. These observations do not hold for functional metrics, e. g.,
when considering time-dependency (where edge travel-time is a function of the time-of-day) or
energy-optimal routes for electric vehicles (where edge consumption is a function of the current state
of charge). However, in eCOMPASS-TR-028, we have successfully applied comparable algorithmic
techniques (i. e., a variant of CRP [41]) to the scenario of electric vehicles. Table 23 reports key
results, showing that comparable query speeds can be achieved for energy-optimal electric vehicle
route planning. Please see the TR for more details.

We also compared energy-optimal routes to those that optimize travel time and distance metric,
respectively. We used the same 10 000 queries as in Table 23, but only evaluated those where the
target was reachable (85 % for Europe PG-16, 86 % for Europe EV-85, and 100 % for Japan DH-∞).
Table 24 shows results for all instances. For each metric, we report the percentage of queries that
become unreachable when considering travel time and distance; the extra energy spent when using
the quickest and shortest route (instead of the energy-optimal one); and the extra time and distance
required when using the energy-optimal route. Note that travel times were not available for Japan
DH-∞, therefore, we only evaluated the distance metric on this instance.

As the driving speed has a huge impact on the energy consumption, minimizing the travel time
greatly reduces range. Consequently, more than half of the targets reachable on an energy-optimal
route become unreachable when taking the quickest route. Even if the target is reachable in both
cases, optimizing one criterion greatly increases the other. This effect becomes less significant when
comparing energy consumption to distance. This indicates that there is a correlation between
energy consumption and driving distance. However, since there are many other factors—such as
road type and slope—that influence energy consumption, minimizing travel distance still fails to
reach the target in more than 20 % of the queries.

5 Alternative Route Planning

5.1 Introduction

Route planning services – offered by web-based, hand-held, or in-car navigation systems – are
heavily used by more and more people. Typically, such systems (as well as the vast majority of
route planning algorithms) offer a best route from a source (origin) s to a target (destination) t,

D2.4: Page 35 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Table 23: Evaluating our algorithms on both vehicle instances: A Peugeot iOn with a 16 kWh
battery (Europe PG-16) and an artificial vehicle with a 85 kWh battery (Europe EV-85). We also
report figures on an instance from [49]: It uses the geographical distance and height difference of
the arcs to model consumption and assumes unlimited capacity. This table is reproduced from
ECOMPASS-TR-028, where a more detailed description is available.

Europe PG-16 Europe EV-85 Japan DH-∞

Customizing Queries Customizing Queries Customizing Queries

Space Time Vertex Time Space Time Vertex Time Space Time Vertex Time
Algorithm [B/n] [s] Scans [ms] [B/n] [s] Scans [ms] [B/n] [s] Scans [ms]

Uni-MLD-PH 13.6 4.32 941 0.5 14.5 5.12 2 410 1.9 7.7 2.06 2 205 1.0
BPE-MLD-PH 13.6 4.32 929 0.3 14.5 5.12 2 266 1.4 7.7 2.06 2 198 0.8
BDB-MLD-PH 13.6 4.32 1 203 0.3 14.5 5.12 2 917 1.1 7.7 2.06 2 711 0.7

Table 24: Comparison of energy-optimal routes to routes that minimize either travel time or dis-
tance. This table is reproduced from ECOMPASS-TR-028, where a more detailed description is
available.

Travel Time Distance

Extra Extra Extra Extra
Instance Unr. Energy Time Unr. Energy Dist.

Europe PG-16 54 % 41 % 46 % 21 % 11 % 5 %
Europe EV-85 60 % 62 % 63 % 25 % 15 % 4 %
Japan DH-∞ — — — 0 % 25 % 11 %

under a single criterion (usually distance or time). Quite often, however, computing only one such
s-t route may not be sufficient, since humans would like to have choices and every human has also
his/her own preferences. These preferences may well vary and depend on specialized knowledge or
subjective criteria (like or dislike certain part of a road), which are not always practical or easy
to obtain and/or estimate on a daily basis. Therefore, a route planning system offering a set of
good/reasonable alternatives can hope that (at least) one of them can satisfy the user, and vice
versa, the user can have them as back-up choices for altering his/her route in case of emergent
traffic conditions. This can be particularly useful in several cases. For example, when the user
has to choose the next optimal alternative path, because in the current one, adverse incidents are
occurred, like traffic jams, accidents or permanent unavailability due to construction work.

The aggregation of alternative paths between a source s and a target t can be captured by the
concept of the Alternative Graph (AG), a notion first introduced in [63]. Storing paths in an AG
makes sense, because in general alternative paths may share common nodes (including s and t) and
edges. Furthermore, their subpaths may be combined to form new alternative paths.

In general, there may be several alternative paths from s to t. Hence, there is a need for
filtering and rating all alternatives, based on certain quality criteria. The study in [63] quantified
the quality characteristics of an alternative graph (AG), captured by three criteria. These concern
the non-overlappingness (totalDistnace) and the stretch (averageDistnace) of the routes, as well
as the number of decisionEdges (sum of node out-degrees) in AG. For more details, see Deliverable
D2.2. As it is shown in [63], all of them together are important in order to produce a high-quality
AG. However, optimizing a simple objective function combining just any two of them is already an
NP-hard problem [63]. Hence, one has to concentrate on heuristics. Four heuristic approaches were
investigated in [63] with those based on Plateau [61], Penalty [64], and a combination of them to
be the best.

D2.4: Page 36 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

In this deliverable, for the sake of completeness, we present our final improved methods for
computing a set of alternative source-to-destination routes in road networks in the form of an
alternative graph, which appear to be more suitable for practical navigation systems [62, 67].
These methods appeared in [69]. The resulting alternative graphs are characterized by minimum
path overlap, small stretch factor, as well as low size and complexity. Our approach improves upon
a previous one by introducing a new pruning stage preceding any other heuristic method and by
introducing a new filtering and fine-tuning of two existing methods.

We extend the approach in [63] for building AGs in two directions. First, we introduce a pruning
stage that precedes the execution (and it is independent) of any heuristic method, thus reducing
the search space and hence detecting the nodes on shortest routes much faster. Second, we provide
several improvements on both the Plateau and Penalty methods. In particular, we use a different
approach for filtering plateaus in order to identify the best plateaus that will eventually produce
the most qualitative alternative routes, in terms of minimum overlapping and stretch. We also
introduce a practical and well-performed combination of the Plateau and Penalty methods with
tighter lower-bounding based heuristics. This has the additional advantage that the lower bounds
remain valid for use even when the edge costs are increased (without requiring new preprocessing),
and hence are useful in dynamic environments where the travel time may be increased, for instance,
due to traffic jams.

Finally, we conducted an experimental study for verifying our methods on several road networks
of Western Europe. Our experiments showed that our methods can produce AGs of high quality
pretty fast.

The rest of this section is organized as follows. In subsection 5.2, we provide the main background
information, from Deliverable 2.2. In subsection 5.3, we present our proposed improvements for
producing AGs of better quality. In subsection 5.4, we report a thorough experimental evaluation
of our improved methods. In subsection 5.5, we demonstrate some of the visualized results we got
with our alternative route planning implementation.

5.2 Preliminaries

A road network can be modeled as a directed graph G = (V,E), where each node v ∈ V represents
intersection points along roads, and each edge e ∈ E represents road segments between pairs of
nodes. Let |V | = n and |E| = m and d(u, v) ≡ dG(u, v) be the shortest distance from u to v in
graph G.

We consider the problem of tracing alternative paths from a source node s to a target node t
in G, with edge weight or cost function w : E → R+. The essential goal is to obtain sufficiently
different paths with optimal or near optimal cost. We proceed with the definitions of an alternative
graph and its quality indicators.

Alternative Graph. Formally, an AG H = (V ′, E′) [63] is a graph, with V ′ ⊆ V , and such
that for all e = (u, v) ∈ E′, there is a Puv path in G and a Pst path in H, so that e ∈ Pst and
w(e) = w(Puv), where w(Puv) denotes the weight or cost of path Puv. Let dH(u, v) be the shortest
distance from u to v in graph H.

Quality indicators. For filtering and rating the alternatives in an AG, we use the following
indicators, as in [63]:

totalDistance =
∑

e=(u,v)∈E′

w(e)

dH(s, u) + w(e) + dH(v, t)
(overlapping)

averageDistance =

∑
e∈E′ w(e)

dG(s, t) · totalDistance
(stretch)

decisionEdges =
∑

v∈V ′\{t}

(outdegree(v)− 1) (size of AG)

D2.4: Page 37 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

In the above definitions, the totalDistance measures the extend to which the paths in AG are non-
overlapping. Its maximum value is decisionEdges+1. This is equal to the number of all s-t paths
in AG, when these are disjoint, i.e. not sharing common edges.

The averageDistance measures the average cost of the alternatives compared with the shortest
one (i.e. the stretch). Its minimum value is 1. This occurs, when every s-t path in AG has the
minimum cost.

The decisionEdges measures the size complexity of AG. In particular, the number of the alter-
native paths in AG, depend on the “decision branches” are in AG. For this reason, as high the
number o decisionEdges, the more confusion is created to a typical user, when he tries to decide his
route. Therefore, it should be bounded.

Consequently, to compute a qualitative AG, one aims at high totalDistance and low averageDis-
tance. Examples of the use of the above quality indicators can be found in Deliverable D2.2.

5.3 Our Improvements

In Deliverable 2.2, we reviewed the previous approaches for computing alternative graphs, and
briefly highlighted our improved methods. In this deliverable, we present in detail these improved
methods by extending the Plateau and Penalty approaches. Our improvements are twofold :

A) We introduce a pruning stage that precedes the Plateau and Penalty methods in order to
a-priori reduce their search space without sacrificing the quality of the resulted alternative
graphs.

B) We use a different approach for filtering plateaus in order to obtain the ones that generate the
best alternative paths. In addition, we fine tune the penalty method, by carefully choosing
the penalizing factors on the so far computed Pst paths, in order to trace the next best
alternatives.

