
FP7-ICT-2011-7 288094 - eCOMPASS

eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

FP7 - Information and Communication Technologies

Grant Agreement No: 288094
Collaborative Project

Project start: 1 November 2011, Duration: 36 months

D2.3.2 - Validation and empirical assessment of algorithms for
eco-friendly vehicle routing

Workpackage: WP2 - Algorithms for Vehicle Routing
Due date of deliverable: 31 October 2013
Actual submission date: 31 October 2013

Responsible Partner: TomTom
Contributing Partners: CERTH, CTI, ETHZ, KIT

Nature: 4 Report 2 Prototype 2 Demonstrator 2 Other

Dissemination Level:
4 PU: Public
2 PP: Restricted to other programme participants (including the Commission Services)
2 RE: Restricted to a group specified by the consortium (including the Commission Services)
2 CO: Confidential, only for members of the consortium (including the Commission Services)

Keyword List: algorithms, shortest path, route planning, traffic prediction, time-dependent short-
est path, alternative routes, robust routes, fleets of vehicles, private vehicles, heuristics

The eCOMPASS project (www.ecompass-project.eu) is funded by the European
Commission, DG CONNECT (Communications Networks, Content and Technol-
ogy Directorate General), Unit H5 - Smart Cities & Sustainability, under the FP7
Programme.

D2.3.2: Page 1 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

The eCOMPASS Consortium

Computer Technology Institute & Press ’Diophantus’ (CTI) (coordinator),
Greece

Centre for Research and Technology Hellas (CERTH), Greece

Eidgenössische Technische Hochschule Zürich (ETHZ), Switzerland

Karlsruher Institut fuer Technologie (KIT), Germany

TOMTOM INTERNATIONAL BV (TOMTOM), Netherlands

PTV PLANUNG TRANSPORT VERKEHR AG. (PTV), Germany

D2.3.2: Page 2 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Document history
Version Date Status Modifications made by

23.05.2013 TOC contributions received
0.1 24.05.2013 TOC draft (sent to contributors) Michael Marte, TomTom

08.07.2013 Draft of most sections received from
contributors

0.9 15.07.2013 Draft of preliminary full document
(sent to project coordinator)

Felix König, TomTom

1.0 23.10.2013 Sent to internal reviewers Michael Marte, TomTom
1.1 30.10.2013 Reviewers’ comments incorporated

(sent to PQB)
Michael Marte, TomTom

1.2 30.10.2013 PQB’s comments incorporated Michael Marte, TomTom
1.3 31.10.2013 Final version (approved by PQB, sent

to the Project Officer)
Christos Zaroliagis, CTI

1.4 21.11.2013 Updated final version Michael Marte, TomTom
(approved by PQB, sent to the Project
Officer)

Christos Zaroliagis, CTI

Deliverable manager

• Michael Marte, TomTom

List of Contributors

• Themistoklis Diamantopoulos, CERTH

• Julian Dibbelt, KIT

• Kalliopi Giannakopoulou, CTI

• Dimitrios Gkortsilas, CTI

• Dionisis Kehagias, CERTH

• Spyros Kontogiannis, CTI

• Florian Krietsch, PTV

• Polykarpos Meladianos, CERTH

• Matús Mihalák, ETHZ

• Sandro Montanari, ETHZ

• Eirini Papagiannopoulou, CERTH

• Andreas Paraskevopoulos, CTI

• Daniel Proskos, CTI

• Christos Zaroliagis, CTI

List of Evaluators

• Dionisis Kehagias, CERTH

• Sandro Montanari, ETHZ

D2.3.2: Page 3 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

• Moritz Baum, KIT

Summary
The present document reports the results of eCOMPASS Task 2.4 - Validation and empirical as-
sessment of algorithms for vehicle routing. It comprises a description of the algorithms developed,
as well as computational results to validate and assess their effectiveness on real-world test data.

The report accompanies a set of software prototypes in which the algorithms have been imple-
mented, and which have been used to generate the results cited above.

The algorithms address challenges in the areas of

• Traffic Prediction

• Time-Dependent Shortest Paths

• Alternative Route Planning

• Robust Route Planning

• Route Planning for Vehicle Fleets.

The current updated version (v1.4) fixes some cross-reference problems and provides updated
contents for Sections 1 and 4.2.

D2.3.2: Page 4 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Contents

1 Introduction 6
1.1 Structure of the Document . 6

2 Test Data 7

3 Traffic Prediction 9
3.1 Introduction . 9
3.2 Experimental Results . 10
3.3 Conclusion . 15

4 Time-Dependent Shortest Paths 16
4.1 Time-Dependent Approximation Methods . 16
4.2 Dynamic Time-Dependent Customizable Route Planning 24

5 Alternative Route Planning 28
5.1 Introduction . 28
5.2 Preliminaries . 29
5.3 Our Improvements . 29

5.3.1 Pruning . 30
5.3.2 Filtering and Fine-tuning . 31

5.4 Experimental Results . 32
5.5 Visualization of Alternative Graphs . 36

6 Robust Route Planning 38
6.1 Computation and Assessment of Robust Routes . 39

6.1.1 Experiments . 40
6.2 Evaluation of the Label Propagating Algorithm . 42

6.2.1 Experiments . 44
6.3 Conclusion and Discussion . 45

7 Route Planning for Vehicle Fleets 46
7.1 Vehicle Routing Problem Data . 46
7.2 Laboratory test data compared to real life data . 46
7.3 Richness of real world problems in VRP . 46
7.4 Operative setting of real world problems . 46
7.5 Synthetic Laboratory Test Data . 47
7.6 eCOMPASS Approach Regarding Fleets of Vehicles 47
7.7 Experimental Study and Data Sets . 47

7.7.1 Milan Dataset . 48
7.7.2 Munich Dataset - Parcel Delivery . 48
7.7.3 Munich Dataset - Furniture Delivery . 49

8 Conclusion and Future Work 51
8.1 Traffic Prediction . 51
8.2 Time-Dependent Shortest Paths . 51
8.3 Alternative Route Planning . 51
8.4 Robust Route Planning . 51
8.5 Fleet-of-Vehicles Route Planning . 52

D2.3.2: Page 5 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

1 Introduction

This deliverable presents validation and assessment for the algorithmic techniques and methodolo-
gies developed in eCOMPASS WP2. WP2 aims at providing novel algorithmic methods for opti-
mizing vehicle routes in urban spaces with respect to their environmental impact. In particular,
the goal was to derive novel algorithmic solutions to be applied on: (a) intelligent on-board navi-
gator systems for private vehicles that take into account real traffic data (as well as statistical data
about traffic at different hours during the day) and seamlessly provide “green” route recommen-
dations; (b) eco-aware logistics and fleet management systems used in conjunction with on-board
systems mounted on vehicles and used by drivers, aiming at minimal environmental footprint and
fuel consumption.

WP2 breaks down into five tasks:

• Task 2.1 - New prospects in eco-friendly vehicle routing: Alternative approaches, their limi-
tations and promising new directions.

• Task 2.2 - Eco-friendly private vehicle routing algorithms: Optimize a private vehicle’s route
with respect to the environmental footprint of its movement by investigating models that
explicitly account for it, and also include traffic prediction. Exact and approximate solutions
will be sought, and also dynamic and robust scenarios will be considered. New methodolog-
ical approaches will be pursued to trade data precision, information content, and solution
robustness.

• Task 2.3 - Eco-friendly routing algorithms for fleets of vehicles: Optimize routes of multi-
ple vehicles in application scenarios that involve delivery/collection of goods by transporta-
tion/courier companies aiming at minimizing the environmental footprint associated with the
vehicles’ movement. Several applications will be considered (people transportation, parcel de-
liveries, etc). Exact and approximate solutions will be sought, and also dynamic and robust
scenarios will be considered. New methodological approaches will be pursued to trade data
precision, information content and solution robustness.

• Task 2.4 - Validation and empirical assessment: Validate the effectiveness of the derived algo-
rithmic solutions in Tasks 2.2 and 2.3, as well as their suitability for online mobile applications
upon a variety of realistic scenarios.

• Task 2.5 - Final assessment of eco-friendly vehicle routing algorithms: Assess the algorithmic
solutions developed within WP2 in the actual implementation environments.

The present document reports the results of Task 2.4.

1.1 Structure of the Document

After providing a brief overview of the nature of the data used for testing in Section 2, the document
structure reflects the different algorithmic tasks tackled in WP2, briefly describing the algorithmic
advancements achieved by eCOMPASS and reporting detailed computational results on different
test data sets, comparing new methods to previously existing ones.

Section 3 reports on the accuracy of methods for traffic prediction, section 4 evaluates algorithms
for the computation of time-dependent shortest paths, section 5 presents a computational study of
algorithms for computing alternative routes, section 6 has computational results for methods that
compute robust routes, and, finally, section 7 reports test results for a variety of algorithms that
plan routes for fleets of vehicles.

D2.3.2: Page 6 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

2 Test Data

The test data provided by TomTom includes a road map of the Berlin/Brandenburg area, Germany,
including advanced attributes like maneuver restrictions and time-dependent speed profiles, as well
as extensive map-matched speed probes collected in this area.

The nodes of the road map are defined in terms of latitude and longitude and its edges are
annotated with length, FRC (functional road class), turn restrictions, and speed profiles (see below).

Speed probes are collected from navigation devices. Each speed probe is defined in terms of an
edge, the time the vehicle entered this edge, and the average speed of the vehicle on the edge.

Speed profiles are obtained by aggregating speed probes resulting in average speeds on individual
edges. Where available, these speed profiles provide speed information for every five minutes of the
day for each specific day of the week.

The data set provided by TomTom contains about half a million nodes, about one million edges,
about 11000 turn restrictions, about 165 million speed probes collected over half a month, and 100
speed profiles computed from speed probes collected over two years.

For a better understanding of this data, we proceed to illustrate an example. Consider a typical
arterial street in downtown Berlin, depicted in Figure 1.

Figure 1: A section of Reichpietschufer in downtown Berlin.

Figure 2 depicts the different speeds measured over an extended period of time on this stretch of
road over the course of the week. A histogram of these speed measurements is displayed in Figure 3.

D2.3.2: Page 7 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 2: Each yellow dot represents one speed measurement at a certain point in time during
the week. Blue bars represent the hourly average, and the white line the resulting assumed speed
profile. Green and yellow lines depict average weekday and weekend speeds.

Figure 3: A histogram of the speed measurements displayed in Figure 2, along with the acceleration
distribution (yellow).

D2.3.2: Page 8 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

3 Traffic Prediction

3.1 Introduction

Forecasting travel times to improve multi-modal routing for individuals or fleets is a challenging
task. In terms of the eCOMPASS project, the traffic prediction problem was stated in deliverable
D2.2 and several state-of-the-art approaches were discussed. Furthermore, as part of the task, four
different forecasting techniques were implemented in order to analyze their potential in effectively
forecasting travel times. Those techniques were the following:

• A k-Nearest Neighbors (kNN) approach, which utilizes data from each road and its neighbors
and when a prediction is requested it compares data vectors to identify the nearest ones to
the one to be predicted. The significance of every neighbor, and hence its participation in
the comparison, is determined using the Coefficient of Determination (CoD) between its time
series and the series of the road to be predicted.

• A Random Forest (RF) approach, adopted from [16], which used an RF regression algorithm
to forecast the next speed value of each road given three different kinds of input. Global
inputs are constructed by certain statistics for all roads, such as number of samples or mean
speed and a Principal Component Analysis PCA is performed to isolate the most important
features for all statistic metrics (i.e. dimensions). Neighborhood inputs were constructed
similarly, however taking into account only neighboring roads, while the last type of input
concerned the harmonic speed of the road to be predicted.

• A Space-Time Auto-Regressive Integrated Moving Average (STARIMA) approach using a sim-
ple model derived from [17]. The algorithm constructs a parametric equation for each group
of past speed values corresponding to the road to be predicted and certain neighbors that
are determined using CoD, as in kNN. The parameters of the model are determined using a
least square estimate, thus each time a prediction is requested the next value is calculated as
a linear combination of past values according to the determined parameters.

• A lag-based STARIMA approach, derived from the plain STARIMA case, yet the parameters
correspond to the lag, instead of the time series order with respect to the series of the road to
be predicted. In addition, the roads that are used for creating the model and determining its
parameters are not necessarily neighboring. Instead, the CoD is performed globally to reveal
any hidden dependencies among roads which are located in long distance to the road in ques-
tion. This comprises the novel element of the traffic prediction algorithm that we developed
in the context of the project that achieved the best performance among all aforementioned
benchmarking algorithms.

The aforementioned approaches are presented in detail in the previous deliverable D2.2. In this
deliverable, these approaches are evaluated against two different datasets.

Since no dataset was provided at the time that our research on traffic prediction had been
initiated, the first dataset that we used was taken from the third task of the IEEE ICDM Contest:
TomTom Traffic Prediction for Intelligent GPS Navigation [25]. It represents speed measurements
from the city of Warsaw, thus it is thereafter named as the Warsaw dataset. Despite being simulated,
the task of the contest is quite realistic. Concerning our evaluation purpose, the dataset used is
drawn from the third task of the contest which is defined as a realistic problem of acquiring sparse
data from GPS navigators all over a road network. The problem required forecasting travel time
for six and 30 minutes ahead of present time. Since data was given in raw form, as instantaneous
vehicle speeds at given coordinates, it was necessary to match the GPS-observed data to edges on
the map. This procedure, known as map-matching, is performed according to a method proposed
in [15] by J. Greenfeld. The method includes creating trajectories using consecutive instantaneous

D2.3.2: Page 9 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

(a) (b)

Figure 4: Road networks of (a) Warsaw and (b) Berlin with speed probes. The roads which are
colored in red () have average speed below 20 km/h, the speed of the yellow-colored ones () is
above 20 and below 50 km/h, and the speed of the green-colored roads () is above 50 km/h.

speed records for every car and matching the trajectories to edges using geometric distance metrics.
An illustration of the speed data matched on the map of Warsaw is shown in Figure 4(a).

Figure 4(b) illustrates the second dataset, which concerns the city of Berlin that was presented in
Section 2, and shall be named as the Berlin dataset. Although it was drawn by GPS locators, when
given to us, it was already map-matched. Of course, the Berlin dataset is far more interesting since
it is based on actual measurements. After preprocessing the Warsaw dataset as mentioned above,
both datasets are given in the form of instantaneous speeds that correspond to edges, including
also the direction of the vehicle in the edge.

In order to efficiently deal with the fact that for some edges in both datasets no data were
provided, we decided to combine edges in order to form road segments. In particular, each road
segment (or simply a road) is defined as any segment between two intersections, whereas edges
are defined as straight lines. Thus each road segment contains an arbitrary number of edges.
Furthermore, instead of individual records, we store only the arithmetic and harmonic mean of
recorded speeds, on the specified intervals, different for each dataset, i.e., five-minute and six-
minute intervals for Berlin and Warsaw, respectively. This coarse-grained approach ensures not
only data tolerance but also algorithm scalability.

