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1 Introduction

This deliverable presents the research results obtained by the project’s partners in the first 18
months of the project with respect to eco-aware routing for private vehicles and fleet of vehicles. It
describes the algorithmic solutions developed so far for the problems related to WP2.

1.1 Objectives and scope of D2.2

The goal of WP2 is to develop novel algorithmic methods for optimization of problems related to
routing of vehicles and fleet of vehicles in urban areas, considering the environmental impact as
one of the main parameters of the optimization objective. This document summarizes 18 months
of research within this workpackage, and introduces the algorithmic solutions developed so far.

The present deliverable is the outcome of the following tasks:

Task 2.2 Eco-friendly private vehicle routing algorithms.

Task 2.3 Eco-friendly routing algorithms for fleet of vehicles.

Task 2.2 aims at designing routing algorithms for private vehicles. The computed routes should be
optimized also with respect to their environmental footprint, and they should take into consideration
traffic prediction techniques as well. Furthermore, the trade-off between data precision and solution
robustness is also investigated in the context of this task.

Task 2.3 aims at designing routing algorithms for fleets of vehicles. The application scenario for
this task is a transportation company wishing to schedule the delivery or collection of goods in the
most efficient and environmentally-friendly way as possible.

The algorithms developed for Task 2.2 and Task 2.3 should be designed such that the environ-
mental impact of the computed route is minimal, while aiming at outperforming the state-of-the-art
techniques for classical routing problems in terms of quality (i.e., precision) and efficiency. Fur-
thermore, dynamic scenarios should be taken into account, wherein the input is not statically
predetermined but depends on several factors, like the time at which a query has been issued, or
the current road traffic conditions. In scenarios where deriving optimum solutions in an efficient
manner is not feasible, the computation of approximate solutions is taken into account.

1.2 Structure of the Document

The main body of this document are Sections 2 to 6, presenting the algorithms developed within the
scope of the project. Section 2 describes traffic prediction techniques. Section 3 describes answering
shortest path queries in the dynamic scenario where the edge costs of the network depend on the
time of the day at which the query has been asked. Section 4 describes techniques for computing
routes that can be proposed to users as meaningful alternatives to the fastest route. Section 5
describes the issues arising in the computation of routes when the data is noisy or not completely
reliable, namely, it addresses computation of so-called “robust routes”. Section 6 illustrates the
eCOMPASS approach for the computation of routes for delivery companies that need to schedule
the delivery of goods over fleets of vehicles. Finally, Section 7 concludes this document, and outlines
the work plan for the next reporting period.
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2 Traffic Prediction

2.1 Introduction

Nowadays, the interest for developing intelligent transportation systems (ITS) is constantly in-
creasing. The optimization of transport, either in terms of individuals or fleets, has emerged as an
important problem that may have significant impact socially, economically, and in terms of eco-
friendliness. The impact of traffic conditions on road networks has grown to be a major parameter,
affecting every aspect of transport, either uni-modal or multi-modal, i.e. using one or more different
means of transport, respectively. Although detectors could help alleviate certain traffic problems,
traffic is constantly altering, e.g. within a 30-minute time interval. Thus, early in the morning the
traffic of an area may rise considerably as a result of people heading towards their work sites.

Consequently, the problem of forecasting traffic within short time intervals ahead of present time
has arisen as a crucial, yet, challenging task; its thorough investigation could result in improved
routing decisions. Although traffic may be interpreted in various ways, the travel time required to
traverse a road is the main metric, since it is comprehensive (concerning public), as well as directly
associated with routing methods.

The problem of traffic prediction receives various interpretations, since many parameters such
as data sources or the actual implementation area may lead to a totally different research question.
The main classification criterion is typically the selection of a traffic descriptor. Traffic descrip-
tors quantify the performance of the transportation network, so that algorithms may be used on a
particular metric or combinations of metrics. Commonly employed metrics include traffic flow (ve-
hicles/hour), density (vehicles/km), occupancy (percentage), mean speed (for a time interval km/h)
and travel time (time used to traverse a link). The aforementioned traffic descriptors are highly
relevant to the source of the input data (e.g. loop detectors provide occupancy as the percentage of
time that vehicles traverse a link, whereas GPS-enabled devices provide with instantaneous speed
measurements per link). In addition, the proper representation of the prediction algorithm’s output
is usually a matter of choice, highly dependent on the cause of the prediction.

Travel time per link is one of the most commonly required output measurements as it is con-
sidered highly relevant to routing. Input, however, may be provided by different sources in various
formats. In traffic prediction-related research work done in the project, we considered that the
input is given in form of instantaneous vehicles speeds, as observed using GPS devices (see Sec-
tion 2.3). For the majority of traffic prediction techniques, handling different descriptors is more
or less applicable, as far as feature selection is properly taken into consideration.

Since the problem of traffic prediction is widely studied in the literature, different kinds of
techniques have emerged in order to tackle it. Upon referring to certain interesting techniques,
the problem is analyzed into two main subproblems, data preprocessing and forecasting. The
preprocessing step aims to isolate useful data and remove the noise, while the forecasting step
involves the prediction of future travel time values.

This section reports on the results of recent research conducted within Tasks 2.2 and 2.3 in
order to investigate the effect of various techniques on the quality of traffic prediction when applied
to different datasets. Local (i.e. concerning specific road neighborhoods) and global (i.e. concerning
the whole road network) measures are used to preprocess the data so that algorithm effective-
ness is maximized. From this perspective, the applicability and effectiveness of various algorithmic
approaches with respect to specific data characteristics are further discussed. As a result of the pre-
vious research, a new algorithm is proposed, drawn from Time Series Analysis, and its effectiveness
is discussed against known literature solutions.

The remainder of this section is organized as follows. Subsection 2.2 summarises the most
representative state-of-the-art algorithmic approaches in the literature (a more detailed survey can
be found in Deliverable D2.1). Subsection 2.3 briefly describes the datasets used, and focuses on
their similarities and differences. In subsection 2.4, local and global measures are presented and
discussed, whereas in subsection 2.5, the application of known literature algorithms to the datasets
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at hand is illustrated and a new approach is discussed. Finally, section 2.6 summarises and draws
conclusions on the traffic prediction techniques presented in this Section.

2.2 Models for Travel Time Forecasting

The techniques used for traffic prediction are classified into two main categories, the parametric
methods and the non-parametric methods. The term “parametric” determines whether the model
of a particular method is selected in advance or is unknown and selected during the training pro-
cedure [72].

2.2.1 Parametric Methods

Parametric methods are based on specific pre-determined models, which are trained in order to
deduce the parameters of the model in an optimal manner. The most common methods of this
category consist of Auto-Regressive Integrated Moving Average (ARIMA) and its variations, of
which the theory is given by Time Series Analysis. The generic Auto-Regressive Moving Average
(ARMA) model comprises of two components [11]:

• The Auto-Regressive (AR) part provides the current value Xt as the linear aggregate of p
previous values:

Xt =

p∑
k=1

φkXt−k + εt (1)

where εt is the error term and follows a Gaussian distribution of type (0, σ2
ε ) (i.e., white

Noise).

• The Moving Average (MA) part provides the current value Xt as the aggregate of q previous
error terms:

Xt =

q∑
k=1

θkεt−k + εt (2)

Hence, according to (1) and (2), the ARMA(p, q) model is given by:

Xt =

p∑
k=1

φkXt−k +

q∑
k=1

θkεt−k + εt (3)

or equivalently:

1−
p∑
k=1

(φkB
k)Xt = 1 +

q∑
k=1

(θkB
k)εt (4)

where B is the backwards shift operator (BkXt = Xt−k). Upon differencing the series at the dth
degree ((1−B)dXt):

1−
p∑
k=1

(φkB
k)(1−B)dXt = 1 +

q∑
k=1

(θkB
k)εt (5)

Finally, (5) describes an ARIMA(p, d, q) model. The ARIMA model was first introduced by Box
and Jenkins [9] to forecast the next values of a time series given its past values.

By contrast with the univariate analysis performed for a time series using the ARIMA model, its
multivariate counterpart, the Space-Time Auto-Regressive Integrated Moving Average (STARIMA)
takes into account several time series, supposed to be related to each other. STARIMA was first
introduced by Pfeifer and Deutsch [68] for studying the spread of diseases, however its applicability
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to problems with multiple time series is generic enough so that it can be used for predicting travel
times. The model is given by:

φp,λ(B)ΦP,Λ(BS)(1−B)d(1−BS)DXt = θQ,M (BS)εt (6)

where:

φp,λ(B) = 1−
∑p
k=1

∑λk

l=0 φk,lWlB
k

ΦP,Λ(BS) = 1−
∑P
k=1

∑Λk

l=0 Φk,lWlB
kS

θq,m(B) = 1−
∑q
k=1

∑mk

l=0 θk,lWlB
k

ΘQ,M (BS) = 1−
∑Q
k=1

∑Mk

l=0 Θk,lWlB
kS

As one might observe, (5) and (6) are quite similar. STARIMA actually introduces new parameters
to take into account the spatial and temporal lags of the multiple time series. Hence, k and l denote
the temporal and spatial lag respectively, while φk,l and θk,l are the auto-regressive and moving
average non-seasonal parameters. In accordance, capital letters denote the seasonal parameters.
Preliminary results for predicting traffic flow using STARIMA seem quite promising [51], while
travel time forecasting is applied in this work (see subsection 2.5.3).