5.3.1 Pruning

We present two bidirectional Dijkstra-based pruners. The purpose of both of them, is to identify
the nodes that are in Pst shortest paths. We refer to such nodes, as the useful search space, and
the rest ones, as the useless search space. Our goal, through the use of search pruners, is to ensure:
(a) a more quality-oriented build of the AG and (b) a reduced dependency of the time computation
complexity from graph size. The latter is necessary, in order to acquire fast response on queries.
We note that the benefits are notably for the Penalty method. This is because, the Penalty method
needs to run iteratively several s-t shortest path queries. Thus, having put aside the useless nodes
and focussing only on the useful ones, we can get faster processing. We also note that, over the
Pst paths with the minimum cost, it may be desired as well to let in AG paths with near optimal
cost, say τ · ds(t), which will be the maximum acceptable cost w(Pst). Indicatively, 1 6 τ 6 1.4.
Obviously, nodes far away from both s and t, with ds(v) + dt(v) > τ · ds(t), belong to Pst paths
with prohibitively high cost. In the following we provide the detailed description of both pruners,
which are illustrated in Figures 8 and 9.

D2.4: Page 38 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 8: The forward and backward searches meet each other. In this phase the minimum distance
ds(t) is traced.

Figure 9: The forward and backward settles only the nodes in the shortest paths, taking account
of the overall ds(v) + dt(v).

Uninformed Bidirectional Pruner. In this pruner, there is no preprocessing stage. Instead,
the used heuristics are obtained from the minimum distances of the nodes enqueued in Qf and Qb,
i.e. Qf .minKey() = minu∈Qf

{ds(u)} and Qb.minKey() = minv∈Qb
{dt(v)}.

We extend the regular bidirectional Dijkstra, by adding one extra phase. First, for computing the
minimum distance ds(t), we let the expansion of forward and backward search until Qf .minKey()+
Qb.minKey() ≥ ds(t). At this step, the current forward Tf and backward Tb shortest path trees
produced by the bidirectional algorithm will have crossed each other and so the minimum distance
ds(t) will be determined. Second, at the new extra phase, we continue the expansion of Tf and
Tb in order to include the remaining useful nodes, such that ds(v) + dt(v) ≤ τ · ds(t), but with a
different mode. This time, we do not allow the two searches to continue their exploration at nodes
v that have ds(v) + ht(v) or hs(v) + dt(v) greater than τ · ds(t). We use the fact that Qf and Qb
can provide lower-bound estimates for hs(v) and ht(v). Specifically, a node that is not settled or
explored from backward search has as a lower bound to its distance to t, ht(v) = Qb.minKey().
This is because the backward search settles the nodes in increasing order of their distance to t, and
if u has not been settled then it must have dt(u) ≥ Qb.minKey(). Similarly, a node that is not
settled or explored from forward search has a lower bound hs(v) = Qf .minKey(). Furthermore,
when a search settles a node that is also settled from the other search we can calculate exactly the
sum ds(u) + dt(u). In this case, the higher the expansion of forward and backward search is, the
more tight the lower bounds become. The pruning is ended, when Qf and Qb are empty.

D2.4: Page 39 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Before the termination, we exclude the remaining useless nodes that both searches settled during
the pruning, that is all nodes v with ds(v) + dt(v) > τ · ds(t).
Informed ALT bidirectional pruner. In the second pruner, our steps are similar, except that
we use tighter lower bounds. We acquire them in a one-time preprocessing stage, using the ALT
approach. In this case, the lower bounds that are yielded can guide faster and more accurately
the pruning of the search space. We compute the shortest distances between the nodes in G and
a small set of landmarks. For tracing the minimum distance ds(t), we use BLA as base algorithm,
which achieves the lowest waste exploration, as experimental results showed in [66, 68]. During the
pruning, we skip the nodes that have ds(v) + ht(v) or hs(v) + dt(v) greater than τ · ds(t).

The use of lower-bounding heuristics can be advantageous. In general, a heuristic stops being
valid when a change in the weight of the edges occurs. But note that in the penalty method, we
consider only increases on the edge weights and therefore this does not affect the lower bounds on
the shortest distances. Therefore, the combination of the ALT speedup [68, 66] with Penalty is
suitable. However, depending on the number and the magnitude of the increases the lower bounds
can become less tight for the new shortest distances, leading to a reduced performance on computing
the shortest paths.

5.3.2 Filtering and Fine-tuning

Over the standard processing operations of Penalty and Plateau, we introduce new ones for obtain-
ing better results. In particular:

Plateau. We use a different approach on filtering plateaus. Specifically, over the cost of a plateau
path we take into account also its non-overlapping with others. In this case, the difficulty is that
the candidate paths may share common edges or subpaths, so the totalDistance is not fixed.
Since at each step an insertion of the current best alternative path in AG may lead to a reduced
totalDistance for the rest candidate alternatives, primarily we focus only on their unoccupied
parts, i.e., those that are not in AG. We rank a x-y plateau P with rank = totalDistance −
averageDistance, where totalDistance = w(P)

ds(x)+w(P)+dt(y)
is its definite non-overlapping degree,

and averageDistance = w(P)+ds(t)
(1+totalDistance)·ds(t) is its stretch over the shortest s-t path in G. During

the collection of plateaus, we insert the highest ranked of them via its node-connectors v ∈ P in Tf
and Tb to a min heap with fixed size equal to decisionEdges plus an offset. The offset increases the
number of the candidate plateaus, when there are available, and it is required only as a way out,
in the case, where several Pst paths via the occupied plateaus in AG lead to low totalDistance for
the rest Pst paths via the unoccupied plateaus.

Penalty. When we “penalize” the last computed Pst path, we adjust the increases on the weights
of its outgoing and incoming edges, as follows:

wnew(e) = w(e) + (0.1 + r · ds(u)/ds(t)) · wold(e), ∀e = (u, v) ∈ E : u ∈ Pst, v /∈ Pst
wnew(e) = w(e) + (0.1 + r · dt(v)/dt(s)) · wold(e), ∀e = (u, v) ∈ E : u /∈ Pst, v ∈ Pst

The first adjustment puts heavier weights on those outgoing edges that are closer to the target t.

The second adjustment puts heavier weights on those incoming edges that are closer to the source
s. The purpose of both is to reduce the possibility of recomputing alternative paths that tend to
rejoin directly with the previous one traced.

An additional care is given also for the nodes u in Pst, having outdegree(u) > 1. Note that their
outgoing edges can form different branches. Since the edge-branches in G constitute generators
for alternative paths, they are important. These edges are being inserted to AG with a greater
magnitude of weight increase than the rest of the edges.

The insertion of the discovered alternative paths in G and the maintenance of the overall quality
of AG should be controlled online. Therefore, we establish an online interaction with the AG’s

D2.4: Page 40 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

quality indicators, described in subsection 5.2, for both Plateau and Penalty. This is also necessary
because at each step an insertion of the current best alternative may lead to a reduced value of
totalDistance for the next candidate alternative paths that share common edges with the already
computed AG.

In order to get the best alternatives, we seek to maximize the targetfunction = totalDistance−
α · averageDistance, where α is a balance factor that adjusts the stretch magnitude rather than
the overlapping magnitude. Maximization of the target function leads to select the best set of low
overlapping and shortest alternative paths.

Since the penalty method can work on any pre-computed AG, it can be combined with Plateau.
In this way, we collect the best alternatives from Penalty and Plateau, so that the resulting set of
alternatives maximizes the target function. In this matter, we can extend the number of decision
edges and after the gathering of all alternatives, we end by performing thinout in AG. Moreover,
in order to guide the Penalty method to the remaining alternatives, we set a penalty on the paths
stored by Plateau in AG, by increasing their weights. We also use the same pruning stage to
accommodate both of them.

5.4 Experimental Results

The experiments were conducted on an Intel(R) Xeon(R) Processor X3430 @ 2.40GHz, with a cache
size of 8Mb and 32Gb of RAM. Our implementations were written in C++ and compiled by GCC
version 4.6.3 with optimization level 3.

The data sets of the road networks in our experiments were acquired from OSM [59] and TomTom
[60]. The weight function is the travel time along the edges. In the case of OSM, for each edge, we
calculated the travel time based on the length and category of the roads (residential street, tertiary,
secondary, primary road, trunk, motorway, etc). The data set of the Greater Berlin area was kindly
provided by TomTom in the frame of the eCOMPASS project [62]. The size of the data sets are
reported in Table 25.

In the rest of this section we first report on the performance of our algorithms and then on their
eco-footprint.

map n m

B Berlin 117,839 310,152

LU Luxembourg 51,576 119,711
BE Belgium 576,465 1,376,142
IT Italy 2,425,667 5,551,700
GB GreatBritain 3,233,096 7,151,300
FR France 4,773,488 11,269,569
GE Germany 7,782,773 18,983,043
WE WesternEurope 26,498,732 62,348,328

Table 25: The size of road networks, where n denotes the number of nodes and m denotes the
number of edges.

5.4.1 Performance

For our implementations, we used the packed-memory graph (PMG) structure [68]. This is a highly
optimized graph structure, part of a larger algorithmic framework, specifically suited for very large
scale networks. It provides dynamic memory management of the graph and thus the ability to
control the storing scheme of nodes and edges in memory for optimization purposes. It supports
almost optimal scanning of consecutive nodes and edges and can incorporate dynamic changes in
the graph layout in a matter of µs. The ordering of the nodes and edges in memory is in such a

D2.4: Page 41 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

way that increases the locality of references, causing as few memory misses as possible and thus a
reduced running time for the used algorithms.

We tested our implementations in the road network of the Greater Berlin area, the Western
Europe (Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, and Great Britain), as well as in the network of each indi-
vidual West European country. In the experiments, we considered 100 queries, where the source
s and the destination t were selected uniformly at random among all nodes. For the case of the
entire Western European road network, the only limitation is that the s-t queries are selected, such
that their geographical distance is at most 300 kilometers. This was due to the fact that although
modern car navigation systems may store the entire maps, they are mostly used for distances up
to a few hundred kilometers.