The purpose of this section is to provide efficient means for evaluating the traffic prediction
techniques, which are briefly outlined here and presented in detail in deliverable D2.2, based on the
two datasets at hand. Thus, subsection 3.2 provides the results of the evaluation, illustrating the
major achievements and drawbacks of the aforementioned techniques. Finally, subsection 3.3 sum-
marizes the useful conclusions drawn from the application of the various benchmarking techniques,
while providing useful insight for further research in the field.

3.2 Experimental Results

This subsection describes the evaluation procedure that was conducted in order to benchmark the
performance of the aforementioned algorithms based on the two previously described datasets.

The aforementioned algorithms were implemented as part of a fully functional demo application
that we use in order to visualize results. The eCOMPASS traffic prediction demo application, is
compatible with numerous formats, including the shape-file format in which the maps of Figure 4

D2.3.2: Page 10 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

(a)

(b)

Figure 5: Screenshots of the eCOMPASS traffic prediction demo application for (a) Warsaw and
(b) Berlin. Screenshot (a) depicts the predicted travel time of the RF algorithm with PCA 30
minutes ahead of present time (i.e. interval from 24 to 30 min.), while screenshot (b) depicts the
travel time prediction of lag-based STARIMA 15 minutes ahead of present time (i.e. interval from
40 to 45 min.).

were provided, as well as the speed probe datasets for both Warsaw and Berlin. As shown in
Figure 5, the graphical user interface is split in two parts; the left view depicts real traffic data

D2.3.2: Page 11 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

and the right view depicts the predicted data. This presentation, along with the different colors for
different speed areas and the numerous metrics depicted, is certainly helpful in understanding the
flow of the traffic and illustrating the effectiveness of the various algorithms.

Although, as shown in Figure 5, both the Root Mean Square Error (RMSE) and the Mean
Average Precision Error (MAPE) metrics were used, RMSE was selected as the major metric, since
it is robust with respect to distortion introduced by near to zero values. The RMSE for a specific
interval is calculated as:

RMSE(i) =

√√√√ 1

n

n∑
r=1

(V̂ri − Vri)2 (1)

where Vri and V̂ri are the real and the predicted speed values respectively of road r for interval
i. The total RMSE of all roads for all intervals is found by calculating the mean value of the RMSEs
of all intervals:

TotalRMSE =
1

N

I∑
i=1

RMSE(i) (2)

where N is the total number of intervals. MAPE is provided by eq. (3)

MAPE(i) =
1

n

n∑
r=1

| V̂ri − Vri
Vri

| (3)

Tables 1 and 2 present the average RMSE for each time interval ahead for all algorithms for the
Berlin and Warsaw datasets respectively.

Table 1: Experimental results of traffic prediction algorithms for the Berlin dataset. The results
for each number of intervals ahead are obtained by averaging over all data that corresponds to the
respective number of intervals ahead of present time.

Intervals Ahead

1 2 3 4 5 6

kNN 3.079±0.29 3.082±0.29 3.096±0.29 3.116±0.28 3.135±0.24 3.169±0.22

RF with PCA 2.800±0.26 2.789±0.24 2.797±0.24 2.805±0.24 2.805±0.25 2.822±0.22

RF 2.796±0.25 2.797±0.24 2.807±0.24 2.823±0.24 2.805±0.24 2.826±0.22

Lag-based STARIMA 2.501±0.25 2.476±0.32 2.460±0.28 2.500±0.32 2.498±0.35 2.565±0.28

STARIMA 2.631±0.24 2.646±0.19 2.644±0.21 2.673±0.22 2.653±0.24 2.688±0.21

Most algorithms seem to perform in a reasonable manner with smaller error for less intervals
and larger for more intervals ahead of present time. Interestingly enough, kNN performs better
for five rather than one intervals ahead in the dataset of Warsaw (see Table 2). This could be
interpreted as an intuition about the existing noise of road time series of Warsaw and the weak
correlation among them. As far as the Berlin dataset is concerned, lag-based STARIMA outperforms
all algorithms, regardless of the number of intervals ahead given to predict. The performance of
the “plain” STARIMA is also satisfactory, thus implying that the dataset may favor Time Series
Analysis methods. RF methods exhibit larger error, while the PCA has no significant effect to the
performance of the algorithm. By contrast, it appears to strongly affect the performance in the
Warsaw dataset (see Table 2), where the RF with PCA method outperforms all others. However,
the effectiveness of lag-based STARIMA is rather satisfactory, since it has less error than “plain”

D2.3.2: Page 12 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Table 2: Experimental results of traffic prediction algorithms for the Warsaw dataset. Each value
is obtained by averaging over all data that corresponds to the number of intervals ahead.

Intervals Ahead

1 5

kNN 12.214±1.87 11.421±2.24

RF with PCA 6.087±1.28 6.833±1.31

RF 6.679±1.35 7.663±1.65

Lag-based STARIMA 7.331±1.45 11.747±2.35

STARIMA 8.859±2.19 12.694±2.66

STARIMA and kNN, even if the dataset seems to favor ML methods. Furthermore, the feature
selection of RF methods seems more well-suited to the dataset-specific characteristics (e.g. many
zero samples).

The total results of RMSE for all algorithms are given in Table 3. They were obtained by
averaging over all RMSE values (using (2)). Given these results, one can once again observe that
the RF implementations are very effective as far as the Warsaw dataset is concerned. However, the
STARIMA and the lag-based STARIMA perform better in the case of Berlin. This is rather expected
since the average CoD (over all combinations of roads) for Warsaw and Berlin is 26.84% and 83.11%
respectively. These metrics provide a hint that the Berlin dataset is more “well-correlated” than
the Warsaw one. This is generally expected since the Berlin dataset is real, whereas the Warsaw
dataset is generated.

Table 3: Experimental results of traffic prediction algorithms for Warsaw2and Berlin, which were
obtained by averaging over all RMSE values for all dataset intervals.

Datasets

Warsaw Berlin

kNN 11.818±2.10 3.112±0.27

RF with PCA 6.460±1.35 2.803±0.24

RF 7.171±1.59 2.809±0.24

Lag-based STARIMA 9.539±2.95 2.499±0.30

STARIMA 10.776±3.10 2.655±0.22

Finally, Figure 6(a) and Figure 6(b) provide an example error illustration for the datasets of
Berlin and Warsaw respectively. As noted by the ticks of the x axis for each of the continuous
fragments, Berlin predictions range from five to 30 minutes ahead, i.e. from one to six intervals
ahead of present time. Concerning the Warsaw dataset, data is split into blocks. For each block
two predictions are given, one for six and one for 30 minutes ahead of present time, i.e. for one
and five intervals ahead respectively. Finally, Figure 7 illustrates the results given in Table 3. The
information of these figures clarifies not only the relative performance of the algorithms, but also

2Note that small deviations from the results of the IEEE ICDM contest ([25]) are reasonable for the RF imple-
mentation [16] not only because of rounding errors but also because the map-matching procedures differ.

D2.3.2: Page 13 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
5 6 7 8 9 10

Intervals

1.5

2.0

2.5

3.0

3.5
R

M
S

E

(a) RMSE of Traffic Prediction Algorithms for Berlin

6 30 6 30 6 30 6 30 6 30
0 1 2 3 4

Blocks

4

6

8

10

12

14

16

R
M

S
E

kNN
RF with PCA
RF
Lag-based STARIMA
STARIMA

(b) RMSE of Traffic Prediction Algorithms for Warsaw

Figure 6: Graphs showing (a) the RMSE for a sample 1-hour interval of Berlin, and (b) the RMSE
for one and five intervals ahead for five blocks of Warsaw. The lower x tick labels denote the current
interval at present time (i.e. 6, 7, . . .), and the upper x tick labels denote how many minutes ahead
of present time are predicted (i.e. 5, 10, 15, . . .). For Warsaw, equivalently, the lower x tick labels
denote the current block at present time (i.e. 0, 1, . . .), and the upper x tick labels denote how
many minutes ahead of present time are predicted (i.e. six or 30).

certain interesting features they appear to have.
Concerning Figure 6(a), labeled x-axis items denote intervals, whereas non-labeled ones denote

how much intervals ahead are to be predicted (one to six, i.e. five to 30 minutes). At first, one
can observe that the prediction error is smaller for one or two intervals ahead than it is for more
intervals. This is quite reasonable since e.g. the traffic at interval three may also depend on intervals
one and two. Concerning the performance of the algorithms, lag-based STARIMA seems to perform
quite well with respect to all other algorithms. The global CoD indeed succeeds in identifying the
well-correlated roads. By contrast, the PCA seems to have little impact on such a well-correlated
dataset, as the RF algorithm performs quite similarly with and without PCA. Finally, the “plain”
STARIMA implementation seems also strong, achieving to capture the trend of traffic, whereas
kNN performs worse with respect to all algorithms, possibly because it does not use a weighting
method to isolate the most useful series. Specifically, the input vector of kNN takes into account
excessive information for all time series, without considering lag (like lag-based STARIMA) or using
weights (like STARIMA).

Figure 6(b) depicts the error for a 5-block subset of the target (input) data of the Warsaw
dataset. Labeled x-axis items denote the prediction error for the 1st interval ahead (i.e. five min-

D2.3.2: Page 14 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Warsaw Berlin
Datasets

0

2

4

6

8

10

12

14

R
M

S
E

kNN
RF with PCA
RF
Lag-based STARIMA
STARIMA

Figure 7: Graph showing average RMSE of algorithms for the Warsaw and Berlin datasets, calcu-
lated as the average of all intervals.

utes), whereas non-labeled ones denote the error for the 5th interval ahead (i.e. 30 minutes). At
first, it is obvious that all algorithms perform better when forecasting one rather than five intervals
ahead. The performance of the RF algorithm is quite satisfactory, and the PCA seems to have
some impact on it. Although the effectiveness of the two RF methods does not seem significantly
apart, since e.g. a sign test could unveil that they are equally effective, in terms of total RMSE
(see Table 3), PCA seems as a well-justified option. Both STARIMA implementations do not
fully exploit the data, since the simulated dataset poses a problem seemingly directed towards ML
classification algorithms, such as the RF, rather than Time Series Analysis. However, as shown in
Figure 6(b), the STARIMA methods perform satisfactorily for one interval ahead, probably because
they capture more easily the trend of the time series for short number of intervals ahead. Finally,
kNN seems rather unstable, which is expected since the quality of the data (input vectors) given is
arbitrary for different roads and time moments. Thus, its error is actually relative to data quality
for a given block.

3.3 Conclusion

With respect to the results and analysis given in the previous subsection, the lag-based STARIMA
is proven to be a satisfactory approach when it comes to real datasets, such as the one of Berlin.
Although the RF approach was more successful for the Warsaw dataset, the lag-based STARIMA
is rather adequate concerning the ICDM contest posed a significantly difficult ML problem, with
noisy and sparse data.

Specifically, the lag-based STARIMA approach is efficient, because it captures the spatio-
temporal nature of the data. The lag element of the algorithm is crucial since it successfully
models the temporal characteristics of road networks. Furthermore, identifying well-correlated
inputs proved optimal with respect to using data from neighboring roads.

Concerning the effect of using either local or global metrics, the latter proved to be quite useful
for both datasets. Generally, the CoD is much more effective when there are strong correlation
relationships among the roads of the network, which was the case for Berlin. By contrast, the PCA
successfully isolates the “noisy” dimensions of the data, thus it is optimal for the Warsaw dataset.

In conclusion, not only the lag-based STARIMA but also the other algorithms may be improved
and tested in different circumstances. For instance, the global CoD could be used along with RF or
kNN, while new ideas lie also in hybrid solutions. Further to this, generalizing the findings about
STARIMA and RF to parametric and non-parametric algorithms respectively is an interesting, yet
complex task to be explored further in future work. In any case, the analysis performed should be
a solid first step towards future research on travel time forecasting.

D2.3.2: Page 15 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

4 Time-Dependent Shortest Paths

4.1 Time-Dependent Approximation Methods

Introduction. Given a directed graph G = (V,A), a set of time-dependent arc-delay functions
D[a](t), a ∈ A, and a departure time t from an origin (source) vertex o ∈ V , we introduce a single-
pair and a single-source algorithm [19] for approximating the shortest delay (travel time) functions,
D : V ×V ×R≥ 0 → R≥ 0, from o to one or multiple destination vertices d ∈ V . In the same context,
additionally, we provide the resulted approximated shortest path (sub) trees, rooted at o, for any
t ∈ [0, T], where T denotes the time period.

Throughout the section 4.1, for simplicity in notation, we drop the dependence of all the func-
tional descriptions from the departure-time t. Also, due to the assumption for periodicity, we
restrict the functions within a single time period.

The proposed algorithms, in [19], are used in our experimental research, in the case of networks
with, in general, piecewise linear arc-delay functions D[a](t) and time period T = 24h. The first
algorithm regards approximating D[o, d](t) ≡ D[o, d], from an origin vertex o to a destination vertex
d. The second regards approximating D[o, ∗](t) ≡ D[o, ∗], from a common origin vertex o to multiple
destination vertices. Both of them are useful, when it is necessary to avoid an expensive computation
of a shortest delay function D, without indispensably demanding high precision (although in quite
many cases this can be achieved by default). In any case, however, it is required to ensure that the
approximation error is bounded by a certain small threshold.

The main idea of the used approximation methods is to keep tracing and sampling the (unknown)
shortest delay function D[o, d], at specific time points, thus creating breakpoints, for a lower-
approximating function D[o, d], and more importantly, for an upper-approximating function D[o, d],
until the required approximation guarantee is assured. On this purpose, the knowledge of how
function is changing during a time interval can be valuable:

• Constant functional form. If the delay function D[o, d] doesn’t change (in terms of slope and
constant-offset), then the approximation error is zero and thus there is no need for sampling
it at intermediate time points of the interval.

• Decreasing slope. When the delay function D[o, d] is concave, its slope is monotonically
decreasing until the endpoint of the interval. This info enables the ability of computing
straightforward the approximation error between the samples within the interval. In general,
if the computed error is enough small, we stop the sampling. Otherwise, we take additional
samples inside the interval, until the error becomes small.

Sampling methods. In our implementations, we perform the sampling, computing concurrently
the exact worst-case absolute error. Furthermore, we roughly make half the samples compared
to the method of Foschini et al [13], while keeping (as breakpoints of D) among them only those
that are really necessary in order to assure the approximation guarantee. Additionally, we are only
interested in candidate breakpoints, which are beyond the next certificate failure tfail (for further
details, see Deliverable 2.2 - section 3.4.2), a quantity that can be computed during each Dijkstra-
run (TDD) for the next sample point. This is safe, because until tfail we already know that D[o, d]
and D[o, d] will be identical to D[o, d].

Our sampling and the approximation error computation take place at intervals where the delay
function is known to be concave. These intervals can be identified on the prepossessing phase, that
we discuss later. The exact worst-case absolute error is based on the partial derivatives of each
consecutive samples and the resulted maximum distance between D[o, d] and D[o, d] (see Deliverable
2.2 - section 3.4.1 and [19]).