Finally, a quite different line of research concerning parametric methods used for predicting
traffic is the use of Kalman Filters to predict traffic flow [66]. Kalman Filters, which were introduced
by (and named after) Kalman [50], are based on updating a state variable upon exploiting every new
measurement (i.e. one measurement at a time). Although no further information is provided, since
it deviates from the purposes of this deliverable, the interested reader is referred to [50] and [66].

2.2.2 Non-parametric Methods

The non-parametric methods can be categorized to memory-based and model-based ones. Memory-
based methods have to retain historical samples in order to perform the prediction, whereas model-
based ones exclusively need the extracted model, thus historical data are discarded upon the training
phase.

The most typical example of a memory-based model is the one extracted using the k-Nearest
Neighbor (kNN) methodology. Predicting the next value of a time series using kNN is simple; a
hybrid state vector may be defined as in [72]:

x(t) = [V (t), V (t− 1), V (t− 2), Vh(t), Vh(t+ 1)] (7)

where V (t) is the traffic descriptor value at time interval t and Vh(t) denotes historical values of V .
The respective output of the above vector is:

y(t) = V (t+ 1) (8)

The algorithm creates input vectors (x1, x2, x3, . . . ) using the training set. When a prediction is
requested, the k nearest vectors to the current vector (i.e. the vector xp at present time where yp
is unknown) are found and an averaging technique is used to calculate the corresponding output
value (yp)

1. Although simplistic, kNN seems to provide with satisfactory results, such as in [71],
thus giving a hint that performance lies mainly in properly representing dataset features rather than
blindly applying a robust algorithm. Interestingly, both first and second runner-up implementations
of the GPS task of the IEEE ICDM contest [79] were based on applying variations of KNN to
preprocessed (or postprocessed) data.

As opposed to memory-based methods, model-based ones perform offline training using the
training data in order to construct a model. The methods of this category generally lie in the

1The averaging may simply be the average, or it may be adjusted e.g. by distance or by current condition. For
an extensive review of possible averaging methods, see [72].
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area of Machine Learning (ML). Virtually any ML method may be used as a predictor. Typical
examples include Random Forests (RFs), Artificial Neural Networks (ANNs), and Support Vector
Machines (SVMs).

RFs were introduced by Breiman [10] as an ensemble of decision trees. The training data given
to the algorithm is used so that the branches of the trees are created. Thus, any new sample can
be easily classified correctly by simply traversing the trees and outputting the value voted by the
majority if trees, or the average of all trees, in case of regression. The theory of RFs has been
successfully applied to traffic prediction in the IEEE ICDM contest of 2010 (see Section 2.3) by
Hamner [41], with an implementation that ranked first in the GPS task. Subsection 2.5.2 illustrates
an application of the algorithm, where feature selection is the main task to be performed.

The applicability of ANNs to a wide range of problems, including pattern classification and
recognition, is remarkable [45]. ANNs, in particular Multi-Layered Perceptrons (MLPs), have been
broadly applied in the area of traffic prediction, both for traffic flow [78] and travel time forecast-
ing [47] mainly due to their flexible structure as well as their generalization ability, i.e. forecasting
previously unforeseen conditions. Recently, a Restricted Boltzmann Machine (RBM), which is a
kind of stochastic ANN, was used as a model for predicting traffic flow, with the respective imple-
mentation ranked first in the Traffic task of the IEEE ICDM contest [79].

Finally, SVMs, a classification method introduced by Vapnik [77], is based on a straightforward
idea: construct a hyperplane that sets apart the classes of the data. Thus, SVMs have also been
used in terms of travel time forecasting (e.g. [80]), mainly exploiting their high accuracy when
trained with a satisfactorily large dataset.

2.3 Traffic Data

At the time our research on traffic prediction initiated, no dataset was provided. Thus, the initial
dataset used is taken from the 3rd task of the IEEE ICDM Contest: TomTom Traffic Prediction for
Intelligent GPS Navigation [79] and concerns the city of Warsaw. Later on, a dataset for the city
of Berlin was provided by TomTom, a partner company of this European-funded research project.
The two different datasets are thereafter named as the Warsaw dataset and the Berlin dataset,
corresponding to data for the two cities. The characteristics of the datasets are further discussed
in this subsection.

The IEEE ICDM Contest: TomTom Traffic Prediction for Intelligent GPS Navigation [79] that
took place in 2010 provided interesting insight concerning the raw form of the data and the noise
it may include. Despite relying on simulated data for the city of Warsaw, the scenarios of the
contest are quite realistic. In terms of this section, the 3rd task of the contest, i.e. GPS, is studied
as a realistic problem of acquiring sparse data from GPS navigators all over a road network, and
requiring travel time forecasting for 5 and 30 minutes ahead of present time. The data is given in
raw form, as instantaneous vehicle speeds at given coordinates, so the first step of preprocessing
concerns matching the GPS-observed data to links on the map. The map-matching procedure
used is the one proposed in [40] by J. Greenfeld. In brief, the procedure includes storing a series of
consecutive instantaneous speed records for every car in order to create its trajectory. The trajectory
is used to map the speeds to the “nearest” link. The proximity of the link is measured using the
distance of the trajectory points from the start, the middle, and the end of the link. The interested
reader is referred to [40] for a more thorough explanation of the map-matching methodology as well
as a comparison with other known methods.

The second dataset concerns the city of Berlin and, although drawn by GPS locators, it was
already matched to map links, before it was provided to us. As opposed to the Warsaw dataset,
Berlin data consist of real historic speeds, hence comparing and contrasting between the results for
the two datasets could be quite insightful.

Upon map-matching, both datasets contain instantaneous speeds that correspond to road links,
also including the vehicle’s direction along the link. Applying a traffic prediction algorithm on the
data is restrictive not only due to scalability issues, but also because the data is sparse, e.g. a link
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may have no data for different time moments. Nodes are defined as intersections of two or more
links (i.e. straight lines). Road segments, hereafter called roads, are defined as segments between
nodes with more than two links. Hence each road contains arbitrary number of links.

Furthermore, the speeds for each road are not kept as individual records, yet their arithmetic
average, their harmonic average, and certain other statistic measures are calculated for specific
intervals (5-minute for Berlin and 6-minute for Warsaw) and stored thereafter. This coarse-grained
approach ensures not only that data are tolerant when samples are few, but also that algorithm
scalability shall be satisfactory.

The algorithms described in the following subsection may use different statistic variables. How-
ever, the harmonic average for each specific time interval seems the best approach, since, according
to [79], it corresponds better to travel times.

2.4 Data Preprocessing

Applying a multivariate travel time forecasting algorithm involves selecting several road time series
corresponding to road speed values and use them to extract future values of the road of interest. A
major research question studied by the community (see [16] for a review of different methodologies)
lies in determining which series affect most the speed value of that road. Existing solutions include
using data from neighboring roads (e.g. as in [51]) and/or using global network data (as in [41]).
However, traffic data is usually sparse and full of noise. In addition, local or global road data may
or may not affect the forthcoming values for a network’s road.

Consider that the trend of some road time series may appear to be proportional (or inversely
proportional) with the one of the road to predict, whereas others may exhibit no such relation, or
even not have any data. Considering a traffic congestion in roads n1, n2, . . . , the road r is likely to
have similar traffic over the next interval, especially if roads n1, n2, . . . are neighboring to road r or
if they are major enough to affect it even if they are not local. Such relations are usually captured
using correlation metrics.

At first, a simple, yet powerful, method used to discover relations between time series, is the
Pearson Product-Moment Correlation Coefficient (PPMCC). Let x and y be two time series, where
each series value is the harmonic speed of the road for a specific time interval, the coefficient for
the two time series for time interval t is calculated based on the following equation:

PPMCCxy =
E [(xt − µx)(yt − µy)]

σxσy
(9)

where µx is the mean and σx is the standard deviation of time series x. However, as also noted
in [16], the PPMCC of two time series fails to capture the temporal characteristics between the
time series. For example, the value for road n1 at time t may not be well correlated with the value
of the road to predict r at the same moment in time (t). In contrast, if vehicles travel from road n1

to road r within 1 interval, then the (t− 1)-th value of the time series of n1 shall be well correlated
with the value of road r series at time t. Such a relation can be identified by metrics that take into
account the possible lag between the time series. One of them is the Cross-Correlation Coefficient
(CCF), defined as:

CCFxy(k) =
E [(xt − µx)(yt+k − µy)]

σxσy
, k = 0,±1, . . . (10)

where k is the lag between the time series. A clear interpretation of the above metric is given by
taking its squared value and multiplying it by 100, so as to define the Coefficient of Determination
(CoD) between time series x and y at lag k:

CoDxy(k) = 100

[
E [(xt − µx)(yt+k − µy)]

σxσy

]2

, k = 0,±1, . . . (11)
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Equation (11) provides with a generic way of determining the percentage of variance between two
time series. Concerning traffic prediction, the interest mainly lies towards finding the correlation
between the present (and future) values of the time series to be predicted and the past (and present)
values of the neighboring series. Hence, let x be the time series of the road and y the series of a
road, the lag k shall receive only negative values.