For far apart source and destination, the search space of the alternative Pst paths gets too
large. In such cases, it is more likely that many non-overlapping long (in number of edges) paths
exist between s and t. Therefore, this has a major effect on the computation cost of the overall
alternative route planning. In general, the number of non-overlapping shortest paths depends on
the density of the road networks as well on the edge weights.

There is a trade-off between the quality of AG and the computation cost. Thus, we can sacrifice
a bit of the overall quality to reduce the running time. Consequently, in order to deal with the
high computation cost of the alternative route planning for far apart sources and destinations we
can decrease the parameter τ (max stretch). A dynamic and online adjustment of τ based on the
geographical distance between source and target can be used too. For instance, at distance larger
than 200km, we can set a smaller value to τ , e.g. close to 1, to reduce the stretch and thereby the
number of the alternatives. We adopted this arrangement on large networks (Germany, Western
Europe). For all others, we set τ = 1.2, which means that any traced path has cost at most 20%
larger than the minimum one. To all road networks, we also set averageDistance ≤ 1.1 to ensure
that, in the filtering stage, the average cost of the collected paths is at most 10% larger than the
minimum one.

In order to fulfill the ordinary human requirements and deliver an easily representable AG, we
have bounded the decisionEdges to 10. In this way, the resulted AG has small size, |V ′| � |V | and
|E′| � |E|, thus making it easy to store or process. Our experiments showed that the size of an
AG is at most 3 to 4 times the size of a shortest s-t path, which we consider as a rather acceptable
solution.

Our base target function 6 in Plateau and Penalty is totalDistance − averageDistance + 1.
Regarding the pruning stage of Plateau and Penalty, we have used the ALT-based informed bidi-
rectional pruner with at most 24 landmarks for Western Europe.

In Tables 26, 27, and 28, we report the results of our experiments on the various quality in-
dicators: targetFunction (TargFun), totalDistance (TotDist), averageDistance (AvgDist) and deci-
sionEdges (DecEdges). The values in parentheses in the header columns provide only the theoreti-
cally maximum or minimum values per quality indicator, which may be far away from the optimal
values (that are based on the road network and the s-t queries).

In Tables 26, 27, and 28, we report the average value per indicator. The overall execution time
for computing the entire AG is given in milliseconds. As we see, we can achieve a high-quality AG
in less than a second even for continental size networks. The produced alternative paths in AG are
directly-accessible for use (e.g., they are not stored in any compressed form).

Due to the limitation on the number of the decision edges in AG and the low upper bound in
stretch, we have chosen in the Penalty method small penalty factors, p = 0.1 and r = 0.1. In addi-
tion, this serves in getting better low-stretch results, see Table 27. In contrast, the averageDistance
in Plateau gets slightly closer to the 1.1 upper bound.

In our experiments, the Penalty method clearly outperforms Plateau on finding results of higher

6We have been very recently informed [65] that this is the same target function as the one used in [63] and not
the erroneously stated totalDistance− averageDistance in that paper.

D2.4: Page 42 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

quality. However it has higher computation cost. This is reasonable because it needs to perform
around to 10 shortest s-t path queries. The combination of Penalty and Plateau is used to extract
the best results of both of the methods. Therefore in this way the resulted AG has better quality
than the one provided by any individual method. In Tables 26, 27, and 28, we also report on the
TargFun quality indicator of the study in [63]. The experiments in that study were run only on the
LU and WE networks, and on data provided by PTV, which concerned smaller (in size) networks
and which may be somehow different from those we use here [59]. Nevertheless, we put the TargFun
values in [63] as a kind of reference for comparison.

map
TargFun TotDist AvgDist DecEdges Time

(max:11) in [63] (max:11) (min:1) (max:10) (ms)

B 3.82 - 3.91 1.09 9.95 45.61

LU 4.44 3.05 4.49 1.05 9.73 37.05
BE 4.83 - 4.87 1.04 10.00 85.08
IT 4.10 - 4.14 1.04 9.92 114.29
GB 4.36 - 4.40 1.04 9.93 180.12
FR 4.22 - 4.26 1.04 9.97 159.93
GE 4.88 - 4.92 1.04 10.00 286.40
WE 4.35 3.08 4.37 1.02 9.88 717.57

Table 26: The average quality of the resulted AG via Plateau method.

map
TargFun TotDist AvgDist DecEdges Time

(max:11) in [63] (max:11) (min:1) (max:10) (ms)

B 4.16 - 4.23 1.07 9.92 49.34

LU 5.14 2.91 5.19 1.05 9.23 41.56
BE 5.29 - 5.33 1.04 9.54 159.71
IT 4.11 - 4.14 1.03 9.47 105.84
GB 4.38 - 4.41 1.03 9.87 210.94
FR 4.11 - 4.16 1.05 9.32 192.44
GE 5.42 - 5.46 1.04 9.91 388.97
WE 5.21 3.34 5.24 1.03 9.67 776.97

Table 27: The average quality of the resulted AG via Penalty method.

map
TargFun TotDist AvgDist DecEdges Time

(max:11) in [63] (max:11) (min:1) (max:10) (ms)

B 4.55 - 4.61 1.06 9.97 54.12

LU 5.25 3.29 5.30 1.05 9.81 43.69
BE 5.36 - 5.41 1.05 9.89 163.75
IT 4.37 - 4.41 1.04 9.79 178.08
GB 4.67 - 4.71 1.04 9.86 284.38
FR 4.56 - 4.60 1.04 9.86 217.30
GE 5.50 - 5.54 1.04 9.89 446.38
WE 5.49 3.70 5.52 1.03 9.94 987.42

Table 28: The average quality of the resulted AG via the combined Penalty and Plateau method.

We would like to note that if we allow a larger value of τ (up to 1.2) for large networks (e.g., WE)

D2.4: Page 43 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

and for s-t distances larger than 300km, then we can achieve higher quality indicators (intuitively,
this happens due to the many more alternatives in such a case). Indicative values of quality
indicators for WE are reported in Table 29, 30.

map WE TargFun TotDist AvgDist DecEdges Time(ms)
Plateau 4.57 4.59 1.02 10.00 1564.28
Penalty 4.36 4.38 1.02 9.95 2588.31

Plateau & Penalty 6.29 6.31 1.02 9.97 2692.56

Table 29: Random alternative route queries in the road network of Western Europe, with geograph-
ical distance up to 400km.

map WE TargFun TotDist AvgDist DecEdges Time(ms)
Plateau 4.71 4.73 1.02 10.00 2171.13
Penalty 4.78 4.80 1.02 9.97 3536.76

Plateau & Penalty 6.46 6.48 1.02 9.98 3806.92

Table 30: Alternative route queries in the road network of Western Europe, with geographical
distance up to 500km.

5.4.2 Eco-Footprint Evaluation

The eco-footprint of the routes provided by the alternative graph are computed considering an
average private car, in particular a 5-door Opel-Astra, which has an average fuel-consumption of
4.2 litres/ 100 km. Based on the information provided by the EN 16258:2012 – Methodology for
Calculation and Declaration of Energy Consumption and GHG Emissions of Transport Services
(Freight and Passenger), published by CEN7, the greenhouse gas (GHG) emissions were computed
as CO2 equivalents (CO2e), and specifically the well-to-wheels value, measured as kg CO2e / km
(see Table 7).

Since the fuel-consumption of the vehicle is considered to be an average value, the amount of
the resulting CO2 emissions depends solely on the length of the computed route. As a result, we
adopt the GHG emissions of the shortest path with respect to the distance (rather than travel-time)
metric, from a source s to a destination t, as the baseline in our experiments.

For each alternative graph we compute the average eco-footprint for all routes that they are
included in it. The corresponding optimal distance-based st-route is of course expected to provide
the minimum eco-footprint (free flow mode), but on the other hand it is typically a suboptimal
route with respect to travel-times. The average deviation of the eco-footprint for an alternative
graph (from s to t) is compared with respect to this baseline GHG emission, and it is provided for
all the alternative path routing algorithms of this section that we experimentally tested. In all our
experiments we consider Diesel to be the type of fuel used by the vehicle, which means that the
well-to-wheel value is gw = 3.24CO2e. In each case, the computation of the total CO2e emissions
of a path p is computed by the formula:

CO2e(p) = total fuel consumption · gw = distance(p) · fuel consumption per km · gw

Table 31 demonstrates the comparison on the eco-footprint quality of the resulted altenative graphs.
We observe that Penalty achieves better average eco-footpint. This is mainly due to the fact that
it prevents averageDistance to get high. On the other hand, Plateau produces longer paths and
therefore its resulted eco-footpint gets worse.

7http://www.transport2020.org/newsitem/cen-publishes-european-standard-for-calculation-of-ghg-emissions

D2.4: Page 44 of 64

http://www.transport2020.org/newsitem/cen-publishes-european-standard-for-calculation-of-ghg-emissions

FP7-ICT-2011-7 288094 - eCOMPASS

map Plateau Penalty Plateau & Penalty

B 23.83 / 9.90% 18.51 / 7,69% 20.81 / 8,65%

BE 13.69 / 5.03% 10.53 / 3,87% 11.21 / 4,12%
IT 21.85 / 6.31% 14.68 / 4,22% 16.24 / 4,79%
GB 19.95 / 5.58% 12.11 / 3,39% 14.15 / 3,86%
FR 20.81 / 5.82% 13.81 / 3,86% 15.94 / 4,46%
GE 20.27 / 4.36% 15.20 / 3,27% 16.34 / 3,51%
WE 22.10 / 5.64% 19.11 / 4,88% 20.45 / 5,22%

Table 31: Average Eco-footprint (CO2e emissions) and Deviation(%) from optimal Eco-footprint
using Penalty, Plateau and their combination.

5.5 Visualization of Alternative Graphs

In Figures 10, 11, 12 and 13, we demonstrate some of the visualized results 8 we got with our
alternative route planning implementation.

Figure 10: Improved Penalty method. Shape of AG in Italy.