Single pair approximation. The sampling procedure that we use provides the explicit repre-
sentation of the breakpoints of D[o, d] and D[o, d]: D[o, d](t) · (1 − ε) ≤ D[o, d](t) ≤ D[o, d](t) ≤

D2.3.2: Page 16 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

D[o, d](t) ≤ (1 + ε) · D[o, d](t), o, d ∈ V and t ∈ T , in such a way that both the required ap-
proximation ratio is guaranteed and the output (in terms of samples) is indeed asymptotically
space-optimal. In the single-pair algorithm, we use two distinct (sampling) phases, each depending
on the slope of D[o, d], and also through them a concurrently certificate checking routine. We give
a brief description of them :

• First phase (large slope). This implies that the delay is faster changing over the time axis.
Therefore, the error between the samples is estimated to be relatively high. So long as the
shortest-travel-time slope (i.e., of function D[o, d]) is greater than 1 we shall keep sampling
the vertical (travel-time) axis, as follows: Departing from o at time ts = t0, we compute with a
forward call of TDD, the earliest-arrival time at d, t0+D[o, d](t0). We then carefully delay the
arrival-time, i.e, we consider the arrival time t1+D[o, d](t1) = t0+(1+ε)i ·D[o, d](t0) |i=1, and
we perform a backward call of TDD, in order to determine the proper (latest) departure-time
t1 from o. If the error between the samples at t0 and t1 is small, we increase i and proceed
the sampling at the next departure time ti. Otherwise, if the error becomes prohibitive, we
stop, taking only the second last sample at ti−1, which is the last one that passed the error
test. In this case, we set as next waypoint, the computed sample at ti−1. This procedure is
repeated until the end of time window is reached, or the slope of D[o, d] drops below 1, in
which case the current phase of the approximation algorithm is stopped (see Figure 8, 9).

Figure 8: Sampling along the (vertical) delay axis.

D2.3.2: Page 17 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 9: Singe pair approximation. First Phase.

• Second phase (small slope). For slope near to zero, this implies that the delay is slowly
changing over the time axis. Therefore the error between the samples is estimated to be
relatively small. In this case, the sampling is performed with the classic bisection method.
We divide each time interval [t1, t2] into two subintervals [t1, tmid] and [tmid, t2], computing the
additional sample at tmid. We keep bisecting the time-axis until the error between the samples,
at the endpoints of the subintervals, become small enough and the required approximation
guarantee is achieved [19].

• Certificate failure inspection (constant functional form). If the slope and the offset-constant
of the delay function D[o, d] remains unchanged, then no error can arise. The algorithm
can learn online a such interval from the (primitive and minimization) shortest path failure
certificates. In this case, the minimum certificate of o-d path is used in order to compute
the expiration time, when this path and its delay function stop being optimal to a future
departure time tfail from o.

Single source approximation. Similarly, as before, we want to provide an upper-approximation
D[o, ∗] of a vector function D[o, ∗], in such a way that D[o, v] and D[o, v], is a (1 + ε)-upper-
approximation and (1 − ε)-lower-approximation of D[o, v], for any destination vertex v, reachable
from the origin o. The overall goal is to produce upper-approximating delay functions, such that :
D[o, v](t) ≤ D[o, v](t) ≤ D[o, v](t) ≤ (1 + ε) ·D[o, v](t), ∀o, v ∈ V and t ∈ T .

We start with a generalization of the bisection method, involving all destination vertices. Our
method creates concurrently (i.e., within the same bisection) all the required approximated functions
of D[o, ∗] and D[o, ∗]. This is possible because the bisection is performed on the departure-time axis
(common for all travel-time functions D[o, ∗]) from the same origin o. For each destination vertex
v ∈ V , we only keep as breakpoints of D[o, v], those sample points, which are indeed necessary for
the required approximation guarantee, thus achieving an asymptotically optimal space-complexity
of our method. We note that two consecutive samples to each D[o, v] may arise different error
magnitude. Therefore we let the bisection, at each level, only for the D[o, v] that need to be
approximated better. In any case, we use again the evaluation of the (worst-case) approximation
error, but this time per destination vertex [19]. This guides the sampling of any D[o, v], through
the bisected time subintervals. Moreover, all the delays to be sampled at a particular bisection
point are calculated by a single TDD execution. The time complexity of this approach will be
asymptotically equal to that of the single-pair algorithm for the more demanding origin-destination
pair.

D2.3.2: Page 18 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Preprocessing. As in Foschini et al. [13], our algorithms are applied in subintervals [ts, tf] ⊆ [0, T],
in which D[o, d] is a concave function. Because only the arc-delay functions D[a] carry the respon-
sibility for the concavity of D[o, d], we search their local (primitive) concavity spoiling breakpoints,
bcs (see Figure 10). We then project the traced O(mK) bcs breakpoints to the respective latest
departure-times (called concavity spoiling primitive images PIcs), at any origin o ∈ V . The latest
departure-times can be obtained by applying backwards TDD probes from all the tails of the arcs
a, possessing bcs in their delay function D[a].

For each bcs, we need to store O(n) PIcs images. The overall space complexity of PIcs heuristics
is O(mnK). But we note, that usually bcs are few in number, and thus the space that is required
is Ω(n).

The PIcs heuristics provide the material for producing the required subintervals [ts, tf]. Partic-
ularly, in order to preserve the concavity of D[o, d], one has to project to departure-times from the
origin o, only between PIcs.

Figure 10: Concavity-spoiling breakpoints of arc-delay functions. Only the (red) delay-Concavity-
Spoilers primitive breakpoints t1, t5 spoil the concavity of D[uv], and possibly the concavity of
D[o, d]. These breakpoints have to be projected (as primitive images) to departure-times from
the origin o, for every arc in the network. Observe that the (positive) slope at time t1 increases,
while the (negative) slope at t5 also increases. In all other (non-concavity-spoiling) breakpoints the
arc-delay slopes decrease.

The PIcs heuristics can be precomputed and then be considered as part of the input of the above
algorithms. During a shortest path query, we should take care about selecting only the necessary
PIcs, for the corresponding D[o, d] computation. Note that we want only PIcs from arcs that are
part of all (initially unknown) shortest o-d paths, over the time period [0, T]. Our simple approach,
for filtering the PIcs, is as follows: In the preprocessing phase, except of the PIcs-departure times,
we also compute and store the shortest free flow delay from any vertex v to the head of the arc that
yields the PIcs. This can be acquired by applying backwards Dijkstra using free flow arc-delays.
After, during the query, at first, we compute the shortest worst congestion delay, in a similar manner
as free flow one, from the origin vertex o to the destination vertex d (or the farthest destination,
in case of multiple ones). Then we collect only the PIcs, which have shortest free flow delay from
o to their arc’s head less or equal than the shortest worst congestion delay from o to d. Therefore
this reduces (depending on the distance of o-d) an important number of neutral PIcs, from farthest
arcs, that they cannot belong to any shortest o-d path, during all the time period [0, T].

Experimental setup. The experiments were conducted on an Intel(R) Core(TM) i5-2500K CPU
@ 3.30GHz, with a cache size of 6Mb and 8Gb of RAM. Our implementations were written in C++
and compiled by GCC version 4.6.3, with optimization level 3. For the graph representation, we

D2.3.2: Page 19 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

used the Packed-Memory Graph (PMG) structure [20].
We tested our implementation on the road network of Berlin, with n = 117839 vertices and

m = 310152 arcs. The data set was provided by TomTom [2]. The cost on the arcs is time
dependent travel time, and it is defined by piecewise linear delay functions. Each arc-delay piecewise
linear function consists of a sequence of leg-functions {slope, offset-constant, time interval}, whose
generation is based on the provided TomTom’s speed profiles.

In our approach, for reducing the number of breakpoints, we have replaced successive time slots,
which their yielded delay time differs 1-3 seconds, with a single arc-delay, as the linear interpolation
through them. The total number of the legs/breakpoints, from all arc-delay functions, is 359225.
The most arcs have delay functions with zero slope, providing a constant travel time, during all the
time period. Furthermore, 18833 arcs have an average of 5 legs (and maximum 46), while the rest
369235 arcs only one. The slope of the delay functions is in [−0.5, 0.5].

In the experiments, we ran 100 queries, where the origin vertex o and the destination vertex d
were selected uniformly at random among all vertices. For the time period, we selected Tuesday,
as we noticed that is one of the days of week, containing the most non-constant delay functions.

Input parameters. For any query, we use the approximation error ratio ε, such that D[o, d] · (1−
ε) ≤ D[o, d] ≤ D[o, d] ≤ D[o, d] ≤ (1 + ε) ·D[o, d]. In the experiment, we set ε =0.01, 0.05, 0.1 and
0.25. This means that the resulted D[o, d] delay is at most 1%, 5%, 10% and 25%, respectively,
higher than D[o, d].

In the case of single-source queries, instead of considering all vertices of graph, as individual
targets, we focus on fewer. This can be advantageous, because the computation cost is depending
on the number of the target vertices, and we don’t always need to process the full graph, but only
a subgraph around the selected origin vertex o. In our results, we report the number of the target
vertices (Figure 15 and 16).

In order to define the target vertices, we have used a free-flow time horizon thz (among several
criteria). This time horizon defines which vertices in graph can be reached from the selected origin
vertex o in at most thz delay, via the best traffic case. However, in this matter, we clarify that along
the time period [0, T] the delay can become greater than thz, especially during rush hours. The
process for collecting the target vertices is performed by running TDD, with free flow arc-delays. In
this case, the settled nodes in at most thz delay, will be on the resulted free-flow shortest path tree.
However, at the sampling phase of our approximation algorithm, we shall not restrict the exploring
of TDD only in the subgraph, that contains the target-destination vertices. In order to guarantee
that our approximation algorithm will perform the sampling on the optimal delay functions and use
the correct certificates, over all the time period, we also need to build another shortest path tree.
This time using the worst congestion delays, and at a distance such that just all target vertices are
settled. We then extend the free flow shortest path tree, up to the max shortest congested delay
to the farthest target vertex. From this tree the additional settled nodes may be required, at some
time point of [0, T], to take part on the building of the shortest paths and their delay functions to
a vertex destination.

On the computation of D[o, d], we tested the algorithms not only for the full time period [0, T],
but also in small to large subintervals. In this matter, we provide an option on selecting a time
window tw = [ts, tf] ⊆ [0, T] for specific departure time intervals, that user interests.

Experimental Results. For the experimental evaluation of the proposed algorithms, we present:
a) the execution time and b) the number of samples that were obtained during the approximation
of the shortest delay D[o, d] functions. Also, we associate the performance of the algorithms with
the number of the target-vertices (for single-source queries), the travel time horizon, and the time
window, regarding the departure time range from origin o.

D2.3.2: Page 20 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 11: Execution time on single-pair shortest path queries. Time window: [0:00-12:00].

Figures 11, 12, 13, 14 shows the execution time by performing single-pair queries. In these
figures, we group the queries, by their computation difficulty, which is reflected by Dijkstra rank.
This rank denotes the average number of the nodes required to be settled by TDD, throughout the
approximation procedure, in the given departure time window.

About the performance of both approximation algorithms, firstly, we observe that the execution
time is not necessarily increased as the departure time window is growing up. This is mainly due
that we let our algorithms take into account the shortest path failure certificates. Therefore, if the
delay functional form remains constant for large time intervals, the approximation error is zero,
and the sampling work minimum. This can be possible at certain departure times, e.g. when there
is low congestion traffic (Figure 11). In our experiments, such cases concentrated when departing
from evening to morning hours. In Figure 11, we take almost the same execution time results for
the time window [14:00, 22:00].

Moreover, we observe that when time window enters in high volatility congestion time ranges,
this has a great influence on the performance of the algorithms. More specifically, during peak
periods, and mostly for late morning and early afternoon hours (Figure 12), a high percentage of
legs of the arc-delay functions is triggered. In this case, the functional form of D[o, d] is more likely
to change, making the sampling work of the algorithms more difficult. Also, the certificates become
less valuable, because of the small expiration - time horizons of the mutable delay functions.

D2.3.2: Page 21 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 12: Execution time on single-pair shortest path queries. Time window: [12:00-13:00].

Figure 13: Execution time on single-pair shortest path queries. Time window: [0:00-12:00].

D2.3.2: Page 22 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 14: Execution time on single-pair shortest path queries. Time window: all day.

The single-source algorithm, Figures 15 and 16, is more expensive than the single-pair one,
because the delay function sampling is extended to more than one destination vertex. In this case,
as we increase the number of the targets, the execution time gets bigger. Again the performance
of the algorithm is dependent on the how much delay function is changeable, than the length of
the time window, that we consider. In figures, the number of the targets are obtained for free flow
delay thz, up to 15 mins.

Figure 15: Execution time on single-source shortest path queries. Time window: [0:00-12:00].

D2.3.2: Page 23 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 16: Execution time on single-source shortest path queries. Time window: all day.

In the experiments, we notice that many concavity spooling breakpoints are triggered at rush
hours. Therefore their yielded primitive images lead to dividing the departure time window into
several small subintervals, densely populated at times with sharp congestion. These small in width
subintervals, force the algorithms collecting a large number of samples, is some cases, more than
could probably needed. This additionally results on a high approximation of the delay function,
independently the selected approximation ratio.

ε 0.01 0.05 0.1 0.25

0 < targets ≤ 2000
#samples/target 236.25 233.86 233.20 232.82

2000 < targets ≤ 4000
#samples/target 1143.38 1140.30 1139.87 1139.64

4000 < targets ≤ 8000
#samples/target 2609.71 2606.55 2606.19 2606.00

8000 < targets ≤ 10000
#samples/target 4234.74 4231.46 4231.08 4230.95

Table 4: Single-source approximation. Average number of samples per target based on the approx-
imation error ratio ε.

4.2 Dynamic Time-Dependent Customizable Route Planning

In this section, we evaluate the performance of our separator-based approach to time-dependent
route planning. For details on the algorithmic approach and a discussion of related work (e. g., [10]),
please refer to Deliverable D2.2.

Experiments. We implemented all algorithms in C++ using g++ 4.7.1 (flag -O3) as compiler.
Experiments were conducted on a dual 8-core Intel Xeon E5-2670 clocked at 2.6 GHz, with 64 GiB
of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. Unless otherwise noted, we ran our
implementation sequentially.

D2.3.2: Page 24 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Table 5: Network properties. We report the number of vertices and arcs of the routing graph, and
as a measure of time-dependency, the total amount of break points in the whole network as well as
the average arc complexity.

Network Time # Vertices # Arcs # Break points Avg. # BPs
resol. per arc

Berlin 1 s 443 369 988 686 2 087 913 2.11
Berlin 0.1 s 443 369 988 686 11 438 281 11.57

Germany 1 s 4 688 214 10 795 826 8 527 620 0.79
Germany 0.1 s 4 688 214 10 795 826 10 970 201 1.02

Table 6: Customization performance.