Intuitively, neighboring roads are quite prone to have some relations, thus the metrics may also
be applied locally. However, global metrics are expected to outperform local ones, since traffic
depends on several diverse parameters. Moreover, the traffic of a major road may heavily depend
on another major road in the same city even if their distance is relatively long. For instance, upon
a congestion on a ring road, roads in distant areas may shortly exhibit increasing traffic.

2.5 Application of Traffic Prediction Methods

This subsection illustrates the application of several state-of-the-art techniques to the datasets
analyzed in Section 2.3. The application of four different methods including KNN, RFs, STARIMA,
and lag-based STARIMA is described in the following paragraphs (2.5.1, 2.5.2, 2.5.3 and 2.5.4,
respectively).

2.5.1 k-Nearest Neighbors

A univariate approach for predicting traffic using kNN has already been described in subsec-
tion 2.2.2. This method is enhanced using multiple time series corresponding to neighboring roads
of each road to be predicted. Thus, let r be the road for which the forthcoming travel time is
requested and n1, n2, . . . be the neighboring roads, the vector of (7) becomes:

x(t) = [Vr(t), Vr(t− 1), Vr(t− 2), Vn1(t), Vn1(t− 1), Vn1(t− 2), Vn2(t), Vn2(t− 1), Vn2(t− 2), . . . ] (12)

and the outcome, with respect to (8), is:

y(t) = Vr(t+ 1) (13)

where Vi(t) corresponds to the harmonic average of interval t for road i. Equation (13) is similar
for different time intervals ahead (e.g. for 2 intervals ahead, it shall be Vr(t+ 2)).

Thus, the training procedure includes storing a number of vectors x(t1), x(t2), . . . along with
the respective outcomes (y(t1), y(t2), . . . ). Predicting the harmonic average of the road for interval
tp+1 (where tp denotes present time) comes down to creating the input vector x(tp) and comparing
it to the training vectors x(t1), x(t2), . . . , using euclidean distance as the metric. Intuitively, each
vector value corresponds to a dimension. Different distance metrics have also been tested without,
however, producing significant results. The k (in our configuration 4) nearest vectors are found,
and the respective output values are averaged using straight average:

y(tp) =
1

k

k∑
i=1

yi(t) (14)

As one may observe, the application of the kNN algorithm using (12), (13), and (14) is rather
straightforward. However, selecting the neighboring roads that should be taken into account when
training (and running) the algorithm is a quite interesting problem. The CoD (see (11)) was applied
to the neighboring roads (of orders 1 up to 3 as proved to be optimal), in order to select those that
are most well correlated. A threshold was set so that any road surpassing it to be considered weakly
correlated. Thus, roads n1, n2, . . . of (12) are the ones of which the correlation is satisfactory.
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2.5.2 Random Forests

The second algorithm that was implemented to predict the travel time of each road is a RF-based
algorithm [41], that ranked first in the GPS task of the IEEE ICDM contest [79], held in 2010.
Although the algorithm was specifically adjusted to the context of the Warsaw dataset, applying it
also to the Berlin dataset was rather intuitive in terms of feature selection.

Each RF corresponds to one road and its features consist of global inputs, neighborhood (or
local) inputs, and inputs for the road. These features are defined as follows:

• Global inputs refer to statistics for all roads for a 30-minute interval, including number of
non-zero samples, number of zero samples, and arithmetic mean of speeds. The selection
of these metrics/dimensions is actually quite reasonable for the Warsaw dataset, due to it
being highly noisy and containing many zeros. Concerning, however, the Berlin dataset, the
number of zero samples is dropped, as the results were more satisfactory. The difference
between the two datasets is clarified further in the conclusion of this chapter. Finally, a
Principal Component Analysis (PCA) was undertaken on these features in order to isolate
the most important features for each of the three (or two) dimensions.

• Neighborhood inputs are received in a manner similar to global inputs. However, no PCA
projection is applied on the data of first-order neighbors; only first-order neighbors were taken
into account, as in [41].

• The inputs of the road to be predicted consist once again of the three (or in the case of Berlin
two) aforementioned metrics, as well as the harmonic average of the road intervals beyond
the 30-minute window. The latter are actually used as target output data in order to train
the RF.

The parameters of the RFs were adjusted such that they resemble the ones stated in [41]. Concerning
both datasets, the number of trees per forest was set to 100.

2.5.3 STARIMA

Determining the main parameters of a STARIMA model is a complex procedure that involves both
intuition and use of statistics on the data at hand. An interesting approach on the subject is
given by Kamarianakis and Prastacos in [51]. Upon analyzing the network, the authors build a
STARIMA model that describes their problem (traffic flow prediction for 25 loop detectors in the
city of Athens) sufficiently.

In accordance with (6), the analysis followed determines the orders p, d, and q2. A simplified
generic form of STARIMA, similar to the one of the authors, is defined by the following equation:

Zt+1 = φ00 · Zt + φ10 · Zt−1 + φ20 · Zt−2 + φ11 ·W1Zt + φ12 ·W2Zt + . . . (15)

where Zt represents road speed(s) at time t, Wo is the neighbor matrix of order o and φto is the
parameter(s) for road(s) of order o at interval t. Intuitively, (15) denotes that the speed of a road at
a specific time interval ahead (in (15) it is 1, but it could also be 2, 3, etc.) is a linear combination
of the speed values for the three previous intervals as well as the values of the first, second, etc.
order neighbors.

An element in an o-th neighbor matrix is defined by:

woij =


1∑N

j=1 w
o
ij

, if i and j are o-th neighbors

0 , otherwise

(16)

2See [51] for a detailed analysis on determining the space and time parameters, based on space-time cross-
covariance.
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Neighbor parameters can either be as many as the neighbors or as many as the orders of the
neighbors taken into account. Concerning the datasets, averaging over the neighbors provided
better results, so this is used for the experiments. The order of neighbors to take into account is
also an interesting choice. Upon testing, it was determined that taking up to third-order neighbors
into account is optimal.

In any case, the procedure is similar. The training data are used to construct different instances
of (15), i.e. different Z vectors for the time intervals (t1, t2, . . . ). Upon creating all equations, the
algorithm is trained and a least square estimate is used to determine the values of the φ vector:

φ = [φ00 φ10 φ20 φ11 φ12 . . . ] (17)

Forecasting a future value for a road is straightforward. The Z array is constructed for the present
interval tp and the next value is estimated by calculating the value of (15). Of course, the φ
parameter vector is known at run time.

2.5.4 Lag-based STARIMA

The STARIMA implementation shown in the previous subsection is found to be quite successful
when the neighborhood of each road is actually indicative of the values of the respective time
series. However, the locality hypothesis of this algorithm (something that is also present in KNN-
see subsection 2.5.1) may not stand for all possible cases.

Hence the intuition indicates the need for a global metric, such as the PCA analysis used in
the RF algorithm (see subsection 2.5.2). In general, PCA is optimal when the data is noisy and
hard to interpret, thus using it for the Warsaw dataset is quite reasonable. However, the Berlin
dataset seems much more noise-free, due mainly to it being real (instead of simulated). Since the
Berlin dataset is the main scope of this work, the selected global metric that should reveal the
hidden dependencies among roads is the CoD. Correlation metrics are known to be quite effective
in analyzing multivariate time series, especially if data is dense, with meaningful analogies.

Thus, the CoD is applied globally between any two roads of the network, using (11). As a
result, the most well-correlated time series for each road, which are not necessarily neighboring, are
identified and given to equation (15) of the STARIMA algorithm. However, since neighborhood
information is no longer important, the parameters are altered in order to reflect the lag between
each pair of time series. Consequently, the spatio-temporal properties of the data are interpreted
in a more meaningful way.

In particular, the speeds in (15), denoted by Z, are now adjusted to reflect lags:

Zt+1 = φ00 · Zt + φ10 · Zt−1 + φ20 · Zt−2 + φ11 ·W1Zt−1 + φ12 ·W2Zt−2 + . . . (18)

where Wl is the neighbor matrix of lag l and φtl is the parameter(s) for road(s) of lag l at interval
t. Note also that the Z values correspond to lags, in contrast with (15). In accordance with (16),
the weight matrix becomes:

wlij =


1∑N

j=1 w
l
ij

, if CoDij(l) ∈Ml

0 , otherwise

(19)

where Ml is the set with the largest CoDs for lag l. Aiming for robustness, three lag values are
considered, concerning 3 intervals before the current one to be predicted. In addition, the m largest
values are taken into account, without further restrictions about their lag. Setting m to 10 provided
optimal results, even though most reasonable values performed well.