8The images produced by Google Maps © mapping service.

D2.4: Page 45 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 11: Improved combination of Penalty and Plateau methods. Shape of AG in France.

Figure 12: Improved Plateau method. Shape of AG in Spain.

D2.4: Page 46 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 13: Improved combination of Penalty and Plateau methods. Shape of AG in Berlin.

6 Robust Route Planning

6.1 Introduction

Given two places in a road network, the standard goal in route planning is to compute a quickest
route between them. This task can be modeled as the well-known shortest path problem: the road
network is represented by a graph with vertices corresponding to crossings, edges corresponding to
roads connecting the crossings, and the goal is to find a shortest path with respect to edge weights
that typically correspond to travel time estimates. However, when a computed route is traveled in
reality, the travel time is influenced by various factors such as the weather, the traffic situation, the
amount of road work along the route, and so on. Some of these factors can be taken into account
by replacing static edge weights with time-dependent ones. The problem becomes then to find a
time-dependent shortest path, usually referred to as the quickest path problem. Unfortunately, not
everything can be modeled easily using time-dependency. A typical example is given by factors that
appear often but not regularly, like traffic congestions. In the presence of such factors, one often
seeks robust routes instead of just fast ones. In loose terms, the quality of a robust route is given
by both the average and the variance of its travel time in the typical traffic situations. A slower
road through the countryside that hardly sees a car per day might in this sense be considered more
robust than a fast highway that is often congested.

Within the project, we follow the approach proposed by Buhmann et al. [51] for finding robust
solutions of general optimization problems. Applied to the quickest path problem, the method
works as follows.

Let G = (V,E) be a directed graph with edge weights w : E × T → N defined for a given time
horizon T . A path P is a sequence 〈v1, ..., vk〉 of vertices vi ∈ V , 1 ≤ i ≤ k, where (vi, vi+1) ∈ E
for i = 1, ..., k − 1, and P is called a simple path iff vi 6= vj for each i 6= j. We overload the weight
function w to express the travel time of a path P = 〈v1, ..., vk〉 departing at time τ ∈ T as

w(P, τ) =
0 if k = 1
w((v1, v2), τ) if k = 2
τ ′ + w((vk−1, vk), τ + τ ′) otherwise,

where τ ′ = w(〈v1, ..., vk−1〉, τ) is the travel time of P without the last hop. Note that in the above
definition we do not allow waiting at vertices even though it could be beneficial if the weight of an

D2.4: Page 47 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

edge decreases dramatically over time. However, in road networks this is not the case.
The approach by Buhmann et al. [51] assumes that an unknown problem generator PG generates

related instances that differ due to noise. Nothing is known about the noise or PG itself, and all we
are given are two instances I1 and I2 (i.e., concrete travel times for a given time period) generated
by PG. For i ∈ {1, 2}, the travel times of Ii are given by a weight function wi : E × T → N. The
goal is to compute a robust solution that is likely to be good for a future (yet unknown) instance I3
from PG. This model fits quite naturally with the quickest path problem under uncertainty where
instances represent the traffic situation on different days. For example, we could be given the travel
times for last Monday and Monday two weeks ago, and our wish is to plan a robust route for next
Monday.

Since nothing is known about the underlying noise, it is a natural choice to consider only paths
that are good for both I1 and I2. From the set of all s-t paths P we compute the approximation
sets Aρ(I1) and Aρ(I2) where, for i ∈ {1, 2}, departure time τ ∈ T and a suitable value ρ ≥ 1 (we
explain the meaning of “suitable” later on),

Aρ(I) := {P ∈ P | wi(P, τ) ≤ ρ ·OPTI } ,
OPTI := min

P∈P
wi(P, τ).

We then pick a path at random from the intersection Aρ(I1) ∩ Aρ(I2) of the two approximation
sets. As a “suitable” ρ, Buhmann et al. propose to choose the value that maximizes

|Aρ(I1) ∩Aρ(I2)|
|Aρ(I1)| · |Aρ(I2)|

. (2)

During an extensive evaluation of this approach [52], we observed that the value of ρ maximizing
(2) most often corresponds, at least on the data provided by TomTom for the project eCOMPASS, to
the first value for which the intersection Aρ(I1)∩Aρ(I2) is not empty, the so-called first intersection.
In light of this observation, the idea of heuristically approximating a robust path with a path
belonging to the first intersection of two given instances comes naturally.

In this section of the deliverable, we report on an experimental evaluation of a series of algorithms
for the computation of a path in the first intersection [55]. We evaluate the runtime of these
algorithms in order to assess their suitability for real-world applications.

6.2 Computing the Pareto front

An interesting property of the first intersection is that it is tightly related to the Pareto front of all
s-t paths in the graph G = (V,E) with time-dependent bi-criteria edge weights

w(e, τ) =

(
w1(e, τ)
w2(e, τ)

)
. (3)

In particular, a path in the first intersection can always be found among those in the above Pareto
front.

In a theoretical study within the scope of eCOMPASS [55], we considered a known algorithm
for the computation of Pareto fronts in graphs with edge weights as in eq. 3 and show different
ways to apply a speed-up technique known as bidirectional search to it. In the following, we briefly
recall the resulting algorithms in order to experimentally assess their feasibility from a practical
point of view.

Unidirectional search. A basic algorithm for the computation of Pareto fronts in graphs with
static bi-criteria edge weights was introduced by Hansen [53] and extended by Martins [54] for
weights with more than two criteria.

D2.4: Page 48 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Martins’ algorithm allows an almost straightforward generalization to time-dependent weights.
However, the time-dependent variant is only correct if both criteria in the edge weights satisfy a
property known as FIFO property. In settings where this property is not satisfied, different and in
general less efficient algorithms must be used. Since in our data this property is (almost always)
satisfied, we restrict our attention to this algorithm.

Bidirectional search. One of the most well-known technique for speeding-up routing algorithms
is bidirectional search. It is well-known how to apply this technique efficiently for the computation
of static shortest path, quickest paths, and Pareto fronts in graphs with static bi-criteria edge
weights.

We used this technique to design a three phases bidirectional algorithm for the computation of
Pareto fronts in graphs with time-dependent bi-criteria edge weights [55]. This algorithm employs,
in the backward direction, two independent searches working in parallel, one for each criterion.
We also showed how to parametrize this algorithm for a value K ≥ 1 in order to compute a
K-approximation of a Pareto front.

6.3 Computational results

We now present an experimental evaluation of the unidirectional and bidirectional searches intro-
duced above. The experiments were performed on the high-performance cluster of ETH Zurich,
Brutus [58]. Each experiment was run on a single core of a computation node of the cluster. The
results shown in the following refer to computation nodes with AMD Opteron 8380 processors
clocked at 2.5 GHz and 32 GB main memory. The code was written in C++ and compiled using
GNU C++ compiler version 4.8.2 and optimization level 3.

Input. The algorithms were tested on a road network of the area around Berlin and Brandenburg
with ∼0.5 million vertices and ∼1 million edges. Each edge of the network is paired with a table
providing speed values on the corresponding road. These speeds are in the form of estimations
at discrete intervals every 5 minutes for each day of the week. The estimations are computed by
TomTom with a proprietary algorithm taking as input measured travel times on each road collected
for a period of roughly two years. We interpolated linearly the speeds provided by the above tables
to obtain values for times within the 5 minutes windows.

Additionally, we were provided live measurements (also called probes) that indicate, for a fixed
road and a fixed absolute point in time, the actual speed on that road at that time. These live
measurements cover a period of two weeks, from March 18th 2012 to March 31st 2012. However,
since they are very expensive to collect, we were given only a limited quantity of them. In a 30
minutes window inside those two weeks, typically less than 22% of the edges of the network receive
at least one probe. We decided for our implementation that, when available, the speed indicated by
a probe replaces the one provided by the time-dependent function and that the new speed remains
valid for 5 minutes. Note that, in general, a probe may break the FIFO property of the underlying
time-dependent function; this indeed happens for some cases in our data. However, the number
of probes is so limited and the difference in speed with the underlying function is so small that
we decided to ignore this discrepancy and treat the edge weights as if they still satisfy the FIFO
property.

Setup. To obtain two different instances (edge weight functions) as required, we consider depar-
ture times in two different days. Each s-t path in I1 departs on Tuesday, March 20th 2012 at 17:00
(CET), and in I2 on Wednesday, March 21st 2012 at 17:00 (CET). The following tables show results
for 10,000 s-t pairs taken uniformly at random from the set of all vertices.

We assess the robustness of the routes computed with our method against a competitor denoted
as AVG. AVG computes a quickest path in a graph with single-criteria time-dependent edge weights,

D2.4: Page 49 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Average Variance Max
AVG 1.015 7.366 · 10−4 1.562
SIM 1.012 5.678 · 10−4 1.590

Table 32: Ratio over the quickest path in I3

Runtime
(avg)

Runtime
(max)

Labels
(avg)

Labels
(max)

Unidirectional 7.823 166.95 1, 256, 751 24, 129, 100
Bidirectional 1.668 44.25 408, 289 7, 648, 531
Bid. K = 1.2 1.183 49.06 288, 568 7, 569, 067
Bid. K = 1.4 0.856 27.63 240, 332 5, 696, 411
Bid. K = 1.6 0.803 22.74 236, 136 5, 696, 411
Bid. K = 1.8 0.887 28.78 235, 458 5, 696, 411
Bid. K = 2.0 0.879 24.93 235, 119 5, 696, 411

Table 33: Runtime in seconds and number of scanned labels

where the weight w of an edge e at time τ is

w(e, τ) =
w1(e, τ) + w2(e, τ)

2
.

That is, AVG computes quickest paths in the graph where the edge weights are averaged between
the weights of I1 and I2. A simple calculation shows that, if w1 and w2 satisfy the FIFO property,
also their average does.

6.3.1 Results

The results shown in the following aim to assess the quality of the routes computed, and the time
required to compute them.