Network Time # Thr. # Add. break points Customization time [sec]
resol. Lvl 1 Lvl 2 Lvl 3 Lvl 1 Lvl 2 Lvl 3 Total

Berlin 1 s 16 5 740 292 15 849 458 25 388 351 0.67 1.95 34.55 37.44
Berlin 0.1 s 16 30 049 724 78 872 663 89 802 847 1.12 9.29 119.88 131.33

Germany 1 s 16 19 827 634 40 637 476 61 630 170 17.59 6.36 18.65 43.26
Germany 0.1 s 16 27 693 336 58 718 516 91 781 882 19.23 6.59 26.02 52.85

Input Data and Methodology. Our test instances are based on the road network of Ger-
many, kindly provided by PTV AG, and the road network of Berlin/Brandenburg, kindly provided
by TomTom. Both inputs are specified in a similar way, essentially consisting of a list of road
segments of given length, free flow speed, and a reference to a delay profile. This profile describes
the time-dependent behavior of the road segment as the relative change in speed as a function of
time. For details, see Section 2.

For our purposes, we instead associate each road segment with a piecewise linear function
mapping time of day to travel time (c. f. [10]). During the conversion from the input, we observe
that for short road segments of high free flow speed (e. g., 1 m length, 67 km/h speed), the resulting
travel time functions are almost constant, deviating only in milliseconds and below. Hence, during
the conversion to travel time, we may assume fixed time resolutions on arc delay functions such
as one second or one 10th of a second. For both instances, we extracted the 24 hour profile of a
Tuesday. See Table 5 for the resulting network statistics.

For partitioning, we used BUFFOON [22], which is explicitly developed for road networks and
aims at minimizing the number of boundary arcs. For both instances, we computed a nested 3-level
partition with 25, 210, 215 cells. Computing partitions takes less than one hour, each. Considering
that road topology changes rarely (i. e., the partition needs be updated only when roads are built or
(permanently) closed), this is sufficiently fast in practice. For a detailed evaluation of the trade-off
between partitioning speed and quality, see [8].

Performance Evaluation. In Table 6, we report the performance of customization for different
instances. Total customization time is fast enough to incorporate frequent metric updates, ranging
from half a minute to 2.2 minutes computation time. Detailed analysis shows that most effort is
spent on the highest level, which also introduces the largest amount of additional number of break
points (up to 12 times more than the number of break points on original arcs). In Table 7, we
show detailed statistics on the arc complexity after customization. Note that the time resolution
chosen for the input has a profound effect on the number of resulting break points and hence the
customization performance.

Customization is easy to parallelize between cells. In Table 8, we report details on the cus-

D2.3.2: Page 25 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Table 7: Histogram of arc complexity after customization.

BPs Berlin-1s Berlin-0.1s Germany-1s

constant 343 716 325 542 1 438 871
< 100 224 192 107 003 1 546 863
< 200 32 495 74 971 185 805
< 300 22 187 36 549 84 648
< 400 11 340 16 161 43 885
< 500 5 128 8 305 17 390
< 600 3 141 5 812 5 296
< 700 2 663 5 795 1 622
< 800 2 761 5 814 662
< 900 2 744 5 937 126
< 1 000 2 502 5 949 11
< 1 100 2 219 5 823 —
< 1 200 2 015 5 866 —
< 1 300 1 767 5 512 —
< 1 400 1 527 4 984 —
< 1 500 1 273 4 421 —
< 1 600 934 3 831 —
< 1 700 526 3 100 —
< 1 800 307 2 383 —
< 1 900 142 1 928 —
< 2 000 52 1 437 —
< 3 000 9 9 483 —
< 4 000 — 12 071 —
< 5 000 — 4 896 —
< 6 000 — 67 —

tomization performance for increasing number of threads. While the speedup on Level 2 is very
good (factor of ≈ 13), it deteriorates on the most expensive Level 3 (factor of ≈ 3). This is explained
by the fact that, for the current graph partitions, cells are rather unbalanced wrt. to break point
complexity of their contained arcs; since the highest level only has 32 cells, i. e., 2 per core when
parallelized on 16 thread, this results in a rather unbalanced utilization of the threads.

In Table 9, we report figures on query performance, observing that multi-level queries (CRP)
are between a factor of 21 to 107 faster than traditional Dijkstra. Note that CRP even scans two to
three orders of magnitude less vertices than Dijkstra, but that the number of scanned break points
is only up to 1 order of magnitude lower. Most interestingly, when comparing CRP and Dijkstra
query times, CRP performance seems to be more robust over different input instances.

Since customization of the the highest level of the partition is most expensive, we also evaluated
the performance of CRP when ignoring level 3 in the query phase (removing it from the partition).
On Berlin-0.1 s, this increases the number of scanned vertices by a factor of 5 but the query time
only by a factor of 2-3, offering an interesting customization–query-time trade-off.

Conclusion. Our experimental evaluation so far shows that a multi-level separator approach to
time-dependent route planning is not only promising but indeed practical. There are several aspects
of future work. We would like to evaluate a more diverse set of test instances, taking into account
bigger road networks. Naturally, we expect to see greater performance gains over Dijkstra on such
instances. To this end, we also plan to consider full-week profiles instead of only 24-hour profiles,
which to our knowledge has not been done in published work so far. Since customization effort

D2.3.2: Page 26 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Table 8: Multi-core customization performance.

Network Time # Thr. Customization time [sec]
resol. Lvl 1 Lvl 2 Lvl 3 Total

Berlin 1 s 1 1.38 25.54 115.41 142.56
Berlin 1 s 2 0.76 13.07 59.32 73.39
Berlin 1 s 4 0.42 6.74 36.91 44.30
Berlin 1 s 8 0.28 3.61 34.84 38.97
Berlin 1 s 16 0.67 1.95 34.55 37.44

Table 9: Query performance.

Network Time res. Algorithm # Scn. vertices # Scn. BPs Time [ms]

Berlin 1 s Dijkstra 222 359 639 111 53.54
Berlin 0.1 s Dijkstra 222 410 1 909 451 74.03
Germany 1 s Dijkstra 2 489 829 1 832 060 534.90
Germany 0.1 s Dijkstra 2 490 073 2 070 130 550.88

Berlin 1 s CRP 1 140 353 384 2.54
Berlin 0.1 s CRP 1 141 505 344 3.32
Germany 1 s CRP 3 478 111 957 4.98
Germany 0.1 s CRP 3 479 136 630 5.20

increases quickly from level to level, we would like to apply approximation techniques between levels,
reducing the stored amount of break points on overlay arcs, before continuing with the next level
of customization. This could also eliminate the imbalance that currently hinders parallelization for
higher number of threads. In this regard, we are also interested in evaluating different partitioning
schemes. Finally, we will consider the scenario of local updates due to live traffic data and traffic
prediction more carefully. It seems reasonable to assume that most of the customization data,
especially on higher levels, does not need to be updated in such cases, resulting in much faster
customization time.

D2.3.2: Page 27 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

5 Alternative Route Planning

5.1 Introduction

Route planning services – offered by web-based, hand-held, or in-car navigation systems – are
heavily used by more and more people. Typically, such systems (as well as the vast majority of
route planning algorithms) offer a best route from a source (origin) s to a target (destination) t,
under a single criterion (usually distance or time). Quite often, however, computing only one such
s-t route may not be sufficient, since humans would like to have choices and every human has also
his/her own preferences. These preferences may well vary and depend on specialized knowledge or
subjective criteria (like or dislike certain part of a road), which are not always practical or easy
to obtain and/or estimate on a daily basis. Therefore, a route planning system offering a set of
good/reasonable alternatives can hope that (at least) one of them can satisfy the user, and vice
versa, the user can have them as back-up choices for altering his/her route in case of emergent
traffic conditions. This can be particularly useful in several cases. For example, when the user
has to choose the next optimal alternative path, because in the current one, adverse incidents are
occurred, like traffic jams, accidents or permanent unavailability due to construction work.

The aggregation of alternative paths between a source s and a target t can be captured by the
concept of the Alternative Graph (AG), a notion first introduced in [5]. Storing paths in an AG
makes sense, because in general alternative paths may share common nodes (including s and t) and
edges. Furthermore, their subpaths may be combined to form new alternative paths.

In general, there may be several alternative paths from s to t. Hence, there is a need for
filtering and rating all alternatives, based on certain quality criteria. The study in [5] quantified
the quality characteristics of an alternative graph (AG), captured by three criteria. These concern
the non-overlappingness (totalDistnace) and the stretch (averageDistnace) of the routes, as well
as the number of decisionEdges (sum of node out-degrees) in AG. For more details, see Deliverable
D2.2. As it is shown in [5], all of them together are important in order to produce a high-quality
AG. However, optimizing a simple objective function combining just any two of them is already an
NP-hard problem [5]. Hence, one has to concentrate on heuristics. Four heuristic approaches were
investigated in [5] with those based on Plateau [3], Penalty [7], and a combination of them to be
the best.

In this deliverable, for the sake of completeness, we present our final improved methods for
computing a set of alternative source-to-destination routes in road networks in the form of an
alternative graph, which appear to be more suitable for practical navigation systems [4, 18]. These
methods appeared in [21]. The resulting alternative graphs are characterized by minimum path
overlap, small stretch factor, as well as low size and complexity. Our approach improves upon a
previous one by introducing a new pruning stage preceding any other heuristic method and by
introducing a new filtering and fine-tuning of two existing methods.

We extend the approach in [5] for building AGs in two directions. First, we introduce a pruning
stage that precedes the execution (and it is independent) of any heuristic method, thus reducing
the search space and hence detecting the nodes on shortest routes much faster. Second, we provide
several improvements on both the Plateau and Penalty methods. In particular, we use a different
approach for filtering plateaus in order to identify the best plateaus that will eventually produce
the most qualitative alternative routes, in terms of minimum overlapping and stretch. We also
introduce a practical and well-performed combination of the Plateau and Penalty methods with
tighter lower-bounding based heuristics. This has the additional advantage that the lower bounds
remain valid for use even when the edge costs are increased (without requiring new preprocessing),
and hence are useful in dynamic environments where the travel time may be increased, for instance,
due to traffic jams.

Finally, we conducted an experimental study for verifying our methods on several road networks
of Western Europe. Our experiments showed that our methods can produce AGs of high quality
pretty fast.

D2.3.2: Page 28 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

The rest of this section is organized as follows. In subsection 5.2, we provide the main background
information, from Deliverable 2.2. In subsection 5.3, we present our proposed improvements for
producing AGs of better quality. In subsection 5.4, we report a thorough experimental evaluation
of our improved methods. In subsection 5.5, we demonstrate some of the visualized results we got
with our alternative route planning implementation.

5.2 Preliminaries

A road network can be modeled as a directed graph G = (V,E), where each node v ∈ V represents
intersection points along roads, and each edge e ∈ E represents road segments between pairs of
nodes. Let |V | = n and |E| = m and d(u, v) ≡ dG(u, v) be the shortest distance from u to v in
graph G.

We consider the problem of tracing alternative paths from a source node s to a target node t
in G, with edge weight or cost function w : E → R+. The essential goal is to obtain sufficiently
different paths with optimal or near optimal cost. We proceed with the definitions of an alternative
graph and its quality indicators.

Alternative Graph. Formally, an AG H = (V ′, E′) [5] is a graph, with V ′ ⊆ V , and such that for
all e = (u, v) ∈ E′, there is a Puv path in G and a Pst path in H, so that e ∈ Pst and w(e) = w(Puv),
where w(Puv) denotes the weight or cost of path Puv. Let dH(u, v) be the shortest distance from u
to v in graph H.

Quality indicators. For filtering and rating the alternatives in an AG, we use the following
indicators, as in [5]:

totalDistance =
∑

e=(u,v)∈E′

w(e)

dH(s, u) + w(e) + dH(v, t)
(overlapping)

averageDistance =

∑
e∈E′ w(e)

dG(s, t) · totalDistance
(stretch)

decisionEdges =
∑

v∈V ′\{t}

(outdegree(v)− 1) (size of AG)

In the above definitions, the totalDistance measures the extend to which the paths in AG are non-
overlapping. Its maximum value is decisionEdges+1. This is equal to the number of all s-t paths
in AG, when these are disjoint, i.e. not sharing common edges.

The averageDistance measures the average cost of the alternatives compared with the shortest
one (i.e. the stretch). Its minimum value is 1. This occurs, when every s-t path in AG has the
minimum cost.

The decisionEdges measures the size complexity of AG. In particular, the number of the alter-
native paths in AG, depend on the “decision branches” are in AG. For this reason, as high the
number o decisionEdges, the more confusion is created to a typical user, when he tries to decide his
route. Therefore, it should be bounded.

Consequently, to compute a qualitative AG, one aims at high totalDistance and low averageDis-
tance. Examples of the use of the above quality indicators can be found in Deliverable D2.2.

5.3 Our Improvements

In Deliverable 2.2, we reviewed the previous approaches for computing alternative graphs, and
briefly highlighted our improved methods. In this deliverable, we present in detail these improved
methods by extending the Plateau and Penalty approaches. Our improvements are twofold :

A) We introduce a pruning stage that precedes the Plateau and Penalty methods in order to
a-priori reduce their search space without sacrificing the quality of the resulted alternative
graphs.

D2.3.2: Page 29 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

B) We use a different approach for filtering plateaus in order to obtain the ones that generate the
best alternative paths. In addition, we fine tune the penalty method, by carefully choosing
the penalizing factors on the so far computed Pst paths, in order to trace the next best
alternatives.

5.3.1 Pruning

We present two bidirectional Dijkstra-based pruners. The purpose of both of them, is to identify
the nodes that are in Pst shortest paths. We refer to such nodes, as the useful search space, and
the rest ones, as the useless search space. Our goal, through the use of search pruners, is to ensure:
(a) a more quality-oriented build of the AG and (b) a reduced dependency of the time computation
complexity from graph size. The latter is necessary, in order to acquire fast response on queries.
We note that the benefits are notably for the Penalty method. This is because, the Penalty method
needs to run iteratively several s-t shortest path queries. Thus, having put aside the useless nodes
and focussing only on the useful ones, we can get faster processing. We also note that, over the
Pst paths with the minimum cost, it may be desired as well to let in AG paths with near optimal
cost, say τ · ds(t), which will be the maximum acceptable cost w(Pst). Indicatively, 1 6 τ 6 1.4.
Obviously, nodes far away from both s and t, with ds(v) + dt(v) > τ · ds(t), belong to Pst paths
with prohibitively high cost. In the following we provide the detailed description of both pruners,
which are illustrated in Figures 17 and 18.

Figure 17: The forward and backward searches meet each other. In this phase the minimum distance
ds(t) is traced.

Figure 18: The forward and backward settles only the nodes in the shortest paths, taking account
of the overall ds(v) + dt(v).

D2.3.2: Page 30 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Uninformed Bidirectional Pruner. In this pruner, there is no preprocessing stage. Instead,
the used heuristics are obtained from the minimum distances of the nodes enqueued in Qf and Qb,
i.e. Qf .minKey() = minu∈Qf

{ds(u)} and Qb.minKey() = minv∈Qb
{dt(v)}.