D2.2: Page 14 of 62



FP7-ICT-2011-7 288094 - eCOMPASS

2.6 Conclusion

Traffic has lately grown to be a major problem with social, economical, and the ecological effects.
In terms of this deliverable, the problem of forecasting travel times was analyzed and several
literature methods were illustrated. Furthermore, novel ideas were discussed in order to improve on
the application of these methods to the problem at hand. The useful conclusions on the research
topic of forecasting travel times are analyzed hereafter.

At first, the algorithms were drawn from a plethora of scientific areas, thus their application
shall provide with interesting insight concerning their appropriateness on solving complex tasks,
with respect to the data. In particular, since two different datasets were used, one could comment
on the applicability and effectiveness of the algorithms in each dataset. Generally, the datasets
are quite diverse. The Warsaw dataset, being generated, was formed as a difficult ML problem,
thus handling it using “pure” ML implementations, such as the RF approach seems reasonable.
However, the STARIMA implementations usually prove quite effective in terms of real data, with
trend and periodicity, seen mainly in the Berlin dataset.

Concerning the complexity of detecting trends in multivariate time series, it grows exponentially,
thus making the task quite complex, especially when requiring global information. Therefore, global
metrics prove necessary for isolating the “useful” chunks of data with respect to the roads of which
future travel time values are predicted. PCA seems to be better suited for “noisy” and sparse
datasets, such as the Warsaw one, since it reveals hidden dependencies among different space-time
instances of the dataset. On the contrary, correlation metrics, such as the CoD, are generally
effective when there are strong correlation relationships among the roads of the network, which is
the case for Berlin.

Finally, generalizing the analysis of this chapter to parametric and non-parametric algorithms
is an interesting, yet, complex task which may be explored further in future work. Furthermore,
novel ideas may arise by combining the algorithms to form generally effective hybrid solutions. In
terms of the eCOMPASS project, this chapter provided useful insight, since it is derived from a
hands-on approach on the task of traffic prediction.
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3 Time-Dependent Shortest Paths

3.1 Preliminaries and Problem Statements

Computing shortest paths in graphs is a core task in many real-world applications, such as route
planning in transportation networks, routing in communication infrastructures, etc. Typically the
underlying graph is accompanied with an arc-cost function, assigning a fixed cost value to every
arc, representing average travel-time, distance, fuel consumption, etc. The path of a particular cost
is then the aggregated arc costs along it.

However, in real-world applications the cost of each arc should not be considered as a fixed
value, since it undergoes frequent updates. These updates may be instantaneous: Unpredictable
changes in traffic may occur, e.g., due to a sudden change of weather conditions, or a car accident
that blocks a road segment or junction. But also anticipated updates may occur, due to periodic
changes of the network characteristics over time. For example, the travel-time of a road segment
may depend on the real-time congestion upon traversal, and thus on the departure time from its tail:
During rush hours it is anticipated that it will be much longer than the free-ride travel-time, which
is usually valid only for particular departure times (e.g., during the weekend, or late at night). This
latter case of networks in which the characteristics of the network change in a predictable fashion
over time, are called time-dependent networks. In the present section our focus is on shortest path
computations on these networks, therefore, we assume that the behavior of each arc-cost (e.g., arc-
travel-time / delay) is described by a function of the departure time from the origin, whose exact
shape comes from statistical analysis of historical traffic information. For example, the travel-time
of a particular road segment may be the average of sampled delays at particular times during a
day from the historical traffic information, say per 2 minutes during rush hours and more rarely
for the remaining periods of the day; the corresponding arc-cost function is then considered to be
the (continuous) interpolant of all these averaged sampling points. Simply taking a snapshot of the
entire network (if possible) and solving the corresponding (static) shortest path problem is clearly
not the proper way to provide a route plan in a time-dependent network. In the following we shall
interpret the arc-cost functions as travel-time (or delay) functions. The problem is then to compute
a truly shortest path between an origin-vertex o and a destination-vertex d in the network taking
into account not only the departure time from the origin, but also the consequent departure time
from the tail of any other arc that is to be used by the adopted od−path towards the destination.
The problem was introduced in [18]. We explain the nature of questions that might be of interest via
a particular example and consequently we formally determine the algorithmic challenges to address.
Assume that one has to move from a location o (the origin) to a location d (the destination) in a
directed graph whose arc-travel times are determined by (continuous) functions of departure time
from tail[a] = u of arc a = uv, D[a] : R≥ 0 → R>0, as shown for example in figure 1.(a). How
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Arr[oud](t) = Arr[ud](Arr[ou](t)) = 2(3t+0.1)+2 = 6t + 2.2

Arr[ovd](t) = Arr[vd](Arr[ov](t)) = 3(2t+2)+0.1 = 6t + 6.1
Arr[ouvd](t) = Arr[vd](Arr[uv](Arr[ou](t))) = 3(4(3t+0.1))+0.1 = 36t+1.3

Arr[ovud](t) = Arr[ud](Arr[vu](Arr[ov](t))) = 2((2t+2)+1)+2 = 4t+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

(a) A time-dependent net-
work with (linear in this
case) arc-delay functions.

(b) The corresponding arc-
arrival functions.

(c) The resulting path-
arrival functions.

Figure 1: A motivating example for time-dependent shortest paths.
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should the traveler commute as fast as possible from o to d, for a given departure time (from o),
say to = 0 or to = 5? What if he is not certain about the exact departure-time and would rather
prefer to have an answer for every possible departure time? Rather than considering the arc-delay
functions D[a](t) given by the description of the instance, it is more convenient to consider the
arc-arrival-time functions Arr[a](t) = t + D[e](t) to head[a], as functions of the departure times t
from tail[a] of each arc a, as shown in figure 1.(b). The commuter has to compare the arrival-times
provided by the four distinct od−paths in the example, shown by different colors in in figure 1.(c).
For every od−path p, the commuter can calculate the corresponding path-arrival-time function,
Arr[p] : R → R>0 that can be easily be shown to be the composition of the path p’s constituent
arc-arrival functions. It is then straightforward to answer both the above questions, by considering
the minimum over all these path-arrival functions, to determine the earliest-arrival-time function
Arr[o, d](to) = minp∈Po,d{Arr[p](to)} for any given departure time to. In the above mentioned
example this function is:

Arr[o, d](to) =

 36to + 1.3 (ie, orange path), if to ∈ [0, 0.03]
6to + 2.2 (ie, yellow path), if to ∈ [0.03, 2.9]
4to + 8 (ie, purple path), if to ∈ [2.9,+∞)

Having the (exact, in the above example) functional description of Arr[o, d], the commuter can
easily decide what to do, either for a particular departure time, or for various potential departure
times from the origin.

Of course, due to the exponential number of od−paths in the network, such an approach is not
plausible. Still, it might be useful for the commuter (and also for the designer of an approximate
distance function in the network, or a time-dependent distance oracle) to be able to have instan-
taneous descriptions of the earliest-arrival functions around given departure-times from the origin.
Therefore, two main algorithmic challenges that we have to pursue are the following:

INPUT: A directed graph G = (V,A) with (continuous, positive) arc-delay func-
tions, ie, ∀a ∈ A, D[a] : R≥ 0 → R>0 is the arc-travel-(delay)-time function.
Arr[a](t) = t+D[a](t) is the arc-arrival-time function.

DEFINITIONS: Path-Arrival/Delay Function: ∀(o, d) ∈ V × V , ∀p = (a1, . . . , ak) ∈
Po,d, ∀t ≥ 0, Arr[p](t) = Arr[ak] ◦ Arr[ak−1] ◦ · · · ◦ Arr[a1](t) =
Arr[ak](Arr[ak−1](· · · (Arr[a1](t)) · · · )) (the composition of the involved arc-
arrivals in p in reverse order) is the path-arrival-time function of p. ∀t ≥
0, D[p](t) = Arr[p](t)− t is the path-travel-time function along p.
Earliest-Arrival/Delay Function: ∀(o, d) ∈ V × V, ∀to ≥ 0, Arr[o, d](to) =
minp∈Po,d { Arr[p](to) } is the earliest-arrival-time function and D[o, d](to) =
Arr[o, d](to)− to is the shortest-travel-time function, from o to d.

(SOEAT) Single-Origin Earliest-Arrival-Times: For given departure-time to ∈ R≥ 0

from o, determine the value td = Arr[o, d](to).

(SOEAF) Single-Origin Earliest-Arrival-Functions: Provide a succinct representation of
the function Arr[o, d] (or equivalently, D[o, d]), for a given origin o and any
destination d reachable from it.