Quality. To define the quality of a robust route we consider its weight in a third instance I3,
corresponding to departure time Thursday, March 22nd 2012 at 17:00. The quality of a path is the
ratio of its weight in I3 over the weight of the quickest path in I3.

Table 32 shows the average ratio, its variance, and the maximum ratio obtained by each of the
two competitors among all 10,000 s-t pairs. The method SIM is the one that returns a path in the
first intersection of I1 and I2. It appears evident from Table 32 that the paths returned by SIM
are more robust than those returned by AVG, both in terms of average and variance. However, the
maximum ratio of AVG is smaller than that of SIM. It might be interesting to inspect further this
fact to better understand the difference between the routes returned by the two methods.

Runtime. The time required to compute a robust route is measured in CPU time in seconds.
Furthermore, a machine-independent measure is also provided, that is the number of labels scanned
by the algorithm. The counter of labels scanned for the bidirectional algorithm is increased for each
iteration of the forward search, and for every two iterations of each of the backward searches.

Table 33 shows the runtime and the number of labels scanned of the unidirectional and bidi-
rectional algorithms presented in the previous section. It can be seen that the improvement given
by the bidirectional search is quite substantial. In particular, the speed-up of bidirectional over
unidirectional is a factor of more than 4.

Furthermore, the runtime of the bidirectional algorithm steadily decreases if we allow approxi-
mation factors K greater than 1. It appears however that there is a limit to the speed-up that can

D2.4: Page 50 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

AVG SIM
Emissions 1.041 1.088

Table 34: Emissions of robust routes over optimum in I3

be obtained via approximation. The reason for this is that values of K greater than 1 only reduce
the time spent by the algorithm in phase 2, since the termination condition is met earlier in time
(see [55] for more details). Therefore, there exists some value of K, say K∗, for which the time
spent in phase 2 is null. All the values of K greater than K∗ will result in the same runtime and
number of scanned labels. Looking at Table 33, it appears that, for our data, this value is around
1.4.

Remark: It should be observed that the presented results are in some sense biased by the appli-
cation we are considering, that is, robust routing. A peculiarity of this application as we modeled
it is that each criterion in an edge weight corresponds to a travel time for a different day of the
week. If the two days considered are in some sense related like, for example, two working days as
opposed to a working day and a Sunday, we can expect this correlation to somehow appear in the
edge weights values as well. That is, the weights of a path in the two instances are quite likely
similar. This implies that our data will have some special features that are not usually found in
more general applications of time-dependent bi-criteria routing. One of these features is that the
average size (i.e., number of paths) of a Pareto front is quite small; for our setting it is around 5.5.
In general, small Pareto fronts are not likely, and the typical size of a Pareto front is much more
than 5.5. Furthermore, the bigger the sizes of the Pareto front are, the slower Martins’ algorithm
gets. It is an interesting open question to assess the efficiency of the proposed algorithms in more
typical applications of time-dependent bi-criteria routing problems.

6.3.2 Eco-footprint of robust routes

For the project eCompass, the ecological impact of a route on the environment is as important
as its travel time. An estimation of the eco-footprint of a given route is usually provided as a
measurement of the CO2 emissions of cars driving on it. In the calculation of the CO2 emissions
several factors can be considered, like, for example, speed, acceleration, deceleration, driving pat-
terns, etc. Unfortunately, models that consider all possible factors are quite complex and require
expert knowledge even for the simple task of applying them. For the purpose of a preliminary
investigation, however, simpler models might already be sufficiently accurate and easier to apply.
In the following, we adopted on of the simple models for the estimation of the CO2 emissions of
cars driving on the robust routes computed by the above algorithms.

For certain specific cars, it is possible to obtain charts and tables that specify the fuel con-
sumption for different speeds and gears. From the fuel consumption, rough estimations of the CO2

emissions can be obtained using standard methods [57].
Table 34 shows these estimations for a Volkswagen Golf [56] (a common 1400cc car) in terms of

the average ratio of the emissions when driving on a robust route over the emissions when driving
along the quickest path in I3 for all the 10,000 s-t pairs considered. As it can be seen from the
table, it appears that the “price of robustness” for the environment is not high. Eco-aware drivers
that have a need for robustness can drive along these routes with a clean conscience. Furthermore,
the use of more accurate models for the estimation of CO2 might show an additional benefit for the
environment that is not captured by our current model, that is the avoidance of traffic congestions.

6.4 Further improvements

The computation of robust routes using the approach by Buhmann et al. [51] presents some
peculiarities that do not usually arise in standard routing applications. One of these features is the

D2.4: Page 51 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

1,0 1,2 1,4 1,6 1,8 2,0

K
20

00
00

25
00

00

30
00

00

35
00

00

40
00

00

45
00

00

50
00

00

L
a
b
e
ls

 s
e
tt

le
d

SIM

REL-SIM

1,0 1,2 1,4 1,6 1,8 2,0

K

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2,0

2,1

R
u
n
ti

m
e
 (

s
)

SIM

REL-SIM

Figure 14: Comparison of bidirectional algorithms

fact that both criteria of the time-dependent edge weights of the graph, as defined in (3), represent
travel times in different days of the week. If the days considered are somehow related like, for
example, two consecutive Mondays, we can expect that the travel times on same roads to not differ
much.

In light of this observation, we designed a modified variant of the bidirectional algorithm pre-
sented above exploiting the correlation of related days [55]. The modified algorithm works in a
similar manner as the original one, but it replaces the two independent backward searches on each
criterion with a single backward search that uses rougher bounds that are however faster to com-
pute. The efficiency of this algorithm is a tradeoff between how rough these bounds are and the
increased simplicity of the backward search. We expect that, in some applications, one overcomes
the other while in other applications the opposite happens. Also the modified algorithm can be
parametrized by a value K ≥ 1 to compute approximate Pareto fronts.

6.4.1 Experimental results

Let SIM denote the original bidirectional algorithm and REL-SIM its modified variant. We present
in the following an experimental evaluation of REL-SIM under the same conditions considered for
the previous experiments and for the same 10,000 s-t pairs.

Figure 14 shows a plot of the average runtime and the number of labels settled by the two
algorithms for different values K of approximation. It can be seen that, for K = 1.0, SIM is
faster and settles less labels than REL-SIM. However, the difference between the two decreases for
increasing values of K until K = 1.4, where the latter takes over the former.

The reason for this can probably be explained as follows. As we observed already, REL-SIM
compromises between using rougher bounds and a simplified backward search. However, the pe-
nalization might not be too bad if the simpler backward search is much faster than in the original
algorithm. Additionally, larger values of K correspond to an earlier termination of phase 2 and
of the backward search. Starting with K = 1.4, it seems that the sum of these two factors gets
relevant enough to appear in the overall computation time.

7 Fleet-of-Vechiles Route Planning

7.1 Vehicle Routing Problem Data

In this Section, we examine the differences between real world data and synthetic data. The
approach followed by eCOMPASS was to first test our algorithm with synthetic data to verify that
it behaves as expected. The second step was to test the algorithm with real life datasets, that were
provided by PTV.

D2.4: Page 52 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

7.2 Laboratory test data compared to real life data

In both cases, laboratory and real world, the data model is the same but the scope addresses two
different worlds. The laboratory test data is used most often to test the function of modules and
the performance of the solution. Real world data in contrast to laboratory data has to deal in many
cases with complex data sets which describe specific problems. Even the problem analysis stage is
not trivial in practice. In practical scenarios, the problems are not clear or well defined. A precise
classification is not so easy, as many real problems include characteristics and features of more than
just one model. Thus it is a real challenge to provide solution procedures that match real world
practitioner needs and expectations.

7.3 Richness of real world problems in VRP

In an operative setting, real world VRP problems do not come with an unlimited homogeneous
fleet. Instead we have to deal most often with different types of vehicles and limited availabilities.
It goes without saying that this probably imposes new constraints and new aspects on the original
problem.

For an acceptance in practical settings it is very important to have a reasonable network model
that allows the calculation of reliable distances and driving times. There may exist different routes
for different types of vehicles, for different loads and cargo or for different times of the day.

Further aspects of richness are the presence of multiple customer time windows with different
kinds of service. In real world problems we distinguish between start of service intervals and
full service intervals. The correct handling of working hours regulations increases the degree of
complexity considerably.

Often real world problems do not focus on one problem but deal with multiple objectives, such
as service level, social criteria, robustness, ecological criteria and visual attractiveness.

7.4 Operative setting of real world problems

In an operative setting, planning is a process. Dispatcher works systematically towards certain
objectives. In addition to the algorithm that supports planning, he performs manual operations:
Insertions, relocations of customers, assigning a certain vehicle to a tour or vice versa assigning
tours to a vehicle.

In operations, he has to deal with modifications or cancellations of orders. Tours may have
different states, e.g. special states can limit the degrees of freedom for modifications; e.g. if the
loading for a tour has already started it might be desired that this tour shall keep its vehicle. Thus
data does not remain static but behaves dynamically.

In professional settings typically the planning is carried out in a multi-user mode. Multiple
planners are involved with dedicated tasks and rights. The planner can relax constraints to allow
the actions. Of course the planner can overrule each decision of the system. Furthermore, an
appropriate IT-infrastructure is required to match all the requirements. The logic model must
ensure that it is possible to partition and share the planning data correctly, according to defined
rules and concepts. The IT-infrastructure has to physically support and implement the logic model,
e.g. it has to be decided whether the model shall support concurrent-competitive or cooperative
work modes.

7.5 Synthetic Laboratory Test Data

Regarding laboratory test data the question to ask is what is needed to perform a meaningful test.
Often only a function or a working hypothesis has to be proven. In this case simplistic data without
high complexity may be sufficient to perform the verification. Of course some functionality tests,

D2.4: Page 53 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

especially regarding performance, may require more complex test data to achieve a meaningful
result.

Besides data availability, the main reason to use laboratory data is the possibility to generate
data which fulfils all test requirements without introducing additional complexity. In essence lab-
oratory can manipulated to reflect real world problems. For this manipulation, synthetic test data
adapts data from real world problems and applies the restrictions and constraints to the synthetic
data set.