We extend the regular bidirectional Dijkstra, by adding one extra phase. First, for computing the
minimum distance ds(t), we let the expansion of forward and backward search until Qf .minKey()+
Qb.minKey() ≥ ds(t). At this step, the current forward Tf and backward Tb shortest path trees
produced by the bidirectional algorithm will have crossed each other and so the minimum distance
ds(t) will be determined. Second, at the new extra phase, we continue the expansion of Tf and
Tb in order to include the remaining useful nodes, such that ds(v) + dt(v) ≤ τ · ds(t), but with a
different mode. This time, we do not allow the two searches to continue their exploration at nodes
v that have ds(v) + ht(v) or hs(v) + dt(v) greater than τ · ds(t). We use the fact that Qf and Qb
can provide lower-bound estimates for hs(v) and ht(v). Specifically, a node that is not settled or
explored from backward search has as a lower bound to its distance to t, ht(v) = Qb.minKey().
This is because the backward search settles the nodes in increasing order of their distance to t, and
if u has not been settled then it must have dt(u) ≥ Qb.minKey(). Similarly, a node that is not
settled or explored from forward search has a lower bound hs(v) = Qf .minKey(). Furthermore,
when a search settles a node that is also settled from the other search we can calculate exactly the
sum ds(u) + dt(u). In this case, the higher the expansion of forward and backward search is, the
more tight the lower bounds become. The pruning is ended, when Qf and Qb are empty.

Before the termination, we exclude the remaining useless nodes that both searches settled during
the pruning, that is all nodes v with ds(v) + dt(v) > τ · ds(t).
Informed ALT bidirectional pruner. In the second pruner, our steps are similar, except that
we use tighter lower bounds. We acquire them in a one-time preprocessing stage, using the ALT
approach. In this case, the lower bounds that are yielded can guide faster and more accurately
the pruning of the search space. We compute the shortest distances between the nodes in G and
a small set of landmarks. For tracing the minimum distance ds(t), we use BLA as base algorithm,
which achieves the lowest waste exploration, as experimental results showed in [14, 20]. During the
pruning, we skip the nodes that have ds(v) + ht(v) or hs(v) + dt(v) greater than τ · ds(t).

The use of lower-bounding heuristics can be advantageous. In general, a heuristic stops being
valid when a change in the weight of the edges occurs. But note that in the penalty method, we
consider only increases on the edge weights and therefore this does not affect the lower bounds on
the shortest distances. Therefore, the combination of the ALT speedup [20, 14] with Penalty is
suitable. However, depending on the number and the magnitude of the increases the lower bounds
can become less tight for the new shortest distances, leading to a reduced performance on computing
the shortest paths.

5.3.2 Filtering and Fine-tuning

Over the standard processing operations of Penalty and Plateau, we introduce new ones for obtain-
ing better results. In particular:

Plateau. We use a different approach on filtering plateaus. Specifically, over the cost of a plateau
path we take into account also its non-overlapping with others. In this case, the difficulty is that
the candidate paths may share common edges or subpaths, so the totalDistance is not fixed.
Since at each step an insertion of the current best alternative path in AG may lead to a reduced
totalDistance for the rest candidate alternatives, primarily we focus only on their unoccupied
parts, i.e., those that are not in AG. We rank a x-y plateau P with rank = totalDistance −
averageDistance, where totalDistance = w(P)

ds(x)+w(P)+dt(y)
is its definite non-overlapping degree,

and averageDistance = w(P)+ds(t)
(1+totalDistance)·ds(t) is its stretch over the shortest s-t path in G. During

the collection of plateaus, we insert the highest ranked of them via its node-connectors v ∈ P in Tf
and Tb to a min heap with fixed size equal to decisionEdges plus an offset. The offset increases the

D2.3.2: Page 31 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

number of the candidate plateaus, when there are available, and it is required only as a way out,
in the case, where several Pst paths via the occupied plateaus in AG lead to low totalDistance for
the rest Pst paths via the unoccupied plateaus.

Penalty. When we “penalize” the last computed Pst path, we adjust the increases on the weights
of its outgoing and incoming edges, as follows:

wnew(e) = w(e) + (0.1 + r · ds(u)/ds(t)) · wold(e), ∀e = (u, v) ∈ E : u ∈ Pst, v /∈ Pst
wnew(e) = w(e) + (0.1 + r · dt(v)/dt(s)) · wold(e), ∀e = (u, v) ∈ E : u /∈ Pst, v ∈ Pst

The first adjustment puts heavier weights on those outgoing edges that are closer to the target t.

The second adjustment puts heavier weights on those incoming edges that are closer to the source
s. The purpose of both is to reduce the possibility of recomputing alternative paths that tend to
rejoin directly with the previous one traced.

An additional care is given also for the nodes u in Pst, having outdegree(u) > 1. Note that their
outgoing edges can form different branches. Since the edge-branches in G constitute generators
for alternative paths, they are important. These edges are being inserted to AG with a greater
magnitude of weight increase than the rest of the edges.

The insertion of the discovered alternative paths in G and the maintenance of the overall quality
of AG should be controlled online. Therefore, we establish an online interaction with the AG’s
quality indicators, described in subsection 5.2, for both Plateau and Penalty. This is also necessary
because at each step an insertion of the current best alternative may lead to a reduced value of
totalDistance for the next candidate alternative paths that share common edges with the already
computed AG.

In order to get the best alternatives, we seek to maximize the targetfunction = totalDistance−
α · averageDistance, where α is a balance factor that adjusts the stretch magnitude rather than
the overlapping magnitude. Maximization of the target function leads to select the best set of low
overlapping and shortest alternative paths.

Since the penalty method can work on any pre-computed AG, it can be combined with Plateau.
In this way, we collect the best alternatives from Penalty and Plateau, so that the resulting set of
alternatives maximizes the target function. In this matter, we can extend the number of decision
edges and after the gathering of all alternatives, we end by performing thinout in AG. Moreover,
in order to guide the Penalty method to the remaining alternatives, we set a penalty on the paths
stored by Plateau in AG, by increasing their weights. We also use the same pruning stage to
accommodate both of them.

5.4 Experimental Results

The experiments were conducted on an Intel(R) Xeon(R) Processor X3430 @ 2.40GHz, with a cache
size of 8Mb and 32Gb of RAM. Our implementations were written in C++ and compiled by GCC
version 4.6.3 with optimization level 3.

The data sets of the road networks in our experiments were acquired from OSM [1] and TomTom
[2]. The weight function is the travel time along the edges. In the case of OSM, for each edge, we
calculated the travel time based on the length and category of the roads (residential street, tertiary,
secondary, primary road, trunk, motorway, etc). The data set of the Greater Berlin area was kindly
provided by TomTom in the frame of the eCOMPASS project [4]. The size of the data sets are
reported in Table 10.

D2.3.2: Page 32 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

map n m

B Berlin 117,839 310,152

LU Luxembourg 51,576 119,711
BE Belgium 576,465 1,376,142
IT Italy 2,425,667 5,551,700
GB GreatBritain 3,233,096 7,151,300
FR France 4,773,488 11,269,569
GE Germany 7,782,773 18,983,043
WE WesternEurope 26,498,732 62,348,328

Table 10: The size of road networks, where n denotes the number of nodes and m denotes the
number of edges.

For our implementations, we used the packed-memory graph (PMG) structure [20]. This is a
highly optimized graph structure, part of a larger algorithmic framework, specifically suited for very
large scale networks. It provides dynamic memory management of the graph and thus the ability
to control the storing scheme of nodes and edges in memory for optimization purposes. It supports
almost optimal scanning of consecutive nodes and edges and can incorporate dynamic changes in
the graph layout in a matter of µs. The ordering of the nodes and edges in memory is in such a
way that increases the locality of references, causing as few memory misses as possible and thus a
reduced running time for the used algorithms.

We tested our implementations in the road network of the Greater Berlin area, the Western
Europe (Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, and Great Britain), as well as in the network of each indi-
vidual West European country. In the experiments, we considered 100 queries, where the source
s and the destination t were selected uniformly at random among all nodes. For the case of the
entire Western European road network, the only limitation is that the s-t queries are selected, such
that their geographical distance is at most 300 kilometers. This was due to the fact that although
modern car navigation systems may store the entire maps, they are mostly used for distances up
to a few hundred kilometers.

For far apart source and destination, the search space of the alternative Pst paths gets too
large. In such cases, it is more likely that many non-overlapping long (in number of edges) paths
exist between s and t. Therefore, this has a major effect on the computation cost of the overall
alternative route planning. In general, the number of non-overlapping shortest paths depends on
the density of the road networks as well on the edge weights.

There is a trade-off between the quality of AG and the computation cost. Thus, we can sacrifice
a bit of the overall quality to reduce the running time. Consequently, in order to deal with the
high computation cost of the alternative route planning for far apart sources and destinations we
can decrease the parameter τ (max stretch). A dynamic and online adjustment of τ based on the
geographical distance between source and target can be used too. For instance, at distance larger
than 200km, we can set a smaller value to τ , e.g. close to 1, to reduce the stretch and thereby the
number of the alternatives. We adopted this arrangement on large networks (Germany, Western
Europe). For all others, we set τ = 1.2, which means that any traced path has cost at most 20%
larger than the minimum one. To all road networks, we also set averageDistance ≤ 1.1 to ensure
that, in the filtering stage, the average cost of the collected paths is at most 10% larger than the
minimum one.

In order to fulfill the ordinary human requirements and deliver an easily representable AG, we
have bounded the decisionEdges to 10. In this way, the resulted AG has small size, |V ′| � |V | and
|E′| � |E|, thus making it easy to store or process. Our experiments showed that the size of an
AG is at most 3 to 4 times the size of a shortest s-t path, which we consider as a rather acceptable
solution.

D2.3.2: Page 33 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Our base target function 3 in Plateau and Penalty is totalDistance − averageDistance + 1.
Regarding the pruning stage of Plateau and Penalty, we have used the ALT-based informed bidi-
rectional pruner with at most 24 landmarks for Western Europe.

In Tables 11, 12, and 13, we report the results of our experiments on the various quality in-
dicators: targetFunction (TargFun), totalDistance (TotDist), averageDistance (AvgDist) and deci-
sionEdges (DecEdges). The values in parentheses in the header columns provide only the theoreti-
cally maximum or minimum values per quality indicator, which may be far away from the optimal
values (that are based on the road network and the s-t queries).

In Tables 11, 12, and 13, we report the average value per indicator. The overall execution time
for computing the entire AG is given in milliseconds. As we see, we can achieve a high-quality AG
in less than a second even for continental size networks. The produced alternative paths in AG are
directly-accessible for use (e.g., they are not stored in any compressed form).

Due to the limitation on the number of the decision edges in AG and the low upper bound in
stretch, we have chosen in the Penalty method small penalty factors, p = 0.1 and r = 0.1. In addi-
tion, this serves in getting better low-stretch results, see Table 12. In contrast, the averageDistance
in Plateau gets slightly closer to the 1.1 upper bound.

In our experiments, the Penalty method clearly outperforms Plateau on finding results of higher
quality. However it has higher computation cost. This is reasonable because it needs to perform
around to 10 shortest s-t path queries. The combination of Penalty and Plateau is used to extract
the best results of both of the methods. Therefore in this way the resulted AG has better quality
than the one provided by any individual method. In Tables 11, 12, and 13, we also report on the
TargFun quality indicator of the study in [5]. The experiments in that study were run only on the
LU and WE networks, and on data provided by PTV, which concerned smaller (in size) networks
and which may be somehow different from those we use here [1]. Nevertheless, we put the TargFun
values in [5] as a kind of reference for comparison.

map
TargFun TotDist AvgDist DecEdges Time

(max:11) in [5] (max:11) (min:1) (max:10) (ms)

B 3.82 - 3.91 1.09 9.95 45.61

LU 4.44 3.05 4.49 1.05 9.73 37.05
BE 4.83 - 4.87 1.04 10.00 85.08
IT 4.10 - 4.14 1.04 9.92 114.29
GB 4.36 - 4.40 1.04 9.93 180.12
FR 4.22 - 4.26 1.04 9.97 159.93
GE 4.88 - 4.92 1.04 10.00 286.40
WE 4.35 3.08 4.37 1.02 9.88 717.57

Table 11: The average quality of the resulted AG via Plateau method.

3We have been very recently informed [9] that this is the same target function as the one used in [5] and not the
erroneously stated totalDistance− averageDistance in that paper.

D2.3.2: Page 34 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

map
TargFun TotDist AvgDist DecEdges Time

(max:11) in [5] (max:11) (min:1) (max:10) (ms)

B 4.16 - 4.23 1.07 9.92 49.34

LU 5.14 2.91 5.19 1.05 9.23 41.56
BE 5.29 - 5.33 1.04 9.54 159.71
IT 4.11 - 4.14 1.03 9.47 105.84
GB 4.38 - 4.41 1.03 9.87 210.94
FR 4.11 - 4.16 1.05 9.32 192.44
GE 5.42 - 5.46 1.04 9.91 388.97
WE 5.21 3.34 5.24 1.03 9.67 776.97

Table 12: The average quality of the resulted AG via Penalty method.

map
TargFun TotDist AvgDist DecEdges Time

(max:11) in [5] (max:11) (min:1) (max:10) (ms)

B 4.55 - 4.61 1.06 9.97 54.12

LU 5.25 3.29 5.30 1.05 9.81 43.69
BE 5.36 - 5.41 1.05 9.89 163.75
IT 4.37 - 4.41 1.04 9.79 178.08
GB 4.67 - 4.71 1.04 9.86 284.38
FR 4.56 - 4.60 1.04 9.86 217.30
GE 5.50 - 5.54 1.04 9.89 446.38
WE 5.49 3.70 5.52 1.03 9.94 987.42

Table 13: The average quality of the resulted AG via the combined Penalty and Plateau method.

We would like to note that if we allow a larger value of τ (up to 1.2) for large networks (e.g., WE)
and for s-t distances larger than 300km, then we can achieve higher quality indicators (intuitively,
this happens due to the many more alternatives in such a case). Indicative values of quality
indicators for WE are reported in Table 14, 15.

map WE TargFun TotDist AvgDist DecEdges Time(ms)
Plateau 4.57 4.59 1.02 10.00 1564.28
Penalty 4.36 4.38 1.02 9.95 2588.31

Plateau & Penalty 6.29 6.31 1.02 9.97 2692.56

Table 14: Random alternative route queries in the road network of Western Europe, with geograph-
ical distance up to 400km.

map WE TargFun TotDist AvgDist DecEdges Time(ms)
Plateau 4.71 4.73 1.02 10.00 2171.13
Penalty 4.78 4.80 1.02 9.97 3536.76

Plateau & Penalty 6.46 6.48 1.02 9.98 3806.92

Table 15: Alternative route queries in the road network of Western Europe, with geographical
distance up to 500km.

D2.3.2: Page 35 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

5.5 Visualization of Alternative Graphs

In Figures 19, 20, 21 and 22, we demonstrate some of the visualized results 4 we got with our
alternative route planning implementation.