But these are not the only challenges that we seek to tackle for time-dependent shortest path
computations within eCOMPASS. Our primary concern is to provide quite fast (e.g., polylogarith-
mic / sublinear / within milliseconds) response-time per query, when several shortest-path queries
for arbitrary od−pairs and departure times are submitted by the commuters and have to be served
in real-time. In order to achieve this, one has to avoid processing directly (and solely) the raw traffic
data. A similar approach has extensively been studied in the literature for static (time-independent)
networks (see, for example, a nice overview of speed-up techniques and distance oracles for static
networks in deliverable D2.1 of eCOMPASS). This is because urban road-network instances are
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typically of huge scale, therefore rendering impractical the real-time computation of shortest paths
directly on the raw data, particularly when an urban traffic server has to respond to decades or
even hundreds of shortest-path queries per second.

The idea is to somehow have the raw traffic information preprocessed offline (i.e., solve SOEAF
for selected locations in the network) in order to create distance-metric summaries, in order to
exploit this metadata to speed-up the responses to arbitrary shortest-path queries submitted by
the commuters in real-time (i.e., assure really fast solutions to arbitrary, practically concurrently
submitted SOEAT queries). In what follows we proceed as follows: We start by commenting on the
kind of raw traffic data we anticipate within eCOMPASS. Then we discuss the main ingredients
for responding to time-dependent shortest path queries, namely, how to solve either exactly or
approximately SOEAT and SOEAF for selected origin / origin-destination nodes. Finally, we
conclude with the overview of a novel approach for providing a time-dependent distance oracle,
that supports provably sublinear shortest-path queries.

3.2 History and Related Literature

3.2.1 FIFO vs Non-FIFO Networks

A fundamental parameter for time-dependent networks is whether or not the arc delay functions
possess the (strict) FIFO property, according to which there is no need to (we should not) wait at
the tail of an arc, hoping for an earlier arrival-time at the head by waiting and then traversing the
arc in the future. This is equivalent to requiring that the arc-arrival functions are non-decreasing
(i.e., strictly increasing). The property is also known as the non-overtaking property because it is
equivalent to assuming that no car may overtake another car in the urban network, e.g. because
we assume that every commuter moves at the alleged speed per arc. This seems to be plausible
in network representing urban-traffic road networks, but there are other cases in which it may not
be applicable. For instance, one should probably wait for the next (faster) IC train, than use the
immediately available (slower) local train, in a time-dependent public transport network. Figure 2
demonstrates a FIFO (on the left) and a non-FIFO arc-delay function. It is not hard to observe
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Figure 2: Example of a FIFO (on the left) and a non-FIFO (on the right) arc-delay function.

that the FIFO property (only defined for arc-delay / arc-arrival functions) is also extended to path-
delay/path-path arrival functions. When the FIFO property does not hold, it may be meaningful
for a commuter to also adopt a waiting policy at intermediate nodes while traveling. It is not
always reasonable to assume waiting unrestrictedly at nodes of the network, in order to achieve the
earliest-arrival time at the destination. Indeed, it may even be the case that there is no optimal
waiting time that would assure that (e.g., due to discontinuities of some arc-delay functions). Even
if the optimal waiting times at nodes are always well-defined, it may occur that computing the
optimal waiting policies is indeed a hard problem. Within eCOMPASS WP2 we focus on route
planning of private cars and fleets of vehicles. It is therefore quite reasonable to assume that the
FIFO property holds, and this assumption is also justified by the experimental traffic data for the
urban traffic network of Berlin, provided to the project by TomTom.
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3.3 Solving SOEAT in Real Time

The contribution of this section originates from [55]. For a given od−pair (or, given origin only),
and a given departure time to from o, it is known since 1969 [30] that, when unrestricted waiting-
at-nodes is allowed unconditionally and an optimal waiting value always exists, a time-dependent
shortest paths (TDSP) tree from o, along with the earliest-arrival-time values (i.e., a solution to
SOEAT), is polynomial-time computable via a simple variant of Dijkstra’s algorithm. I has also
been demonstrated [67] that non-FIFO networks with arbitrary waiting-at-nodes are polynomially-
equivalent to a FIFO networks in which of course there is no meaning in waiting at nodes. Moreover,
it is known [67] that, for affine arc-delays (with FIFO property, or non-FIFO property but allowing
unrestricted waiting at nodes), also the algorithm of Bellman-Ford works. But, if waiting-at-nodes
is restricted/forbidden and the arc-delays functions may not preserve the FIFO property, then
subpath optimality of shortest paths is not necessarily preserved and the problem becomes hard.
For a more detailed overview of the problem see deliverable D2.1 of eCOMPASS.

3.3.1 Succinct Representation of Arc Delay Functions

In eCOMPASS the raw-traffic data for experimentation provided by TomTom are indeed created
by processing historical traffic data for the city of Berlin, and are represented as frequent sample
points (per arc) on a weekly basis. Therefore, we consider that ∀a = uv ∈ A, the forward arc-

delay function
−→
D [a] : R → R≥ 0 is a periodic piecewise-linear (pwl) function (of departure times

tu from u) expressed as the interpolant of these sampling points, for a time period Π = [0, T ],

such that ∀k ∈ Z,∀tu ∈ Π,∀a ∈ A,
−→
D [a](tu + k · T ) =

−→
D [a](tu). The periodicity, along with the

piecewise-linearity of the arc-delay functions, assure succinctness of the representation of the raw
traffic information. An example of such an arc-delay function is the following (its plot is shown in
figure 3).

∀tu ∈ R,
−→
D [uv](tu) =


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Figure 3: Example of a continuous pwl (forward) arc-delay function for an arc a = uv ∈ A, whose
period is T = 24h.

For notational reasons we assume that ∀tu ∈ Π,∀u ∈ V,
−→
D [uu](tu) = 0 and ∀uv /∈ A ⇒

−→
D [uv](tu) = +∞. Moreover, rather than defining the arc-delay functions as functions of departure-
time from the tail, we may also prefer to express them as functions of arrival-times at the heads. We
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use the notation
←−
D [uv] : R → R≥ 0 for these reverse arc-delay functions. For example, the reverse

arc-delay function corresponding to the forward arc-delay of figure 3 is the following (see figure 4):

∀tv ∈ R,
←−
D [uv](tv) =



4
7 tv + 3

7 , 1 ≤ tv mod T ≤ 8

5, 8 ≤ tv mod T ≤ 10

2
3 tv −

5
3 , 10 ≤ tv mod T ≤ 16

− 8
5 tv + 173

5 , 16 ≤ tv mod T ≤ 21

1, 21 ≤ tv mod T ≤ 24 ∨ 0 ≤ tv mod T ≤ 1

It is mentioned that for the reverse expression of the arc-delay function to exist, it must be the
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Figure 4: The reverse arc-delay function corresponding to the (forward) arc delay function of
figure 3.

case that the original (forward) arc-delay does not have any leg of slope less or equal to −1, i.e.
the FIFO property holds. In particular, when this is the case, we can invert the (monotone in

this case) arrival-time function tv = Arr[uv](tu) = tu +
−→
D [uv](tu) to get the latest-departure-time

function from the tail u, Dep[uv] = (Arr[uv])−1, and then compute
←−
D [uv](tv) = tv−Dep[uv](tv) =

Arr[uv](tu)− tu =
−→
D [uv](tu).

3.3.2 How to Solve PWL-SOEAT

One can solve SOEAT with pwl arc-delays, assuming that the (strict) FIFO property holds. A
simple variant of Dijkstra’s algorithm indeed works also for the computation of shortest od−paths
and earliest-arrival-time values (for given departure time from the origin) in any time-dependent
network possessing the FIFO property [30]. We denote such a time-dependent variant by TDD. To
avoid tricky situations in which the algorithm (even for static networks) might fail, we suppose that
all the arc-delay functions are always non-negative. Put it differently, we consider as the actual
arc-delay to be the maximum of zero and the declared arc-delay function, for any departure time
from the tail.

3.3.3 Evaluating Arc-Delay Values

During the execution of TDD on a FIFO network with (non-negative) arc-delay functions, the
delay value of every arc has to be estimated upon its (unique) relaxation, when its head is set-
tled. For SOEAT with linear arc delay functions, this would definitely have cost O(1). The case
of pwl arc delays, arc-delay evaluation is a little bit more complicated: When referring to the
succinct representation (e.g., as a collection of breakpoints) of an arc-delay function for the arc
a = uv that is currently being relaxed for a given departure time tu = Arr[o, u](to), the arc-delay
evaluation operation is not constant anymore, but costs either O(log(Ka)) (e.g., by maintaining
a binary search tree of breakpoints) or even O(log(log(Ka))) if one employs more advanced data
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structures (e.g., fast tries of breakpoints) in order to determine the appropriate leg of the (pwl)
arc-delay function D[a] which is appropriate for tu. Ka is the space-complexity (number of break-
points) of D[a]. Since every arc is relaxed at most once, in overall TDD will have time-complexity
O(n log(n) +m · log(log(Kmax))) to solve SOEAT for pwl arc-delays, where Kmax = maxa∈AKa.