A further advantage of laboratory tests is, to verify algorithmic functions in a controlled envi-
ronment without uncontrollable influences.

7.6 eCOMPASS Approach Regarding Fleets of Vehicles

One of the most challenging tasks for eCOMPASS regarding fleets of vehicles, is to develop an
algorithm that takes into account the ecological impact of the tours of fleets of vehicles. For this
reason, a new three phase approach was developed that tries to group customers together in order
to be served by a vehicle. The main idea of the eCOMPASS approach is the following:

• Phase I tries to group together customers regarding their time windows. A graph G = (V,E)
is constructed where each customer is represented by a vertex u ∈ V , and there is an edge eu,v
connecting nodes (customers) u, v if their time windows are compatible. This means that if a
vehicle serves customer u it can also serve customer v without violating any time constraints.
At the end of Phase I customers are grouped together into clusters.

• Phase II tries to group together customers taking into account their geographical location. A
geographic partition is performed and customers are grouped into cells. All customers that
belong to a cell C are close together regarding the real distance among them. At the end of
Phase II customers are grouped together in cells.

• Phase III is a refinement phase. It tries to split or merge clusters and cells created from
the previous phases. The main idea is that if some customers that are close (regarding real
distance) and have compatible time windows are merged together into a final group. On the
other hand, if a cell contains customers that are close but have incompatible time windows
this cell must be split into two groups.

The ecological aspect is taken into account implicitly. The final clusters that are created have the
property that all their customers are close together and have compatible time windows. Thus, a
vehicle can serve them without wasting time going back and forth to the depot or travelling with
low load. More details regarding eCOMPASS approach can be found in D2.2.

7.7 Experimental Study and Data Sets

The main benefit of the eCOMPASS approach of balanced and compact trips is to provide trip struc-
tures are stable during the execution phase in case of unplanned events (e.g., unplanned multiple
stops, additional stops). As the available existing solutions do not cover this target in a meaning-
ful way, a direct comparison between the eCOMPASS approach against existing optimized (for a
set of different criteria) VRP solutions is not the focus of our experimental study. Consequently,
the experimental study focuses on two aspects: 1) to prove the functionality of the eCOMPASS
algorithm at a generic level 2) to achieve an understanding of the tradeoff between compact and
balanced eCOMPASS solutions in comparison to baseline solutions of existing state of the art VRP
approaches. The experiments therefore compares eCOMPASS solutions of the Munich data sets
against baseline instances of PTV which focused on different optimization aspects.

To achieve the above goals, we conducted our experimental study on three real-world data sets
provided by PTV. The first, is a data set in the city of Milan (Italy). The other 2 data sets

D2.4: Page 54 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

include customers located in the city of Munich. Specifically, one regards a parcel delivery and
the other a furniture delivery. All Munich data sets are in urban areas. All data sets provide the
following information: total number of customers, a unique customer id, a location of each customer
(longitude,latitude), one (or more) time window(s) of each customer, the weight of each customer
(a number representing the amount of goods that have to be delivered) and a distance matrix with
the real distance among all customers.

The quality measures that are reported are: total driving distance (in km), number of vehicles
used for each scenario, number of tours and number of tour stops. For the Milan dataset, a com-
parison was made between the routes computed with the real distance against the routes computed
with the Euclidean distance.

7.7.1 Milan Dataset

The Milan dataset consists of 1000 customers and is the largest dataset on which we conducted
experiments. Due to lack of quality measures of other approaches we did not perform a compar-
ison with the eCOMPASS approach. However, we report on the ratio between the total distance
travelled using the real distance and the total distance travelled using the Euclidean distance. Our
experiments showed that this ratio is 1.75, a number that is acceptable because in urban areas the
distance between two points is typically Manhattan, i.e. at least greater than 1.41 times bigger
than the Euclidean distance.

7.7.2 Munich Dataset - Parcel Delivery

The tour planning results for the parcel courier express service providers are listed in Table 35.
Without traffic information a total tour length of 163.32 km for serving 32 customer orders was
calculated. For the process of delivery one vehicle is needed for generated tour. In Figure 15, all
32 customers are shown on the map. Customers are grouped together creating clusters.

Previous Approach eCOMPASS Approach
Total km driven 163.32 114.01

Total driving time 4h 12 min 4h 32min
CO2 emissions 62.45kg 41.33kg

Total vehicles used 1 1
Number of tours 1 1

Tour stops 34 34

Table 35: Munich Dataset: Performance indicators for the parcel delivery scenario. The vehicle
type chosen for CO2 emissions calculation was truck (7,5t).

In Table 35, the eCOMPASS approach achieves a further improvement in total kilometres driven.
The generated tour takes 48 minutes longer and part of the tour uses the motorway.

D2.4: Page 55 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 15: Munich Dataset: Groups created for the parcel delivery scenario. Each customer is
represented by a marker. In this case, all customers form one group and are served by one vehicle.

7.7.3 Munich Dataset - Furniture Delivery

The second scenario to be considered is the delivery of furniture, in particular kitchen furniture
from a furniture store to various customers in the city centre of Munich. The furniture store with its
warehouse is located outside of Munich in the district of Taufkirchen. For this scenario it is assumed
that the furniture can be ordered directly in the furniture store by the customer and every piece
of furniture is available from the stock. Thus, a suitably short period of time between the point of
order and delivery will be accepted. For simplicity the furniture store’s warehouse is operating all
the time.

After the customers chose the pieces of furniture they wish to receive, the warehouse processes
their orders and the delivery will be planned. As furniture is often bulky, the delivery process of the
furniture is modelled as mid-size truck operations. We modelled the distribution process with two
trucks and assumed 5 tons payload. Furthermore we assumed service time of 15 minutes for a drop
per truck stop for unloading the pieces of furniture. As a consequence, a vehicle is not immediately
ready for use again after the point of delivery. After finishing the tours the trucks return to the
furniture store/warehouse. The vehicle fleet we modelled consists of two mid-size lorries with 5.000
kg payload and an overall weight of about 12.000 kg per lorry.

For the case of furniture delivery the calculations are based on a data set with 150 entries for
a time period of about two weeks. The handled information are real, but made anonymous. For
the calculation and tour planning two trucks with 5 tons payload were used with an availability of
24/7. The only restrictions for tour planning are the weight of the transported pieces of furniture
and a service time per tour stop of 15 minutes to guarantee the unloading process. For simplicity,
the delivery time windows, in which customers can receive their furniture were standardised from
08:00 to 18:00 o’clock and Monday to Friday. As mentioned already in the other scenarios the order
specifications on each of the both Mondays are identical making them comparable in the case of
traffic information. The database contains 31 orders for each Monday. For the initial tour planning
solution the results are shown in Table 36.

Based on the given information without any traffic the following tours for the furniture delivery
on Monday were generated. There are three tours operated by two vehicles to serve all 31 customers.
The visualization of the furniture delivery scenario is shown in Figure 16.

In Table 36, the eCOMPASS approach achieves a further improvement both for total kilometres
driven and total driving time. The tours generated do not use the motorway.

D2.4: Page 56 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Previous Approach eCOMPASS Approach
Total km driven 204.36 103.15

Total driving time 4h 29min 4h 06min
CO2 emissions 115.46kg 57.61kg

Total vehicles used 2 2
Number of tours 3 3

Tour stops 37 37

Table 36: Munich Dataset: Performance indicators for the furniture delivery scenario. The vehicle
type chosen for CO2 emissions calculation was truck (7,5t).

Figure 16: Munich Dataset: Groups created for the furniture delivery scenario. Each customer is
represented by a marker. In this case, customers are divided into 3 groups, served by two vehicles
that perform three tours.

7.8 Experiments with Large Datasets

7.8.1 Partitioning Methods.

The next step was to consider larger datasets and compare all three geographic partition methods.
There are three datasets: Malta, Hamburg and Germany. All datasets consist of 1000 customers.
Malta as a small geographical area, Hamburg as a middle scale geographical area and Germany as
a large geographical area. The aim of this experiment is to focus on the behavior of the partition
techniques on these geographical areas of varying size. We consider that every customer is available
for delivery the whole day. Hence, their time windows are 24 hours long. The results are reported
in Table 37.

Malta Hamburg Germany
km CO2 km CO2 km CO2 Areas

Quad Trees 556 311.36 6917 3873.52 23852 13357.12 16
KaHIP 536 300.16 6703 3753.68 24072 13480.32 10

Natural cuts 479 268.24 6341 3550.86 23158 12968.00 10

Table 37: Performance indicators for large datasets. The numbers report total km driven and CO2

emissions in kg for every partition method and areas of partition.

A first observation is that the natural cuts technique is more suitable for road networks. KaHIP

D2.4: Page 57 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

technique performs better than quad trees which were outperformed by the other two techniques.
Another interesting observation is that for bigger geographical areas such as Hamburg and Germany
the improvement in total distance is higher when the natural cuts technique is used. Since time
windows are constant for each customer, the difference in the results lies in the method used for
geographic partition.

7.8.2 Time Windows and Dynamic Scenarios.

In this case we take into account time windows. The time windows range is: 08:00 - 12:00, 12:00
- 16:00, 16:00 - 20:00 and 20:00 - 23:00. Each customer is assigned a time window at random.
Then, we compute the new tours using our approach. The results are reported in Table 38. In
order to make a comparison, it is customary (in the logistics sector) to solve the problem without
any constraint (time window, partition method, number of vehicles available). This will yield an
ideal solution that will not be reached, as we add constraints such as time windows and number of
available vehicles. This procedure is called free planning. Hence, we compare our approach against
free planning to determine how far away we are from the free planning solution.

Malta Hamburg Germany
km Difference (%) km Difference (%) km Difference (%)

Quad Trees 587 24.6 7077 9.1 25264 9.0
KaHIP 575 22.0 7059 8.9 24933 8.5

Natural cuts 493 4.6 6866 5.9 25039 9.0
Free Planning 471 0.0 6481 0.0 22969 0.0

Table 38: Performance indicators for large datasets against free planning. The numbers report total
distance driven in km. Difference shows how far away our approach is from the free planning case.