Figure 19: Improved Penalty method. Shape of AG in Italy.

Figure 20: Improved combination of Penalty and Plateau methods. Shape of AG in France.

4The images produced by Google Maps c© mapping service.

D2.3.2: Page 36 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 21: Improved Plateau method. Shape of AG in Spain.

Figure 22: Improved combination of Penalty and Plateau methods. Shape of AG in Berlin.

D2.3.2: Page 37 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

6 Robust Route Planning

In real-world route planning in road networks, traffic situation and road congestion have an impact
on the decision of which route to follow when traveling from one location to another. Unfortunately,
if the travel times on the roads (the edge costs of the underlying graph) change with time in an
unpredictable way because of traffic or congestion, we cannot hope to safely identify the route that
will be the fastest for any future moment. A possible approach to handle these uncertain situations
is to compute a robust route instead of a fastest route.

Loosely speaking, we say that a route is robust for a future time moment if its cost is “close”
to the cost of the actual fastest route in that moment. There are various ways to formally define
what “close” in this context means; we refer the reader to the eCOMPASS deliverable series [12]
for more details on the topic.

Similarity-based approach. Within the project, we follow the similarity-based method pro-
posed by Buhmann et al. [6]. Adapted to the time-dependent scenario, the method works as
follows. We are given a simple, i.e., without parallel edges, graph G = (V,E) with time-dependent
edge cost functions ce : T → Q+ for every e ∈ E, and two vertices s, t ∈ V . In this context, the
set T represents absolute time in the past, i.e., every d ∈ T corresponds to a unique well-defined
moment in the past5. We assume ce(d) to be a reliable measurement of the actual travel time on
road e when departing at time d. The travel time of a path p = (v1, . . . , vl) departing v1 at time d
is defined as

c(p, d) =

l−1∑
i=1

c(vi,vi+1)(di), (4)

where di is the departure time from the vertex vi of p. Note that we assume that waiting at vertices
is not allowed, therefore, for every vertex v2, . . . , vl−1, the departure time is equal to the arrival
time. This can be safely assumed if the time-dependent edge costs satisfy the FIFO property [11],
stating that departing from a vertex at a later moment will never result in an earlier arrival time.
For a given d ∈ T , a fastest route from s to t, i.e., a path minimizing the travel time when leaving
s at time d, can be computed using standard Dijkstra’s-like techniques [11].

Our goal is to find an st-path that is robust with respect to a future departure time from s, for
which we do not have a measurement of the travel times on the roads. Ideally, this path should be
simple, i.e., without cycles. To solve this problem, we consider two departure times d1, d2 ∈ T in
the past that are “related” to the future time moment; in the following sections we will make more
precise what “related” means. For a given value ρ ∈ [1,∞), we define the ρ-similarity between d1
and d2 to be the ratio

|Aρ(d1) ∩Aρ(d2)|
|Aρ(d1)| · |Aρ(d2)|

, (5)

where Aρ(d) is the set of all simple st-paths whose travel time when departing s at time d is at
most ρ times the travel time of a fastest st-path departing s at time d. To compute a robust route,
the method requires to find a value ρ∗ ∈ [1,∞) maximizing (5), and subsequently pick an st-path
uniformly at random from the set Aρ∗(d1)∩Aρ∗(d2). We refer to the eCOMPASS deliverable series
[12] for a more formal explanation of the method and its properties.

Issues. One of the main drawbacks of computing robust routes using the above method is the
requirement of knowing the size of the approximation sets Aρ(d1) and Aρ(d2). This is a #P-hard
problem [23] already for the non time-dependent scenario and, at the best of our knowledge, no
exact, approximate, or randomized algorithms solving it in less than exponential time are known.

5Of course, this representation is impossible in practice, therefore in our implementation we will restrict T to a
suitably large, but closed and finite, time interval (for example, Unix Time).

D2.3.2: Page 38 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

If the counting is extended to simple and non-simple st-paths in G, there exists an exact algorithm
[12] with pseudo-polynomial running time.

Given the above difficulties, we decided to split the experimental evaluation of robust routes
in two parts. In Section 6.1, we do not focus on the computational issues of computing robust
routes, and we design experiments aiming only at assessing the quality of the computed route. In
particular, we compute and assess the quality of the routes produced by the above method on real
data using an exponential time algorithm that finds ρ∗ by enumerating all st-paths in G.

In Section 6.2, we evaluate the pseudo-polynomial time algorithm on the same data to investigate
whether in practice it runs faster than enumeration in exponential time. We also design and evaluate
several heuristics that improve the practical running time of both algorithms.

Computation environment. The experiments were performed on the high-performance cluster
of ETH Zurich, Brutus [24]. Each experiment was run on a single core of a computation node of the
cluster. The results shown in the following refer to computation nodes with AMD Opteron 8380
processors clocked at 2.5 GHz and 32 GB main memory. The code was written in C++ and compiled
using GNU C++ compiler 4.4.7 with default compiler optimization switch (no optimization).

6.1 Computation and Assessment of Robust Routes

Computing a robust route using the similarity-based method explained above requires to be able
to compute the values |Aρ(d1) ∩Aρ(d2)|, |Aρ(d1)| and |Aρ(d2)| for given d1, d2 ∈ T and ρ ∈ [1,∞).
Furthermore, we must develop an algorithm that finds a value ρ∗ maximizing (5). In the following,
we first present an exponential-time algorithm that computes |Aρ(d)| for given d ∈ T and ρ ∈
[1,∞). Then, we show how to generalize the exponential-time algorithm to evaluate |Aρ′(d)| for
any ρ′ ∈ [1, ρ] for a given ρ ∈ [1,∞). Finally, we explain how to generalize the algorithm to evaluate
(5) for d1, d2 ∈ T and ρ ∈ [1,∞), and how to find ρ∗.

Exponential-time enumeration. In the following, let p∗ be a fastest st-path when departing s
at time d ∈ T . The enumeration algorithm works as follows: At the beginning, a counter l is set to
0. Then, all st-paths in G are enumerated. Every time a path whose travel time is at most ρ·c(p∗, d)
is found, the counter l is increased by 1. Once every path has been processed, the counter l is equal
to |Aρ(d)|. To heuristically speed-up the enumeration, we use a branch-and-bound technique.

The branching step is similar to a depth-first search from s; At the beginning, s is marked
“active” and every vertex in V \{s} is marked “inactive”. Then, we consider all the outgoing
neighbors from s. For every inactive neighbor v, we mark v as active and we proceed recursively
from it; once all neighbors of s have been processed, s is marked inactive and we return. Every step
of the branching corresponds to a different path from s to the last vertex marked active, and it can
be proven that this procedure generates all simple paths from s. During the execution, every time
t is reached, a new st-path has been found, and the counter l is increased by 1 if its travel time is
at most ρ · c(p∗, d).

The bounding step requires to know, for every vertex v in G, a lower bound cvt(d
′) on the travel

time of a fastest path from v to t departing v at time d′ := d+ c(p, d), where p is the path from s to
v corresponding to the current step of the branching procedure. Every time a vertex v is reached
by the branching step, we check whether c(p, d) + cvt(d

′) is at most ρ · c(p∗, d). If it is, we continue
branching from v. Otherwise, no st-path with travel time smaller than ρ · c(p∗, d) having p as prefix
exists, and we avoid branching from v.

The bounding step is more efficient the tighter the bound cvt(d
′) is, because it allows earlier

pruning of non-promising branches. Since each st-path with v as intermediate vertex may reach
v at different times d′, we cannot in general compute cvt(d

′) for every possible departure time
from v because they might be too many. In our experiments, this issue was solved by developing
and applying a heuristic based on the following observation. For a given ρ ∈ [1,∞), we know by

D2.3.2: Page 39 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

definition that every path in Aρ(d) cannot arrive at t later than d + ρ · c(p∗, d). In our heuristic,
for every edge e ∈ E we find the time instant minimizing ce in the time window [d, d+ ρ · c(p∗, d)];
let this time instant be d∗e. Then, we build a static, i.e., non time-dependent, edge cost function by
setting the cost of each edge e ∈ E to be d∗e. For every v ∈ V , we set cvt to be constantly equal to
the cost of a shortest path from v to t using the static cost function.

The above algorithm computes |Aρ(d)| for a given d ∈ T and ρ ∈ [1,∞). We can extend the
algorithm to compute |Aρ′(d)| for every ρ′ ∈ [1, ρ] for a given ρ by introducing additional counters
as follows. Every time a path p ∈ Aρ(d) is found, we evaluate the ratio ρ̂ := c(p, d)/c(p∗, d). If
a counter lρ̂ already exists, we increment it by 1. Otherwise, we create the counter lρ̂ and we set
it to 1. Once all paths in Aρ(d) have been enumerated, to evaluate Aρ′(d) for any ρ′ ∈ [1, ρ] we
only need to sum all the counters lρ̂ with ρ̂ ≤ ρ′. Note that, in the worst-case, this may require to
create a counter for every path in Aρ(d). Since these paths may be exponentially many, this would
imply an exponential increase in the running time and in the space requirement of the algorithm.
To overcome this issue, we can consider only a finite set of values for ρ and create correspondingly
many counters. For example, the interval [1, ρ] can be split into k sub-intervals of constant size, for
some fixed k ∈ N, and create k counters l1, . . . , lk initialized to 0. Every time a path p is found, we
compute ρ̂ := c(p, d)/c(p∗, d) and we increase the counter lj by 1, where j ∈ {1, . . . , k} is the first
index such that ρ̂ ≤ j

k · ρ.

Evaluating similarity. We now explain how to extend the enumeration algorithm to compute
the ρ-similarity for given d1, d2 ∈ T and ρ ∈ [1,∞). This generalization can be done trivially
by keeping three counters, one for each set Aρ(d1), Aρ(d2) and Aρ(d1) ∩ Aρ(d2). Every time the
branching step finds an st-path p, we evaluate c(p, d1) and c(p, d2), and we increase the counters
accordingly. The bounding step must be extended to prune the branching from a vertex if the
current path cannot reach t with travel time at most ρ times the fastest path for both departure
times d1 and d2. Once all paths have been enumerated, we can evaluate the ρ-similarity exactly
by computing the ratio (5). Using the above technique, this algorithm can be extended to evaluate
(5) for every ρ′ ∈ [1, ρ], for given d1, d2 ∈ T and ρ ∈ [1,∞).

Finding ρ∗. Computing ρ∗ maximizing (5) can be done trivially if an upper bound ρmax on ρ∗

is known in advance. If this is the case, we can run the enumeration algorithm to evaluate the
similarity for every ρ′ ∈ [1, ρmax] and pick a ρ′ maximizing (5). A suitable upper bound on ρ∗

can be found experimentally. From our experiments, it turns out that for the data available it is
sufficient to set ρmax := 1.1.

6.1.1 Experiments

In the data provided by TomTom for the project, the travel times on roads are described in two
different ways. In the speed profiles, travel times on roads are assumed to be periodic with a period
of one week. For a given road, the associated speed profile describes, for every 5 minute window
of each day of a week, an average travel time on that road. The average is computed over live
measurements recorded for a period of 2 years. Additionally to the speed profiles, we are given
some of the recorded live measurements, denoted as speed probes. A speed probe is associated to
a road e ∈ E and consists of a timestamp t and a travel time s. The meaning of a probe is that
the travel time on road e has been measured at time t and found out to be equal to s. Clearly,
speed probes provide more accurate measurements than speed profiles for the time at which they
are associated. However, speed probes are not available for every road at any time, therefore we
need to resort to use speed profiles in case a probe is not available. The probes we are given cover
a period of two weeks, from March 18th 2012 to March 31st 2012. For every 30 minutes window
of this two weeks period, an average of 227834 probes is available. Since the whole road network
contains 1038288 edges, and some probes refer to the same road at different moments, in a 30
minutes window the travel times of less than 22% of the edges of the road network is measured.

D2.3.2: Page 40 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Departure times. To assess the quality of robust routes, we need to pick suitable departure
times d1 and d2, and a start and a target vertex s and t, respectively. Deciding the departure times
is a most critical issue because, according to the method of Buhmann et al., the more “related”
the departure times are, the more robust the resulting route will be. The term “related” is not
formally defined, and the only way we know to decide how to pick the departure times is by an
ad-hoc decision tuned to the data available.

Since robust routes are most needed in periods of high congestion of the road network, a natural
choice is to pick departure times within rush hours periods. Ideally, the best choice for d1 and d2
would be two departure times having the highest correlation possible. For example, two consecutive
Tuesdays at 17:00. We could then check how robust the computed route is with respect to a third
Tuesday at 17:00 of the following week. However, given that the available probes cover only a two
weeks period, we cannot set d1 and d2 in this way. In the experiments, we set d1 to be Tuesday
March 20th 2012 at 17:00, and d2 to be Wednesday March 21st 2012 at 17:00. To assess the quality
of a route, we evaluated its travel time for a departure time d3 on a later day, to see how well it
predicts the behavior of traffic for that moment. As departure time d3 we picked another rush-hour
period. In particular, we set d3 to Thursday March 22nd 2012 at 17:00.

Suitable start and target vertices could be picked uniformly at random over the set of vertices V .
However, the provided road network is too big to allow enumeration of st-paths for any pair of start
and target vertices (it contains 478989 vertices and 1038288 edges). For this reason, we considered
a subgraph of the whole network and picked s and t uniformly at random in the subgraph. As
an additional benefit, this allows assessing the quality of robust routes with respect to different
portions of the network. For example, comparing the quality of routes computed in the city center,
and in the suburbs of the city. The subgraph for the center of Berlin contains 4856 vertices and
12298 edges, while the subgraph for the suburbs of Berlin contains 4761 vertices and 11638 edges.

Assessment. The assessment of a route is done with respect to the fastest route between s and
t for departure time d3. Given a route, we check how slower it is (in percentage) with respect to
the actual fastest st-path for d3; we refer to this value as quality of the prediction. Our assessment
is done in comparison with a different method for computing robust routes, denoted “AVG”.

The AVG method is an extension of time-dependent Dijkstra’s algorithm receiving as input two
departure times instead of one. Every time a road e ∈ E is evaluated for departures d, d′ ∈ T , the
average travel time (ce(d) + ce(d

′))/2 is returned. Running the AVG method between s and t with
departure times d1 and d2 results in a route whose quality as a prediction can be evaluated for d3.

We performed two types of experiments: In the first type, speed probes are not considered
when computing travel times. In the second type, we replace the values given by speed profiles
with the values provided by probes when available. Our aim is to show that the quality of routes
computed using the similarity-based method increases if more reliable measurements of travel times
are available. To obtain more meaningful results, each probe is considered to be valid for a 5 minutes
window starting at the time indicated by its timestamp. In case of overlapping probes, we consider
only the closest one in time when evaluating the travel time of a road.

Table 16 shows the average quality of the predictions of the routes obtained using the two
methods above, and the corresponding variance. The first column shows the results when using
no probes, while the second column shows the results using probes. The results shown are further
categorized according to the subgraph considered in the computation.