3.3.4 Computing Latest Departure Times from Origins to a Single Destination

Knowing how to solve SOEAT (eg, for pwl arc-delays) also assures a solver for the complementary
problem of computing latest-departure-times from origins to a single destination (SDLDT): One
has to consider the same graph but also consider the incoming (rather than the outgoing) arcs
per vertex behaving according to the reverse arc delay functions, and then run TDD, the only
differences being that:

• Within the priority queue Q, the objects are ordered in decreasing departure-times from the
tails of the arcs.

• Each Q.pop() operation retrieves the object with the maximum key.

• Relaxation of arc vu ∈
←−
A occurs during the settlement of the tail vertex v, when the subtrac-

tion of the reverse-arc-delay value
←−
D [uv](tv) from the actual arrival time tv at v is greater

than the current value of vertex v in Q.

3.4 Efficient Approximation Algorithms for Travel Profiles

The contribution of this section originates from [55]. In this subsection we gradually move from
SOEAT to SOEAF. The solution to such a problem will be valuable for the provision of distance
summaries, to be used either for speed-up techniques, or by query-algorithms of a distance oracle.

3.4.1 Instantaneous Descriptions of Earliest Arrival Functions at Sampled Points

We start with explaining how one can gather additional information (apart from earliest-arrival
values provided by a SOEAT solution), concerning the instantaneous functional descriptions of the
earliest-arrival-time functions at nodes reachable from the origin o, with respect to an arbitrary
sampling departure-time to. In particular, our goal is to provide the description of the (affine)
earliest-arrival-time functions:

Arr−[o, v](x) = A−[o, v](to) · x+B−[o, v](to), x ∈ (to − δ, to]
Arr+[o, v](x) = A+[o, v](to) · x+B+[o, v](to), x ∈ [to, to + δ)

to each node v ∈ V , for arbitrarily small δ > 0. The affinity of these functions is due to the fact
that all the earliest-arrival functions we want to compute / succinctly represent are pwl functions,
since they are defined as the minimization operation over path-arrival functions, which in turn are
compositions of pwl functions (the arc-arrival functions). This kind of information will become
useful later, when we shall seek for approximate shortest-travel-time functions in the network.

The main idea is, after having executed a time-dependent Dijkstra run from an origin (o, to),
TDD(G,D, o, to), which creates not only the earliest-arrival-time values at the final vertex labels
L[v], but also the instantaneous shortest-paths tree T = SPT [o](to) assuring them, to execute a
BFS scan in T (starting from the origin o) in order to recursively compute the above mentioned
functional descriptions of earliest-arrival-time functions. Before describing the appropriate formula,
we need some additional notation. The set:

P [o, v](to) = {u ∈ V : (u, v) ∈ A ∧ L[v] = L[u] +D[uv](L[u])}
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contains all the parents of v in shortest ov−paths with departure time to. L[x] is the final label-value
of vertex x at the end of the Dijkstra run.

A±[o, o](to) = 1, B±[o, o](to) = 0

P [o, v](to) = {u}, for some u ∈ V : /∗ unique shortest ov−path parent for departure-time to ∗/

A±[o, v](to) = (1 + λ±[uv](Arr±[o, u](to))) ·A±[o, u](to)

B±[o, v](to) = (1 + λ±[uv](Arr±[o, u](to))) ·B±[o, u](to) + µ±[uv](Arr±[o, u](to))

|P [o, v](to)| ≥ 2 : /∗ multiple shortest ov−path parents for departure-time to ∗/

A−[o, v](to) = maxu∈P [o,v](to) {(1 + λ−[uv](Arr−[o, u](to))) ·A−[o, u](to)}
B−[o, v](to) = minu∈P [o,v](to) {(1 + λ−[uv](Arr−[o, u](to))) ·B−[o, u](to) + µ−[uv](Arr−[o, u](to))}
A+[o, v](to) = minu∈P [o,v](to) {(1 + λ+[uv](Arr+[o, u](to))) ·A+[o, u](to)}
B+[o, v](to) = maxu∈P [o,v](to) {(1 + λ+[uv](Arr+[o, u](to))) ·B+[o, u](to) + µ+[uv](Arr+[o, u](to))}

where the arc-travel-time function of an arc a = uv may also have an affine prior-description
D−[a](tu) = λ−[uv](tu) · tu + µ−[uv](tu) described by (λ−[uv](tu), µ−[uv](tu)) and a correspond-
ing post-description D+[a](t) given by (λ+[uv](tu), µ+[uv](tu)), if we depart from u in a small
neighborhood around tu. Observe that if tu corresponds to a breakpoint of the pwl function
D[a], then (λ−[uv](tu), µ−[uv](tu)) 6= (λ+[uv](tu), µ+[uv](tu)), otherwise (λ−[uv](tu), µ−[uv](tu)) =
(λ+[uv](tu), µ+[uv](tu)).

Therefore, for a time-dependent instance 〈G = (V,A), (D[a] : [0, T ]→ R>0)a∈A〉 with strictly
positive arc-travel-time functions, if the instantaneous functional descriptions of earliest-arrival-time
functions are computed as described above, after the completion of the time-dependent Dijkstra
run with departure time to from the origin, and by considering the vertices of the graph exactly in
the same order as they were settled (i.e., as if we scan the shortest paths tree in bfs order, with the
vertices of each level ordered by increasing settling times, then it holds that:

Arr−[o, v](x) = A−[o, v](to) · x+B−[o, v](to), x ∈ (to − δ, to]
Arr+[o, v](x) = A+[o, v](to) · x+B+[o, v](to), x ∈ [to, to + δ)

to each node v ∈ V , for arbitrarily small δ > 0.
The explanation of this property is based on an inductive argument on the vertices whose

functional descriptions have already been computed. The basis of the induction concerns the root
itself, whose functional description is trivially correct. Assume now that all the vertices that have
been processed so far already have the correct instantaneous descriptions of their earliest-arrival
functions. Consider the next vertex vk ∈ V to process. Let Vk = {o = v1, v2, . . . , vk−1} be the set
of already processed vertices. Clearly, ∀1 ≤ i < k < j ≤ n it holds that L[vi] ≤ L[vk] ≤ L[vj ], by
correctness of time-dependent Dijkstra. Due to the positivity of the arc-delay values, it certainly
holds that P [o, vk](to) may only contain nodes from Vk, whose instantaneous descriptions of earliest-
arrival-time functions have already been previously computed, since we conduct a BFS scan of
the produced Dijkstra tree. In case that P [o, vk](to) = {u} for some vertex u ∈ V , there is a
sufficiently small δ > 0 such that u is the unique shortest-path parent of vk, for all departure
times t ∈ (to − δ, to + δ), by continuity of the earliest-arrival functions. Thus, by the (inductively
assumed) correctness of the instantaneous functional description for vertex u’s earliest arrival, it
certainly holds that vk’s functional description is also correct. When |P [o, vk](to)| ≥ 2, then for
each u ∈ P [o, vk](to) we have a different earliest-arrival-time-via-u function, Arr±[o, v|u](t). All
these are affine functions that meet at the point (to, L[v]). We want to express Arr±[o, v] around
to as the minimum over these affine functions. Clearly, Arr−[o, v](t) has the largest slope and the
smallest constant, whereas Arr+[o, v](t) has the smallest slope and the larger constant among these
affine functions, as shown also in Figure 5:
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Figure 5: Instantaneous functional descriptions of the earliest-arrival-time function around the
sampling departure-time to from the origin.

3.4.2 Time Horizon of Combinatorial Structures of Given Departure Times

After running TDD for a given departure time to and consequently computing the instantaneous
functional descriptions of the earliest-arrival functions to destinations, our last task is to determine
the time horizon t̂o > to until which this information will remain valid. The reasons for such a
change might be either a future arc-delay breakpoint activation, or the effect of a minimization
operation at a destination vertex. Our approach for this computation is inspired by the output-
sensitive algorithm of Foschini et al. [36], which introduced the related notion of certificates (we
provide in the following a formal definition of a certificate). The time-horizon that we seek is exactly
the earliest certificate failure that we shall discover in the graph.

In order to discover these discrete points at which the combinatorial structure (shortest path
tree) and / or some earliest-arrival-time functions change (due to appearance of new breakpoints),
we compute a set of certificates (one per vertex and edge) to indicate the next failure time of some
earliest-arrival function, triggered by a particular element of the graph as if nothing else would
change in the future.

The notion of minimization (vertex) certificates, one per vertex v ∈ V , provides estimations
on the earliest future departure-time tfail[v](to) from the origin with respect to to, at which the
shortest ov−path would change, due to the application (at v) of the minimization operation at the
earliest arrival functions via different parents, assuming that no other functional description would
change in the graph. Similarly, the notion of primitive (arc) certificates, one per arc a = uv ∈ A,
indicates the projection tfail[a] (to a departure-time from the origin) of the next breakpoint-time
(after Arr[o, u](to)) to the arc-travel-time function D[a].