As expected, our solutions are inferior than those of free planning but they are away by a small
margin. The presence of time windows makes the tours longer since they pose an additional con-
straint. Another observation is that the natural cuts method performs better for Hamburg and
Malta datasets while for Germany the best method is KaHIP.

One of the advantages of the suggested approach is that it can be used in an online environment.
In real life, one or more customers may cancel their order unexpectedly. On the contrary, some
new customers may appear that need to be served as soon as possible. The way many planners
deal with such cases is to run a planning algorithm from scratch. In our case, since we have formed
clusters we can easily check in which cluster to assign a new customer. The cancellation of an order
is treated easily. We just remove the customer that canceled his order from the route. This will not
affect the whole tour since all customers that belong to this route have compatible time windows.

For the experiments we used the datasets of Malta, Hamburg and Germany and we created
three dynamic scenarios. The Incremental Scenario adds 20 additional customers with random
coordinates to the initial dataset. The Decremental Scenario removes 10 customers from the initial
dataset. In the Fully Dynamic Scenario there is a sequence of 20 insertions and 5 deletions of
customers. The number of customers that were inserted/deleted was deliberately kept small since
in real life cases a large number of new unexpected orders or cancellations is unlikely to happen.
The results are shown in Table 39. We report total distance in km. As expected, the Incremental
scenario computes routes that cover more total distance than the initial scenario. On the other
hand, the Decremental scenario computes routes that cover less total distance than the initial
scenario. The Fully Dynamic scenario computes routes that cover more total distance than the
initial scenario since there are more insertions to the tour than deletions.

D2.4: Page 58 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

Initial Incremental Decremental Fully Dynamic
Malta 479 492 459 487

Hamburg 6341 6367 6312 6358
Germany 23158 23204 23129 23179

Table 39: Initial datasets and dynamic scenarios are presented. The numbers report total distance
driven in km.

8 Conlusions

In deliverable D2.4, we have assessed via thorough experimental evaluations the success of the
algorithmic solutions developed within WP2 traffic prediction, route planning for private cars, and
routing fleets of vehicles. We have discussed necessary modifications with respect to Deliverable
D2.1 an D2.2.1, identified the most applicable and technically most robust algorithmic solutions.
The proposed algorithmic solutions have considerably advanced the state of the art, and their
success was also experimentally verified. In particular, our techniques allow for faster, more robust,
precise routes which also demonstrate eco-friendliness of the proposed solutions in our experiments.
Some of the proposed solutions were also integrated by WP5 partners and successfully piloted in
Berlin within the scope of WP6.

For our traffic-prediction mechanisms, we experimentally tested our parametric technique, an
improvement of the previously developed Lag-STARIMA technique, and evaluated it against several
benchmark methods. We also experimentally tested our non-parametric approach, namely Speed
Dynamic Short-Term (SDST) forecasting technique, and compared it against a set of techniques
selected from the literature.

For the time-dependent travel-time metric, we experimentally evaluated our novel distance or-
acles on the real-data of Berlin. In particular, we conducted an extensive experimental study of
the proposed oracles for six different landmark sets, achieving remarkable speedups over TDD. The
speedups that we observed for our query algorithms over the average time of a time-dependent
Dijkstra run, may be up to 723, with average relative error less than 1.634%. Analogous speedups
are observed if our quality measure is not the computational time, but the (machine-independent)
number of settled vertices of the query algorithms. The best possible observed relative error is in-
deed much better than the theoretical bounds provided by the analysis of the query algorithms. In
particular, it can be as small as 0.298% (for 2000 KaHIP landmarks). The corresponding speedup
is then 118.

If we focus on the absolute response times, we manage to provide responses (via FCA) to arbitrary
queries, in times less than 0.4ms for all landmark sets that we used, with relative error no more
than 2.201%. For relative error at most 0.701%, we can provide answers in no more than 1.345ms
using FCA+, for all the considered landmark sets.

As for the preprocessed data, we create and succinctly store roughly 300K approximate travel-
time summaries from a given landmark, in average sequential time less than 40sec. That is, the
amortized sequential time per approximate travel-time summary is no more than 0.134ms.

Our future plans concern the parallelization of both the preprocessing phase and the query
algorithms, since no attempt has been made so far to exploit the inherent potential of parallelization
in them, which would significantly speed-up the execution times. In particular, parallelizing the
preprocessing phase is straightforward and would significantly improve the adaptivity of our oracle
to live-traffic reports of unforeseen disruptions (e.g., temporal congestion, or even blockage of a
particular road segment). Moreover, there are still many possibilities of improving the required
preprocessing space, by exploiting the one-to-all flavour of the constructed travel-time summaries.
All these issues are part of our ongoing research towards truly efficient time-dependent distance
oracles.

We have also extended Contraction Hierarchies to a three-phase speedup approach. While com-

D2.4: Page 59 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

mon two-phase speedup techniques achieve fast route planning queries at the expense of substantial
and slow preprocessing, we split preprocessing into metric-independent preprocessing of the road
topology and a lightweight preprocessing of a given metric (customization), while still offering fast
query times. We demonstrated that our Customizable Contraction Hierarchies (CCH) approach is
practicable and efficient on real world road graphs, achieving customization speeds of below one
second and query below one millisecond on the standard benchmark instance of DIMACS Europe.
Furthermore, we have performed an extensive experimental analysis of its performance that hope-
fully sheds some light onto the inner workings of Contraction Hierarchies. Our experiments clearly
show that the running times are completely independent of the metric used (if it can be expressed as
a scalar value after customization). This means that the technique is well-suited to work with even
highly detailed user-centric metrics that aim at offering a favorable trade-off between vehicle re-
strictions (e. g., width, height), user preferences (e. g., avoiding highways, preferred maximal driving
speeds, disliked areas) and environmental-friendliness. At the same time, our technique supports
fast, responsive query times and a light-weight preprocessing that easily enables consideration of
current traffic conditions. The overall CCH workflow in a server-based production system would
be as follows: Run the metric-independent preprocessing of the node order when generating a new
map release (e. g., every three months). When a user logs into the service or changes her prefer-
ences, run the metric-dependent customization in below one second. To account for the current
traffic situation, either re-run full customization in below one second or apply our partial update
algorithm on only the changed road segments for even faster performance. After customization,
queries can be answered in below a millisecond on average (on a single core, leaving resources to
parallelize over multiple users’ queries). For future work outside the time-frame of eCOMPASS,
we will further consider functional metrics (where edge weights dependend on the current time of
day or the current state of charge of the vehicle’s battery). For that, we will investigate combining
CCH with techniques from Section 3 and ECOMPASS-TR-028.

We also experimented on the Penalty and Plateau based methods [63] as well as their combina-
tion, and we extended them in several ways. Now a large number of qualitative alternatives can be
computed in time less than one second on continental size networks along with their eco-footprints.
Future work includes the optimization of these algorithms and the development of even stronger
heuristic approaches.

References

[1] Corrado De Fabritiis, Roberto Ragona, and Gaetano Valenti. Traffic estimation and prediction
based on real time floating car data. In Intelligent Transportation Systems, 2008. ITSC 2008.
11th International IEEE Conference on, pages 197–203. IEEE, 2008.

[2] Themistoklis Diamantopoulos, Dionysios Kehagias, Felix G König, and Dimitrios Tzovaras.
Investigating the effect of global metrics in travel time forecasting. In Proceedings of 16th
International IEEE Conference on Intelligent Transportation Systems (ITSC), 2013.

[3] Benjamin Hamner. Predicting travel times with context-dependent random forests by mod-
eling local and aggregate traffic flow. In Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on, pages 1357–1359. IEEE, 2010.

[4] Yiannis Kamarianakis and Poulicos Prastacos. Forecasting traffic flow conditions in an ur-
ban network: comparison of multivariate and univariate approaches. Transportation Research
Record: Journal of the Transportation Research Board, 1857(1):74–84, 2003.

[5] METIS – serial graph partitioning and fill-reducing matrix ordering, 2013. Stable version:
5.1.0.

[6] KaHIP – Karlsruhe High Quality Partitioning, May 2014.

D2.4: Page 60 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

[7] Rachit Agarwal and Philip Godfrey. Distance oracles for stretch less than 2. In Proceedings of
the 24th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’13), pages 526–538.
ACM-SIAM, 2013.

[8] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Mattias Müller-Hannemann, Thomas Pa-
jor, Peter Sanders, Dorothea Wagner, and Renato Werneck. Route planning in transportation
networks. Technical Report MSR-TR-2014-4, Microsoft Research, January 2014.

[9] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-Dependent Con-
traction Hierarchies. In Proceedings of the 11th Workshop on Algorithm Engineering and
Experiments (ALENEX’09), pages 97–105. SIAM, April 2009.

[10] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum time-
dependent travel times with contraction hierarchies. ACM Journal of Experimental Algorith-
mics, 18, 2013.

[11] Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations I. Upper bounds.
Information and Computation, 208(3):259–275, 2010.

[12] K. Cooke and E. Halsey. The shortest route through a network with time-dependent intermodal
transit times. Journal of Mathematical Analysis and Applications, 14(3):493–498, 1966.

[13] Brian C. Dean. Continuous-time dynamic shortest path algorithms. Master’s thesis, Mas-
sachusetts Institute of Technology, 1999.

[14] Brian C. Dean. Algorithms for minimum-cost paths in time-dependent networks with waiting
policies. Networks, 44(1):41–46, 2004.

[15] Brian C. Dean. Shortest paths in fifo time-dependent networks: Theory and algorithms.
Technical report, MIT, 2004.

[16] Frank Dehne, Omran T. Masoud, and Jörg-Rüdiger Sack. Shortest paths in time-dependent
FIFO networks. ALGORITHMICA, 62(1-2):416–435, 2012.

[17] Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, 60(1):60–94, May 2011.
Special Issue: European Symposium on Algorithms 2008.