It can be seen from Table 16 that the average quality as a prediction of the routes obtained using
AVG is better than using the similarity-based method (labeled SIM in the table) with and without
probes. However, introducing probes the variance of SIM is lower than the variance of AVG. This
implies that the solutions returned by SIM can be considered less subject to variations than those
returned by AVG, and in this sense they may be considered more stable. Furthermore, the average
quality of the prediction returned by AVG worsen when probes are used, while the quality of the
prediction of SIM improves. This is especially evident if we consider the routes computed on the

D2.3.2: Page 41 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Without probes 5min probes
quality variance quality variance

AVG
city center 0.396% 0.790% 0.548% 2.016%
suburbs 0.354% 0.335% 0.615% 8.776%

SIM
city center 1.878% 26.87% 0.754% 0.951%
suburbs 0.940% 3.315% 0.746% 0.920%

Table 16: Average quality of prediction and variance

subgraph of the road network located in the suburbs.

6.2 Evaluation of the Label Propagating Algorithm

The previous experiments aim to assess the quality of the robust routes computed using the
similarity-based method of Buhmann et al. [6]. These experiments were performed using an
exponential-time algorithm enumerating all st-paths of the input road network. A natural question
is to ask for an efficient algorithm for computing robust routes.

Such an algorithm should be able to evaluate, exactly or approximately, the ratio (5) efficiently,
therefore estimating the values |Aρ(d1) ∩ Aρ(d2)|, |Aρ(d1)| and |Aρ(d2)| for given departure times
d1, d2, and ρ ∈ [1,∞). Since the problem of counting all paths with cost at most ρ times the
cost of a fastest path is #P-hard [23], we cannot hope to solve it efficiently. Furthermore, at the
best of our knowledge, no exact, approximate, or randomized algorithms solving it in less than
exponential time are known. As shown in the eCOMPASS deliverable series [12], a partial answer
to this problem can be found if we allow the running time to be pseudo-polynomial and we extend
the counting to both simple and non-simple paths, i.e., containing cycles. The purpose of this
section is to evaluate this pseudo-polynomial algorithm by experimentally comparing its running
time and number of paths reported against the running time and number of paths reported by the
enumeration algorithm. We also introduce and evaluate heuristics improving the running time of
the pseudo-polynomial time algorithm while introducing an error on the number of paths reported.

Label-propagating algorithm. In the following, we recall briefly the pseudo-polynomial time
algorithm [12] adapted for time-dependent edge cost functions; given its nature, this algorithm is
sometimes referred to as a label-propagating algorithm.

The algorithm receives as input the graph G = (V,E) with edge cost functions ce : T → Q+

for every e ∈ E, two vertices s, t ∈ V , a value ρ ∈ [1,∞), and a departure time d. It maintains a
counter nst and a set of labels. A label (cv, v, nv) represents a lower bound nv on the number of
(simple and non-simple) paths from s to v with cost cv. At the beginning, the counter nst is set to
0 and the set of labels contains only the initialization value (0, s, 1). At each step, the algorithm
extract from the set the smallest label (cu, u, nu) in lexicographical order. It can be shown that, at
this time, the value nu is exactly the number of su-paths with cost cu. If u = t, the counter nst
is increased by nu. Otherwise, the algorithm considers every outgoing edge from u. For each edge
e = (u, v), its cost is evaluated at the time instant d + cu. If cu + ce(d + cu) is at most ρ times
the cost of a fastest route from s to t in G with departure time d, the label (cv, v, nv) is created,
with cv := cu and nv := nu. If the set of labels already contains a label starting with cv and v,
its third value is updated increasing it by nv. Otherwise, the label (cv, v, nv) is added to the set.
As a speed-up heuristic, if a lower bound on the cost to reach t from v when departing at time cv
is known in advance, like the values cvt introduced for the branch-and-bound algorithm, we can
avoid processing v. The algorithm ends when the set of labels becomes empty. Once the algorithm
ends, nst contains the number of simple and non-simple paths from s to t with cost at most ρ times
the cost of a fastest st-path for departure time d. For a more detailed explanation, as well as the
analysis of the running time and a discussion on implementation issues, we refer the reader to the

D2.3.2: Page 42 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

 0

 1

 2

 3

 4

 5

 6

 7

 1 4 9 xl=16 x=20 xu=25 36

f(x)

Figure 23: Rounding with hsqrt

eCOMPASS deliverable series [12].

Speed-up heuristics. The running time of the above algorithm is proportional to the overall
number of labels contained in the set of labels during the execution. Since each label (cv, v, nv)
represents a number nv of paths with the same travel time cv, the more accurate the measurement
of the travel time is, the more labels will be created during the execution of the algorithm. For
example, if the travel times are measured in seconds, the overall number of labels will be smaller
than the case where travel times are measured in milliseconds. Clearly, less precise measurements
introduce an experimental error because we may count, or not count, paths that should not, or
should, be counted.

A possible direction for the designing of heuristics is therefore the accuracy used when measuring
travel times. In the following, let x ∈ N be the exact travel time required to cross the edge e ∈ E at
time d ∈ T , i.e., x := ce(d). To avoid using floating point arithmetic, we assume x to be an integer
representing the travel time in milliseconds.

We define a cost heuristic to be a function h : N → N for rounding the travel time x. During
the computation, every time the travel time ce(d) is evaluated, the value h(x) is returned instead
of x. To compute the cost heuristic, let f : R→ R be an increasing invertible function. Given the
travel time x ∈ N, we compute xL = f−1(bf(x)c) and xU = f−1(df(x)e). If xL 6= 0, the value
returned by h is the one among xL and xU that is closest to x; ties are resolved in favor of xU . If
xL = 0, since we assume the travel times to always be > 0, the heuristics always return xU . Figure
23 illustrates an example of a cost heuristic with x = 20 and f(x) =

√
x.

We will show experimentally that different choices for h lead to different numbers of paths
reported by the pseudo-polynomial algorithm, and different running times. Intuitively, the more
steep the function f is, the more “aggressive” the rounding of h is, meaning that the number of
uniquely different values returned by h will be smaller. The following choices were considered as
cost heuristics:

f(x) = x Travel times are not rounded. We refer to this heuristic as hms;

f(x) = x
1000 Travel times are rounded to seconds. We refer to this heuristic as hsec;

f(x) = loge x We refer to this heuristic as hlog;

f(x) =
√
x We refer to this heuristic as hsqrt.

D2.3.2: Page 43 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

1

 50

 100

 150

 200

 250

 300

 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04

R
u

n
ti
m

e
 (

s
e

c
)

Rho

hsec
hlog
hsqrt
hms
enu

Figure 24: Average runtime of heuristics and enumeration.

6.2.1 Experiments

In the following, we show the results of several experiments aiming to assess the trade-off between
the running time of the label propagating algorithm and the number of st-paths reported with
different cost heuristics.

Each experiment is designed as follows. At the beginning we set the departure time d to Tuesday
March 20th 2012 at 17:00, and we pick a pair of vertices s, t ∈ V at random. Due to the huge size of
the data provided, we restrict the computation to a subgraph of the whole road network containing
4856 vertices and 12298 edges. After s and t have been picked, the label propagating algorithm is
run 12 times. At run i = 1, . . . , 12, the algorithm counts the number of st-paths with travel time at
most ρi := 1 + (i− 1) · 0.005 times the travel time of the fastest st-path when departing s at time
d. The same experiment is repeated for each of the above cost heuristics. Then, the enumeration
algorithm of Section 6.1 is run for the same values of ρi, s, t and d.

Figure 24 shows the plot of the average running time of the label propagating algorithm using
different cost heuristics compared to the average running time of the enumeration algorithm. It can
be seen from Figure 24 that counting through enumeration is usually faster than any other solution
for smaller values of ρ. However, as ρ increases, the enumeration algorithm becomes slower, and
eventually each cost heuristic results in a faster computation time than plain enumeration.

Figure 25 shows, for each cost heuristic, the error introduced by the heuristic on the number
of paths reported. Each value is normalized by the number of simple paths as reported by the
enumeration algorithm, and the y-axis grows logarithmically. The number of paths reported is, for
each heuristic, much higher than the number of simple paths. In particular, even without rounding
the travel times (the line labeled hms in the plot) the number of paths reported grows exponentially
with ρ. In other words, the number of non-simple paths is in practice exponentially greater than
the number of simple paths. Figure 25 also shows that the most aggressive cost heuristic (hlog)
introduces the highest error in the number of paths reported.

Surprisingly, a very simple heuristic like hsec seems to have a sort of self-correcting mechanism

D2.3.2: Page 44 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

1

2
5

2
10

2
15

2
20

2
25

2
30

 1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04

R
a

ti
o

Rho

hsec
hlog
hsqrt
hms

Figure 25: Average ratio of paths reported with respect to enumeration

reducing the number of paths reported with respect to hms. Since hsec is also the heuristic resulting
in the fastest running time for higher values of ρ, it seems promising in the future to inspect if
alternative choices of linear scaling yield even better results.

6.3 Conclusion and Discussion

We have presented an experimental study on the computation of robust routes for the eCOMPASS
project. We have shown that the routes obtained using the method by Buhmann et al. do not
provide the best results in terms of expected quality of the prediction, but they tend to have
smaller variance and can therefore be considered more stable. Furthermore, we have shown that
increasing the number of live measurements on road, the quality of the computed routes seems to
improve.

While running these experiments, we also observed that in more than 99% of the experiments,
the ρ maximizing ratio (5) is also the first value for which the set Aρ(d1) ∩ Aρ(d2) is not empty.
In the future, we plan to develop fine-tuned algorithms for computing robust routes exploiting this
relation for decreasing the running time.

Computing robust routes with the above method is in general computationally intensive, and
cannot be done in practice on a real-time basis on a limited device like a navigator. For this reason,
we developed an algorithm counting simple and non-simple st-paths in a given graph. We have
shown that this method is in practice faster than plain enumeration but the number of non-simple
paths can be exponentially greater than the number of simple paths. In the future, we plan to
refine this algorithm in order to avoid cycles of small size, and improve the proposed speed-up
heuristics. Furthermore, we want to apply the fast but imprecise label-propagating algorithm for
the computation of robust routes.

D2.3.2: Page 45 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

7 Route Planning for Vehicle Fleets

7.1 Vehicle Routing Problem Data

In this Section, we examine the differences between real world data and synthetic data. The
approach followed by eCOMPASS was to first test our algorithm with synthetic data to verify that
it behaves as expected. The second step was to test the algorithm with real life datasets, that were
provided by PTV.

7.2 Laboratory test data compared to real life data

In both cases, laboratory and real world, the data model is the same but the scope addresses two
different worlds. The laboratory test data is used most often to test the function of modules and
the performance of the solution. Real world data in contrast to laboratory data has to deal in many
cases with complex data sets which describe specific problems. Even the problem analysis stage is
not trivial in practice. In practical scenarios, the problems are not clear or well defined. A precise
classification is not so easy, as many real problems include characteristics and features of more than
just one model. Thus it is a real challenge to provide solution procedures that match real world
practitioner needs and expectations.

7.3 Richness of real world problems in VRP

In an operative setting, real world VRP problems do not come with an unlimited homogeneous
fleet. Instead we have to deal most often with different types of vehicles and limited availabilities.
It goes without saying that this probably imposes new constraints and new aspects on the original
problem.

For an acceptance in practical settings it is very important to have a reasonable network model
that allows the calculation of reliable distances and driving times. There may exist different routes
for different types of vehicles, for different loads and cargo or for different times of the day.

Further aspects of richness are the presence of multiple customer time windows with different
kinds of service. In real world problems we distinguish between start of service intervals and
full service intervals. The correct handling of working hours regulations increases the degree of
complexity considerably.

Often real world problems do not focus on one problem but deal with multiple objectives, such
as service level, social criteria, robustness, ecological criteria and visual attractiveness.

7.4 Operative setting of real world problems

In an operative setting, planning is a process. Dispatcher works systematically towards certain
objectives. In addition to the algorithm that supports planning, he performs manual operations:
Insertions, relocations of customers, assigning a certain vehicle to a tour or vice versa assigning
tours to a vehicle.

In operations, he has to deal with modifications or cancellations of orders. Tours may have
different states, e.g. special states can limit the degrees of freedom for modifications; e.g. if the
loading for a tour has already started it might be desired that this tour shall keep its vehicle. Thus
data does not remain static but behaves dynamically.

In professional settings typically the planning is carried out in a multi-user mode. Multiple
planners are involved with dedicated tasks and rights. The planner can relax constraints to allow
the actions. Of course the planner can overrule each decision of the system. Furthermore, an
appropriate IT-infrastructure is required to match all the requirements. The logic model must
ensure that it is possible to partition and share the planning data correctly, according to defined
rules and concepts. The IT-infrastructure has to physically support and implement the logic model,

D2.3.2: Page 46 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

e.g. it has to be decided whether the model shall support concurrent-competitive or cooperative
work modes.

7.5 Synthetic Laboratory Test Data

Regarding laboratory test data the question to ask is what is needed to perform a meaningful test.
Often only a function or a working hypothesis has to be proven. In this case simplistic data without
high complexity may be sufficient to perform the verification. Of course some functionality tests,
especially regarding performance, may require more complex test data to achieve a meaningful
result.

Besides data availability, the main reason to use laboratory data is the possibility to generate
data which fulfils all test requirements without introducing additional complexity. In essence lab-
oratory can manipulated to reflect real world problems. For this manipulation, synthetic test data
adapts data from real world problems and applies the restrictions and constraints to the synthetic
data set.

A further advantage of laboratory tests is, to verify algorithmic functions in a controlled envi-
ronment without uncontrollable influences.

7.6 eCOMPASS Approach Regarding Fleets of Vehicles

One of the most challenging tasks for eCOMPASS regarding fleets of vehicles, is to develop an
algorithm that takes into account the ecological impact of the tours of fleets of vehicles. For this
reason, a new three phase approach was developed that tries to group customers together in order
to be served by a vehicle. The main idea of the eCOMPASS approach is the following:

• Phase I tries to group together customers regarding their time windows. A graph G = (V,E)
is constructed where each customer is represented by a vertex u ∈ V , and there is an edge eu,v
connecting nodes (customers) u, v if their time windows are compatible. This means that if a
vehicle serves customer u it can also serve customer v without violating any time constraints.
At the end of Phase I customers are grouped together into clusters.

• Phase II tries to group together customers taking into account their geographical location. A
geographic partition is performed and customers are grouped into cells. All customers that
belong to a cell C are close together regarding the real distance among them. At the end of
Phase II customers are grouped together in cells.

• Phase III is a refinement phase. It tries to split or merge clusters and cells created from
the previous phases. The main idea is that if some customers that are close (regarding real
distance) and have compatible time windows are merged together into a final group. On the
other hand, if a cell contains customers that are close but have incompatible time windows
this cell must be split into two groups.

The ecological aspect is taken into account implicitly. The final clusters that are created have the
property that all their customers are close together and have compatible time windows. Thus, a
vehicle can serve them without wasting time going back and forth to the depot or travelling with
low load. More details regarding eCOMPASS approach can be found in D2.2.