In particular, assume that for every vertex v ∈ V its in-neighborhood is IN [v] = {u ∈ V : uv ∈
A} and let for convenience uv = p[v](to) be the current parent of v in the shortest paths tree for
departure time to. Recall that the instantaneous earliest-arrival-time-via functions are determined
as follows:

∀u ∈ IN [v], Arr+[o, v|u](t) = Arr+[o, u](t) +D+[uv](Arr+[o, u](t))

= (1 + λ+[uv](to)) ·A+[o, u](to) · t+ (1 + λ+[uv](to)) ·B+[o, u](to) + µ+[uv](to)

where, Arr+[o, v](to) = Arr+[o, v|uv](to) < Arr+[o, v|u](to), ∀u ∈ IN [v]. Assuming that the
recursively called earliest-arrival-via functions at Arr+[o, v|u](t) : u ∈ IN [v] would remain affine
from to and beyond, the next minimization certificate at vertex v is relatively simple to compute: It
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is the earliest point tfail[v] > to (if any) at which any of the (suboptimal at to) alternative earliest-
travel-time functions become equal to the value of Arr[o, v](tfail[v]). For simplicity in notation we
drop the dependence of all the functional descriptions from the departure-time to: ∀u ∈ IN [v]\{uv},

tfail[v|u](to) =


+∞,

A+[o, v] ≤ (1 + λ+[uv]) ·A+[o, u]
∨

B+[o, v] ≥ (1 + λ+[uv]) ·B+[o, u] + µ+[uv]

(1+λ+[uv])·B+[o,u]+µ+[uv]−B+[o,v]
A+[o,v]−(1+λ+[uv])·A+[o,u] , otherwise.

The certificate failure of vertex v is then the earliest failure indication from all the possible alter-
native routes to reach v:

tfail[v](to) = inf
u∈IN [v]\{uv}

{ tfail[v|u](to) } (20)

We must also deal with the future primitive (arc) breakpoints of the earliest-arrival functions, which
are indeed caused by the fact that the arc-travel-time functions are themselves piecewise linear. For
this reason, for every arc a ∈ A and departure-time to from o, we must know the closest future
departure time from o (if any) for which the earliest arrival time at tail[a] is the time-coordinate of
a breakpoint in D[a], assuming that no other breakpoint would affect the earliest arrival function
at tail[a]. We call this departure time from o a primitive certificate for arc a. This is defined as
follows:

tfail[a](to) (21)

=

{
+∞, A[tail[a]](to) · to +B[tail[a]](to) > taka

min
{
t ≥ to : A[tail[a]](to) · t+B[tail[a]](to) ∈ {ta1 , . . . , taka}

}
, otherwise.

It is mentioned that, in order to compute the instantaneous earliest-arrival-time functional
descriptions and the tentative certificate failure times, one has to perform two sequential passes
(in BFS order) over the vertices of the shortest paths tree produced by the execution of the time-
dependent Dijkstra. This is because the first pass will compute the earliest-arrival-time functions,
and only then can one (in the second pass of the same tree, in any order) recalculate the correct
values of all the tails of arcs headed from vertices of the subtree. Figure 6 illustrates the necessity
for two passes.

3.5 From SOEAT to (approximations of) SOEAF

The contribution of this section originates from [55]. Rather than computing earliest-arrival-time
values, one may need to provide succinct representations of earliest-arrival-functions from a given
origin o. Unfortunately, even for affine arc-delay functions, Foschini et al. [36] recently proved that
there may be too many (superpolynomial) number of breakpoints, excluding a succinct representa-
tion of these functions. On the other hand, in the same work a quite interesting output-sensitive
algorithm was proposed to explicitly construct these representations.

Nevertheless, the main goal is to exploit (at least approximate) solutions of SOEAF as sub-
routines for the creation of distance summaries (e.g., from/to selected landmark nodes) at the
preprocessing step of an oracle, whose online queries will exploit these summaries to support real-
time fast responses for arbitrary queries (o, d, to) ∈ V ×V ×[0, T ] arriving online. A crucial aspect is,
therefore, to assure not just succinct, but also space-efficient approximations of the distance metric.
Since it is not meaningful to provide approximate earliest-arrival-time functions (they cannot be
independent of time shifts), we consider only approximations of shortest-travel-time functions. [36]
et al. proposed a polynomial-time algorithm that constructs point-to-point approximate distance
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Figure 6: Explanation of the necessity for two passes of the acrs headed by vertices in the subtree
of the graph element causing the current certificate failure. Solid lines demonstrate arcs that have
already been scanned for the instantaneous functional description of arrival-time functions at their
heads. Dashed lines demonstrate arcs that have not been visited yet.

functions, which only uses a number of breakpoints for its succinct representation that is indepen-
dent of the network size. The main idea of the algorithm is to keep sampling the (unknown) distance
function D[o, d], thus creating breakpoints for an upper-approximating function D[o, d], until the
required approximation guarantee of 1 + ε is assured. This algorithm keeps sampling the function
on the delay axis, so long as the partial derivative (slope) of the distance function becomes greater
than 1 (i.e., the distance values change faster than departure times). As soon as the slope of D[o, d]
at a sample point drops below this value, the sampling procedure continues by considering samples
along the time axis, via a simple bisection. Despite its small number of breakpoints, the approx-
imate distance function is provably (asymptotically) space-optimal only for the second phase (the
bisection). It is also not explained how one can gather the required information at given sampling
points, such as the partial derivatives of D[o, d] at the sampling points. Finally, it is not possible for
the approximation algorithm of Foschine et al. to compute all the approximate distance functions
from the common origin concurrently, as is done for example by the output sensitive algorithm.

Polynomial-time approximation algorithms are proposed in [55] for the succinct representation
of upper-bounding functions D[o, d], for all destination vertices reachable from o at the same time,
that requires asymptotically space-optimal representations, in time-complexity comparable to that
of the worst-case point-to-point computation. Our algorithm is based on the exact calculation (given
in closed form) of the maximum additive error assured between two consecutive sampling points.
This formula is used both for the analysis of the algorithm, but also for keeping (as breakpoints)
only those sampling points which are really necessary for the required approximation guarantee.
For more details, the reader is referred to the eCOMPASS technical report [55].

3.6 A Time-dependent Approximate Distance Oracle

The contribution of this section originates from [56]. The main rationale of a distance oracle is to
create offline a summary of distance that will be useful for responding in sublinear time to arbitrary
time-dependent shortest-path queries. To our knowledge, the first time-dependent distance oracle
is proposed in [56]. The algorithm works for sparse (but not necessarily planar) directed graphs,
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possessing two (crucial for the analysis, but also quite natural for urban traffic road networks)
properties that we call the Bounded Delay Slopes and the Bounded Opposite Trips. The former
asserts that the maximum slope of a shortest-travel-time function between any arbitrary od−pair
is upper bounded by a constant Λmax. The latter asserts that there is a global constant ζ ≥ 1, such
that for any given od−pair and a given time t, the shortest travel time from o to d is at most ζ
times larger that that from d to o. Both these two assumptions are quite natural in realistic urban
traffic road networks with time-dependent arc-delays. Our oracle is based on an analogous oracle
for static (time-independent) networks described in [3], and consists of three main ingredients:

Preprocessing: A subset of landmark vertices L ⊂ V is randomly chosen. In particular, every
vertex v ∈ V has a probability 1

a of being selected as landmark. Consequently, any polynomial-
time approximation algorithm for (1 + ε)−distance functions is used, to compute distance
functions from/to landmark vertices to/from arbitrary vertices. The required space for storing
the preprocessed data is O(|V | · |L|), since we only need a constant number of breakpoints
per landmark-to-vertex function.

Constant-Approximation Based on Landmarks: A sublinear-time algorithm for computing
(on the fly) constant-approximations to arbitrary od−pair distances is proposed. The main
challenge is to tackle the departure-times variation, and the lack of undirectedness. Addition-
ally, the algorithm provides two approximate solutions, one based on a Dijkstra ball around
the origin, and another one based on a ball around the destination. Both approximations
must assure constant ratio.

Query: A recursive algorithm grows Dikjstra balls around the origin and the destination, and each
time recurs on the side of the ball with the largest radius until no further recursion is allowed,
in which case the constant-approximation algorithm is exploited to connect the exhaustively
searched prefix and suffix subpaths and construct an od−path whose delay is at most (1 + ε)
approximation of the shortest travel-time. The best possible path from all the constructed
solutions is returned as the final answer to the query.

For more details, the reader is referred to [56].