[18] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
Route Planning. In Panos M. Pardalos and Steffen Rebennack, editors, Proceedings of the
10th International Symposium on Experimental Algorithms (SEA’11), volume 6630 of Lecture
Notes in Computer Science, pages 376–387. Springer, 2011.

[19] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book. American
Mathematical Society, 2009.

[20] Stuart E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17(3):395–412, 1969.

[21] eCOMPASS Project (2011-2014). http://www.ecompass-project.eu.

[22] Luca Foschini, John Hershberger, and Subhash Suri. On the complexity of time-dependent
shortest paths. Algorithmica, 68(4):1075–1097, 2014. Preliminary version in ACM-SIAM SODA
2011.

[23] Spyros Kontogiannis, Dorothea Wagner, and Christos Zaroliagis. Hierarchical distance oracles
for time-dependent networks. Technical report, eCOMPASS Project, December 2014.

D2.4: Page 61 of 64

http://www.ecompass-project.eu

FP7-ICT-2011-7 288094 - eCOMPASS

[24] Spyros Kontogiannis and Christos Zaroliagis. Distance oracles for time-dependent networks. In
J. Esparza et al. (eds.), ICALP 2014, Part I, volume 8572 of LNCS, pages 713–725. Springer-
Verlag Berlin Heidelberg, 2014. Full version as eCOMPASS Technical Report (eCOMPASS-
TR-025) / ArXiv Report (arXiv.org>cs>arXiv:1309.4973), September 2013.

[25] Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A new
dynamic graph structure for large-scale transportation networks. In Algorithms and Com-
plexity, volume 7878 of Lecture Notes in Computer Science (LNCS), pages 312–323. Springer,
2013.

[26] Giacomo Nannicini, Daniel Delling, Dominik Schultes, and Leo Liberti. Bidirectional A* Search
on Time-Dependent Road Networks. Networks, 59:240–251, 2012. Journal version of WEA’08.

[27] Ariel Orda and Raphael Rom. Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

[28] Mihai Patrascu and Liam Roditty. Distance oracles beyond the Thorup–Zwick bound. In Proc.
of 51th IEEE Symp. on Found. of Comp. Sci. (FOCS ’10), pages 815–823, 2010.

[29] Ely Porat and Liam Roditty. Preprocess, set, query! In Proc. of 19th Eur. Symp. on Alg.
(ESA ’11), LNCS 6942, pages 603–614. Springer, 2011.

[30] Hanif D. Sherali, Kaan Ozbay, and Sairam Subramanian. The time-dependent shortest pair of
disjoint paths problem: Complexity, models, and algorithms. Networks, 31(4):259–272, 1998.

[31] Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys, 46,
2014.

[32] Christian Sommer, Elad Verbin, and Wei Yu. Distance oracles for sparse graphs. In Proc. of
50th IEEE Symp. on Found. of Comp. Sci. (FOCS ’09), pages 703–712, 2009.

[33] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. of ACM, 52:1–24, 2005.

[34] C. Wulff-Nilsen. Approximate distance oracles with improved preprocessing time. In Proc. of
23rd ACM-SIAM Symp. on Discr. Alg. (SODA ’12), 2012.

[35] C. Wulff-Nilsen. Approximate distance oracles with improved query time. arXiv
abs/1202.2336., 2012.

[36] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-dependent con-
traction hierarchies. In Proceedings of the 11th Workshop on Algorithm Engineering and Ex-
periments (ALENEX’09), pages 97–105. SIAM, April 2009.

[37] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-optimal routes
for electric vehicles. In Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 54–63. ACM Press, 2013.

[38] Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations i. upper bounds. In-
formation and Computation, 208(3):259–275, 2010.

[39] Soma Chaudhuri and Christos Zaroliagis. Shortest paths in digraphs of small treewidth. part
i: Sequential algorithms. Algorithmica, 2000.

[40] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning. In Proceedings of the 10th International Symposium on Experimental Algo-
rithms (SEA’11), volume 6630 of Lecture Notes in Computer Science, pages 376–387. Springer,
2011.

D2.4: Page 62 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

[41] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning in road networks. Transportation Science, 2014. accepted for publication.

[42] Daniel Delling and Renato F. Werneck. Faster customization of road networks. In Proceedings
of the 12th International Symposium on Experimental Algorithms (SEA’13), volume 7933 of
Lecture Notes in Computer Science, pages 30–42. Springer, 2013.

[43] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book. American
Mathematical Society, 2009.

[44] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
In Proceedings of the 13th International Symposium on Experimental Algorithms (SEA’14),
volume 8504 of Lecture Notes in Computer Science, pages 271–282. Springer, 2014.

[45] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
August 2012.

[46] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidirectional A* search
on time-dependent road networks. Networks, 59:240–251, 2012. Best Paper Award.

[47] Ariel Orda and Raphael Rom. Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

[48] Léon Planken, Mathijs de Weerdt, and Roman van Krogt. Computing all-pairs shortest paths
by leveraging low treewidth. Journal of Artificial Intelligence Research, 2012.

[49] Sabine Storandt. Algorithms for vehicle navigation. PhD thesis, Universität Stuttgart, Febru-
ary 2013.

[50] Tim Zeitz. Weak contraction hierarchies work! Bachelor thesis, Karlsruhe Institute of Tech-
nology, 2013.

[51] Joachim M. Buhmann, Matúš Mihalák, Rastislav Srámek, and Peter Widmayer. Robust opti-
mization in the presence of uncertainty. In ITCS, pages 505–514, 2013.

[52] eCOMPASS. D2.3 – 2 validation and empirical assessment of algorithms for eco-friendly vehicle
routing. Technical report, The eCOMPASS Consortium, 2013.

[53] Pierre Hansen. Bicriterion path problems. In Günter Fandel and Tomas Gal, editors, Multiple
Criteria Decision Making Theory and Application, volume 177 of Lecture Notes in Economics
and Mathematical Systems, pages 109–127. Springer Berlin Heidelberg, 1980.

[54] Ernesto Queirós Vieira Martins. On a multicriteria shortest path problem. European Journal
of Operational Research, 16(2):236 – 245, 1984.

[55] Matús Mihalák, Sandro Montanari, and Peter Widmayer. Bidirectional algorithms for bi-
criteria quickest paths in road networks. Technical report, The eCOMPASS Consortium, 2014.

[56] Motor-talk.de. G6 90 kw tsi verbrauchskurven. Accessed on 29.10.2014.

[57] Martin Schmied and Wolfram Knörr. Calculating GHG emissions for freight forwarding and
logistics services. European Association for Forwarding, Transport, Logistics and Customs
Services (CLECAT), 2012.

[58] Wikipedia. Brutus cluster. Accessed on 23.10.2014.

D2.4: Page 63 of 64

FP7-ICT-2011-7 288094 - eCOMPASS

[59] Openstreetmap. http://www.openstreetmap.org.

[60] Tomtom. http://www.tomtom.com.

[61] Camvit: Choice routing, 2009. http://www.camvit.com.

[62] eCOMPASS project, 2011-2014. http://www.ecompass-project.eu.

[63] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative route graphs
in road networks. In Theory and Practice of Algorithms in (Computer) Systems, pages 21–32.
Springer, 2011.

[64] Yanyan Chen, Michael GH Bell, and Klaus Bogenberger. Reliable pretrip multipath planning
and dynamic adaptation for a centralized road navigation system. Intelligent Transportation
Systems, IEEE Transactions on, 8(1):14–20, 2007.

[65] Daniel Delling and Moritz Kobitzsch. Personal commnication, July 2013.

[66] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A* search meets
graph theory. In Proc. 16th ACM-SIAM symposium on Discrete algorithms, pages 156–165.
Society for Industrial and Applied Mathematics, 2005.

[67] Felix Koenig. Future challenges in real-life routing. In Workshop on New Prospects in Car
Navigation. February 2012. TU Berlin.

[68] Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A new
dynamic graph structure for large-scale transportation networks. In Algorithms and Complex-
ity, volume 7878 of LNCS, pages 312–323. Springer, 2013.

[69] Andreas Paraskevopoulos and Christos Zaroliagis. Improved alternative route planning. In
13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, volume 33 of OASICS, pages 108–122, 2013. Also eCOMPASS Project, Technical
Report TR-024, July 2013.

D2.4: Page 64 of 64

	Introduction
	Objectives and scope of D2.4
	Structure of the Document

	Traffic Prediction
	Parametric Approach
	Non-Parametric Approach

	Time-Dependent Shortest Paths
	Preliminaries
	Time-Dependent Oracles
	Approximate Travel-Time Functions via the Trapezoidal Method
	Query Algorithms
	Heuristic Improvements

	Experimental Evaluation
	Preprocessing The Road Instance
	Experimental Setup
	Measurements and Evaluation of Speedups and Approximation Guarantees
	Methodology and Measurements for Assessing the Eco-Footprint

	Fast, Dynamic and Highly User-Configurable Route Planning
	Experiments
	Orders
	CH Construction
	CH Size
	Triangle Enumeration
	Customization
	Query Performance
	Optimizing Eco-friendliness

	Alternative Route Planning
	Introduction
	Preliminaries
	Our Improvements
	Pruning
	Filtering and Fine-tuning

	Experimental Results
	Performance
	Eco-Footprint Evaluation

	Visualization of Alternative Graphs

	Robust Route Planning
	Introduction
	Computing the Pareto front
	Computational results
	Results
	Eco-footprint of robust routes

	Further improvements
	Experimental results

	Fleet-of-Vechiles Route Planning
	Vehicle Routing Problem Data
	Laboratory test data compared to real life data
	Richness of real world problems in VRP
	Operative setting of real world problems
	Synthetic Laboratory Test Data
	eCOMPASS Approach Regarding Fleets of Vehicles
	Experimental Study and Data Sets
	Milan Dataset
	Munich Dataset - Parcel Delivery
	Munich Dataset - Furniture Delivery

	Experiments with Large Datasets
	Partitioning Methods.
	Time Windows and Dynamic Scenarios.

	Conlusions