7.7 Experimental Study and Data Sets

The main benefit of the eCOMPASS approach of balanced and compact trips is to provide trip struc-
tures are stable during the execution phase in case of unplanned events (e.g., unplanned multiple
stops, additional stops). As the available existing solutions do not cover this target in a meaning-
ful way, a direct comparison between the eCOMPASS approach against existing optimized (for a

D2.3.2: Page 47 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

set of different criteria) VRP solutions is not the focus of our experimental study. Consequently,
the experimental study focuses on two aspects: 1) to prove the functionality of the eCOMPASS
algorithm at a generic level 2) to achieve an understanding of the tradeoff between compact and
balanced eCOMPASS solutions in comparison to baseline solutions of existing state of the art VRP
approaches. The experiments therefore compares eCOMPASS solutions of the Munich data sets
against baseline instances of PTV which focused on different optimization aspects.

To achieve the above goals, we conducted our experimental study on three real-world data sets
provided by PTV. The first, is a data set in the city of Milan (Italy). The other 2 data sets
include customers located in the city of Munich. Specifically, one regards a parcel delivery and
the other a furniture delivery. All Munich data sets are in urban areas. All data sets provide the
following information: total number of customers, a unique customer id, a location of each customer
(longitude,latitude), one (or more) time window(s) of each customer, the weight of each customer
(a number representing the amount of goods that have to be delivered) and a distance matrix with
the real distance among all customers.

The quality measures that are reported are: total driving distance (in km), number of vehicles
used for each scenario, number of tours and number of tour stops. For the Milan dataset, a com-
parison was made between the routes computed with the real distance against the routes computed
with the Euclidean distance.

7.7.1 Milan Dataset

The Milan dataset consists of 1000 customers and is the largest dataset on which we conducted
experiments. Due to lack of quality measures of other approaches we did not perform a compar-
ison with the eCOMPASS approach. However, we report on the ratio between the total distance
travelled using the real distance and the total distance travelled using the Euclidean distance. Our
experiments showed that this ratio is 1.75, a number that is acceptable because in urban areas the
distance between two points is typically Manhattan, i.e. at least greater than 1.41 times bigger
than the Euclidean distance.

7.7.2 Munich Dataset - Parcel Delivery

The tour planning results for the parcel courier express service providers are listed in Table 17.
Without traffic information a total tour length of 163.32 km for serving 32 customer orders was
calculated. For the process of delivery one vehicle is needed for generated tour. In Figure 26, all
32 customers are shown on the map. Customers are grouped together creating clusters.

Previous Approach eCOMPASS Approach
Total km driven 163.32 114.01

Total driving time 4h 12 min 4h 32min
CO2 emissions 62.45kg 41.33kg

Total vehicles used 1 1
Number of tours 1 1

Tour stops 34 34

Table 17: Munich Dataset: Performance indicators for the parcel delivery scenario. The vehicle
type chosen for CO2 emissions calculation was truck (7,5t).

In Table 17, the eCOMPASS approach achieves a further improvement in total kilometres driven.
The generated tour takes 48 minutes longer and part of the tour uses the motorway.

D2.3.2: Page 48 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Figure 26: Munich Dataset: Groups created for the parcel delivery scenario. Each customer is
represented by a marker. In this case, all customers form one group and are served by one vehicle.

7.7.3 Munich Dataset - Furniture Delivery

The second scenario to be considered is the delivery of furniture, in particular kitchen furniture
from a furniture store to various customers in the city centre of Munich. The furniture store with its
warehouse is located outside of Munich in the district of Taufkirchen. For this scenario it is assumed
that the furniture can be ordered directly in the furniture store by the customer and every piece
of furniture is available from the stock. Thus, a suitably short period of time between the point of
order and delivery will be accepted. For simplicity the furniture store’s warehouse is operating all
the time.

After the customers chose the pieces of furniture they wish to receive, the warehouse processes
their orders and the delivery will be planned. As furniture is often bulky, the delivery process of the
furniture is modelled as mid-size truck operations. We modelled the distribution process with two
trucks and assumed 5 tons payload. Furthermore we assumed service time of 15 minutes for a drop
per truck stop for unloading the pieces of furniture. As a consequence, a vehicle is not immediately
ready for use again after the point of delivery. After finishing the tours the trucks return to the
furniture store/warehouse. The vehicle fleet we modelled consists of two mid-size lorries with 5.000
kg payload and an overall weight of about 12.000 kg per lorry.

For the case of furniture delivery the calculations are based on a data set with 150 entries for
a time period of about two weeks. The handled information are real, but made anonymous. For
the calculation and tour planning two trucks with 5 tons payload were used with an availability of
24/7. The only restrictions for tour planning are the weight of the transported pieces of furniture
and a service time per tour stop of 15 minutes to guarantee the unloading process. For simplicity,
the delivery time windows, in which customers can receive their furniture were standardised from
08:00 to 18:00 o’clock and Monday to Friday. As mentioned already in the other scenarios the order
specifications on each of the both Mondays are identical making them comparable in the case of
traffic information. The database contains 31 orders for each Monday. For the initial tour planning
solution the results are shown in Table 18.

Based on the given information without any traffic the following tours for the furniture delivery
on Monday were generated. There are three tours operated by two vehicles to serve all 31 customers.
The visualization of the furniture delivery scenario is shown in Figure 27.

In Table 18, the eCOMPASS approach achieves a further improvement both for total kilometres
driven and total driving time. The tours generated do not use the motorway.

D2.3.2: Page 49 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

Previous Approach eCOMPASS Approach
Total km driven 204.36 103.15

Total driving time 4h 29min 4h 06min
CO2 emissions 115.46kg 57.61kg

Total vehicles used 2 2
Number of tours 3 3

Tour stops 37 37

Table 18: Munich Dataset: Performance indicators for the furniture delivery scenario. The vehicle
type chosen for CO2 emissions calculation was truck (7,5t).

Figure 27: Munich Dataset: Groups created for the furniture delivery scenario. Each customer is
represented by a marker. In this case, customers are divided into 3 groups, served by two vehicles
that perform three tours.

D2.3.2: Page 50 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

8 Conclusion and Future Work

In this document, we presented and discussed the outcome of the testing stage for the routing
algorithms developed by the eCOMPASS project partners in the first 18 months of the project.
The specific goal for the testing stage was to fine-tune the proposed algorithms for practical use
by experimenting on both artificial and real-world data sets located in urban areas. The results
obtained from these experiments will be used to decide which of the algorithms are already fit
enough for turning them into prototypes in WP5 with the final aim to assess their validity for
every-day use. In parallel to WP5, research for even more efficient and precise algorithms will go
on.

In the following, we summarize experimental results and future research directions.

8.1 Traffic Prediction

In section 3, the lag-based STARIMA approach, which was developed in WP2, was compared to
previously existing approaches on both artificial and real-world data. It turned out that lag-based
STARIMA performs quite satisfactory in general and outperforms the other approaches on real-
world data because of its particular ability to capture the spatio-temporal nature of the data.
Future work includes the improvement of the compared approaches, for example by hybridization,
and their evaluation in further settings.

8.2 Time-Dependent Shortest Paths

In section 4.1, the time-dependent approximation algorithms provide the ability of computing ap-
proximated shortest delay functions and shortest paths between vertices, for any departure time
range. In this matter, the accuracy of the results can be determined by appropriate setting the
error approximation ratio ε. A small ε ∈ [0.01, 0.1] leads to high precision, with large number of
samples, and thus higher execution time. On the other hand, a large ε ∈ [0.1, 0.5] may lead to low
precision, with small number of samples, and thus lower execution time.

In section 4.2, we reported on a multi-level separator approach that turned out to be indeed
promising for dynamic, customized, time-dependent route planning. Customization was tested on
different instances. Total customization time is fast enough to incorporate frequent metric updates,
ranging from 1 minute to 10 minutes computation time. Our analysis showed that most effort
is spent on the highest level, which also introduces the largest amount of additional number of
break points (up to 12 times more than the number of break points on original arcs). Future work
concerns: (i) evaluation of a more diverse set of test instances, taking into account higher time
resolutions; (ii) application of approximation techniques between levels, thus reducing the stored
amount of break points on overlay arcs; (iii) a careful consideration of the scenario of performing
local updates due to live traffic data and traffic prediction.

8.3 Alternative Route Planning

In section 5, the Penalty and Plateau based methods [5] as well as their combination, which was
developed in WP2, were extended in several ways. Now a large number of qualitative alternatives
can be computed in time less than one second on continental size networks. Future work includes
the optimization of these algorithms and the development of even stronger heuristic approaches.

8.4 Robust Route Planning

In section 6, the robust-route planning algorithms developed in WP2 have, like their ancestor,
exponential time complexity and are hence not relevant for practical applications. Nevertheless,
implementing these algorithms and testing them on real-life data has resulted in valuable insights

D2.3.2: Page 51 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

and ideas that will guide the future work on these algorithms with the aim to make them faster,
for example by trading route quality for runtime.

8.5 Fleet-of-Vehicles Route Planning

In section 7, the eCOMPASS approach for fleets of vehicles achieves results that are comparable to
PTV’s baseline solutions for the data sets examined. Future work is to optimize the tradeoff between
compact and balanced eCOMPASS solutions in comparison with baseline solutions of existing state
of the art VRP approaches.

D2.3.2: Page 52 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

References

[1] Openstreetmap. http://www.openstreetmap.org.

[2] Tomtom. http://www.tomtom.com.

[3] Camvit: Choice routing, 2009. http://www.camvit.com.

[4] eCOMPASS project, 2011-2014. http://www.ecompass-project.eu.

[5] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative route graphs
in road networks. In Theory and Practice of Algorithms in (Computer) Systems, pages 21–32.
Springer, 2011.

[6] Joachim M. Buhmann, Matús Mihalák, Rastislav Srámek, and Peter Widmayer. Robust opti-
mization in the presence of uncertainty. In ITCS, pages 505–514, 2013.

[7] Yanyan Chen, Michael GH Bell, and Klaus Bogenberger. Reliable pretrip multipath planning
and dynamic adaptation for a centralized road navigation system. Intelligent Transportation
Systems, IEEE Transactions on, 8(1):14–20, 2007.

[8] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Graph Par-
titioning with Natural Cuts. In 25th International Parallel and Distributed Processing Sympo-
sium (IPDPS’11), pages 1135–1146. IEEE Computer Society, 2011.

[9] Daniel Delling and Moritz Kobitzsch. Personal commnication, July 2013.

[10] Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In Ravindra K. Ahuja,
Rolf H. Möhring, and Christos Zaroliagis, editors, Robust and Online Large-Scale Optimization,
volume 5868 of Lecture Notes in Computer Science, pages 207–230. Springer, 2009.

[11] Daniel Delling and Dorothea Wagner. Time-dependent route planning. In Robust and Online
Large-Scale Optimization, pages 207–230. 2009.

[12] eCOMPASS. D2.2 – new algorithms for eco-friendly vehicle routing. Technical report, The
eCOMPASS Consortium, 2013.

[13] Luca Foschini, John Hershberger, and Subhash Suri. On the complexity of time-dependent
shortest paths. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 327–341. SIAM, 2011.

[14] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A* search meets
graph theory. In Proc. 16th ACM-SIAM symposium on Discrete algorithms, pages 156–165.
Society for Industrial and Applied Mathematics, 2005.

[15] Joshua S Greenfeld. Matching GPS observations to locations on a digital map. In Proc. 81th
Annual Meeting of the Transportation Research Board, pages 164–173, 2002.

[16] Benjamin Hamner. Predicting travel times with context-dependent random forests by modeling
local and aggregate traffic flow. In Proceedings of the 2010 IEEE International Conference on
Data Mining Workshops, ICDMW ’10, pages 1357–1359, Washington, DC, USA, 2010. IEEE
Computer Society.

[17] Yiannis Kamarianakis and Poulicos Prastacos. Space-time modeling of traffic flow. Comput.
Geosci., 31(2):119–133, March 2005.

[18] Felix Koenig. Future challenges in real-life routing. In Workshop on New Prospects in Car
Navigation. February 2012. TU Berlin.

D2.3.2: Page 53 of 54

FP7-ICT-2011-7 288094 - eCOMPASS

[19] Spyros Kontogiannis and Christos Zaroliagis. Approximation Algorithms for Time-Dependent
Shortest Paths eCOMPASS Project, Technical Report TR-017, April 2013. http://www.

ecompass-project.eu/sites/default/files/ECOMPASS-TR-017_0.pdf.

[20] Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A new
dynamic graph structure for large-scale transportation networks. In Algorithms and Complex-
ity, volume 7878 of LNCS, pages 312–323. Springer, 2013.

[21] Andreas Paraskevopoulos and Christos Zaroliagis. Improved alternative route planning. In
13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, volume 33 of OASICS, pages 108–122, 2013. Also eCOMPASS Project, Technical
Report TR-024, July 2013.

[22] Peter Sanders and Christian Schulz. Distributed Evolutionary Graph Partitioning. In Pro-
ceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX’12), pages
16–29. SIAM, 2012.

[23] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

[24] Wikipedia. Brutus cluster. Accessed on 10.06.2013.

[25] Marcin Wojnarski, Pawel Gora, Marcin Szczuka, Hung Son Nguyen, Joanna Swietlicka, and
Demetris Zeinalipour. Ieee icdm 2010 contest: Tomtom traffic prediction for intelligent gps
navigation. 2012 IEEE 12th International Conference on Data Mining Workshops, 0:1372–
1376, 2010.

D2.3.2: Page 54 of 54

http://www.ecompass-project.eu/sites/default/files/ECOMPASS-TR-017_0.pdf
http://www.ecompass-project.eu/sites/default/files/ECOMPASS-TR-017_0.pdf

	Introduction
	Structure of the Document

	Test Data
	Traffic Prediction
	Introduction
	Experimental Results
	Conclusion

	Time-Dependent Shortest Paths
	Time-Dependent Approximation Methods
	Dynamic Time-Dependent Customizable Route Planning

	Alternative Route Planning
	Introduction
	Preliminaries
	Our Improvements
	Pruning
	Filtering and Fine-tuning

	Experimental Results
	Visualization of Alternative Graphs

	Robust Route Planning
	Computation and Assessment of Robust Routes
	Experiments

	Evaluation of the Label Propagating Algorithm
	Experiments

	Conclusion and Discussion

	Route Planning for Vehicle Fleets
	Vehicle Routing Problem Data
	Laboratory test data compared to real life data
	Richness of real world problems in VRP
	Operative setting of real world problems
	Synthetic Laboratory Test Data
	eCOMPASS Approach Regarding Fleets of Vehicles
	Experimental Study and Data Sets
	Milan Dataset
	Munich Dataset - Parcel Delivery
	Munich Dataset - Furniture Delivery

	Conclusion and Future Work
	Traffic Prediction
	Time-Dependent Shortest Paths
	Alternative Route Planning
	Robust Route Planning
	Fleet-of-Vehicles Route Planning