3.7 Dynamic Time-Dependent Customizable Route Planning

Road Live Traffic and Historical Knowledge. For several years, commercial routing products
have used data collected from sensors in the road infrastructure or GPS traces from mobile devices
to provide live (i. e., current) traffic information to users. After careful statistical cleaning of the
input data, this information is used twofold: to update directions for drivers currently on the road
as well as to build historical knowledge about the changing behavior of street segments during a
day of the week (e. g., rush hours).

Research in route planning for road networks has somewhat followed this distinction. Most
of the developed techniques concern static routing with scalar edge weights (travel time). They
provide quick preprocessing and fast queries [2, 21, 23, 38]. Some techniques can be generalized to
dynamically updated but still with scalar edge weights (e. g. [21, 24, 70]). Somewhat less studied is
the problem of time-dependent route planning [26]. Here, historical knowledge about traffic patterns
is encoded into edge delay functions that map time of day to travel time along the edge. Usually,
these functions are piecewise linear. A variant of Dijkstra’s algorithm can be used to compute
earliest arrival queries on these networks. TCH [7], TD-SHARC [20] and ATCH [8] generalize
contraction and/or arc flags preprocessing to the time-dependent setting. Employing over- and
under approximation of the delay functions and sophisticated multi-phase queries, practical query
times [8] can be achieved on real-world datasets (road network of Germany, kindly provided by
PTV). However, preprocessing is rather extensive (> 30 min, less if distributed [53]) despite the fact
that only 12% of the edges of that German network have time-dependent delay functions.
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To tackle the challenges posed by live data, two approaches come immediately to mind: First,
one could simply update a scalar graph with current traffic information and apply routing algorithms
to this snapshot of the road network. However, this does not take into account traffic development
at later stages of a route, or rather, traffic is assumed to not have changed by then. Second, one
could generally use preprocessed time-dependent routing data but ignore it within a certain radius
of the source location (i. e., the expected time horizon of the current traffic situation). Hence, no
speed up would be achieved for the first leg of each route. However, the exact details of applying
this scheme efficiently to preprocessing techniques is an open problem. Also, with better traffic
prediction that achieves longer time horizons, hence this approach would further degrade.

Instead, we aim to incorporate, as a whole, the current traffic situation, predictions for the near
future, as well as historic knowledge of traffic fluctuations as long-term prediction. We propose
to treat live traffic and traffic predictions as (partial) delay function (supplied by the eCOMPASS
Traffic Prediction Module), updating preprocessed data with these partial functions.

To this end, we extend the Customizable Route Planning (CRP) framework [21] to the dynamic
time-dependent scenario. In a preprocessing phase, the routing graph is partitioned into multiple
levels of balanced cells with small edge separators. While this is a costly operation, it is only done
once. In the time-dependent customization step, a multi-level overlay graph is computed based
on this partition (whenever historical knowledge has changed significantly). A specialized time-
dependent customization step regularly updates the overlay graph for the current traffic information
and short-term traffic prediction (e. g., once per minute). An adapted CRP query returns time-
dependent shortest paths based on the customized overlay.

Preprocessing. Given a graph G = (V,A), a partition of the vertices V is a family C =
{C1, . . . , Ck} of cells Ci ⊆ V , such that each vertex v ∈ V is contained in exactly one cell Ci.
More generally, a nested multilevel partition of L levels is a family {C1, . . . , CL} of partitions with
nested cells, that is, for each level ` ≤ L and cell C`i ∈ C` there must exist a cell C`+1

j ∈ C`+1

on level ` + 1, such that C`i ⊆ C`+1
j holds. We call C`+1

j the supercell of C`i . For consistency,

we define C0 = V and CL+1 = {V }. An arc (u, v) ∈ A is called a boundary arc on level `, iff u
and v are in different cells of C`. In this case, u and v are called boundary vertices (of level `).
Note that a boundary vertex of level ` is also a boundary vertex on all lower levels. Many general
graph partitioning algorithms are available, several of which aim for balanced cells while minimiz-
ing the number of boundary arcs [5]. For road networks, tailored algorithms, such as PUNCH [22]
and BUFFOON [69], exist.

The preprocessing phase of CRP computes a multilevel overlay [46] of the input graph G =
(V,A). An overlay is a graph G′ = (V ′ ⊆ V,A′), such that distances between vertices of G′ are the
same as in G. Overlays are obtained from a nested multilevel partition (C1, . . . , CL), as follows. For
a fixed level `, the overlay graph of level ` consists of exactly the boundary vertices of C`. Besides
boundary arcs of G (with respect to C`), the overlay contains for each cell C ∈ C` and all pairs of
boundary vertices u, v ∈ C an arc (u, v). This results in a full clique of arcs over the cell’s boundary
vertices. Similarly to [21], we use a compact representation to store the overlays: Instead of keeping
separate graphs, we store a common vertex set for all levels (which is equivalent to the boundary
vertices of C1). Only clique arcs are kept in a separate data structure per level, and are organized
as matrices of preallocated contiguous memory (note that boundary arcs are already present in the
input graph). In contrast to [21], we reorder the vertices of G, such that overlay vertices are pushed
to the front (order by descending level), breaking ties by cell. Non-overlay vertices are ordered
by their level-1 cells. This improves spatial locality for customization and query, and simplifies
mapping between overlay and original vertices. Preprocessing must only be rerun if the topology
of the input changes (significantly). Since this happens infrequently in practice, somewhat higher
preprocessing times are not an issue.
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Customization. The customization phase uses the output of the preprocessing phase to compute
the metric of the overlays, i. e., for each clique arc it must compute its cost function. It proceeds in a
bottom-up fashion, starting with the lowest level. Within level `, each cell C ∈ C` is processed inde-
pendently. A cell C is processed by running, for each boundary vertex u ∈ C, a profile search (i. e.,
SOEAF search) from u. The search is, thereby, restricted to cell C, i. e., it does not relax any
arcs pointing outside C. At every boundary vertex v ∈ C, this results in an earliest-arrival-time
function fv, which is assigned to the clique arc (u, v) of cell C. Customization can be parallelized by
distributing different cells (on a level) among processors. In contrast to [21], the complexity of the
cost functions is not known in advance. In fact, our overlay uses a (single) dynamic adjacency array
to store interpolation points of clique arcs. Updates to this data structure must be synchronized. A
common approach is using locks, which is costly. Instead, each thread locally maintains a log of the
clique arc functions it has computed. These logs are sequentially merged at the end of processing
level `. Unlike the preprocessing phase, customization is much faster. Note that, like [21], when
processing level `+ 1, we make use of the (already computed) overlay of level `, which significantly
improves customization time.

Query. For vertices s, t, and departure time τ , the query operates on a search graph consisting
of, (a), the overlay graph of the topmost level L, (b), all cells from the overlay that contain s
or t, and (c), the subgraph of the original graph induced by the level-one cells that contain s or t.
Then, a variant of Dijkstra’s algorithm (i. e., SOEAT search) can be run on this search graph to
get provably optimal solutions. Note that instead of extracting the search graph, we implicitly
determine the level and cell on which arcs are scanned by using the partition data. To obtain the
full path description, clique arcs a on level ` can be unpacked, by (recursively) running a local (to
the cell of a) query on the overlay of level `− 1 [21].

Next Steps. In the current state, clique arcs on high level have very high complexity (i. e.,
their piecewise-linear representation has many interpolation points), which results in a high storage
overhead in comparison to plain CRP. Also, search during the query phase becomes noticeably more
expensive on higher levels for the same reason. For ATCH [8], over- and under ε-approximation
of the arc delay functions is used to guide a first search stage, doing exact search only in the
resulting subgraph. We are currently evaluating different shortcut schemes in the context of CRP
customization, where we would also like to know the memory layout of clique arc representation
upfront (instead of resorting to a dynamic data structure as described above). Furthermore, we are
interested in evaluating different parallelization approaches.
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4 Alternative Route Planning

In many areas of route planning, computing only one route from origin to destination is not suf-
ficient. A user may want to choose a different route according to his personal preferences. For
example, the subject of the selection could depend on the scenic value of the route, the minimum
distance to multiple destinations over the main one, avoidance of adverse incidents like traffic jams
and unavailability of some roads due to construction work, floods along a river or traffic accidents.
In general, these preferences may vary and depend on specialized knowledge or subjective criteria,
which are not always practical or easy to be obtained or estimated (on a daily basis). Therefore,
there are many cases in which users would like to have the option of an alternative route. In order
to provide many options, we are interested in computing several alternatives over the shortest route.
As a result, a complete solution indicates a good set of acceptable alternative routes.

4.1 Problem Statements and Preliminaries

We consider the problem of tracing alternative paths from a source node s to a target node t on a
directed graph G = (V,E). Our goal is to obtain sufficiently different (low overlapping) paths with
optimal or nearly optimal cost (length, travel time).

The gathering of alternative paths between a fixed source s and target node t can be supported
by an Alternative Graph, a notion first considered in [6]. An Alternative Graph (AG) is defined
as the union of several s-t paths. Formally, let G = (V,E) be a directed graph with edge weight
function w : E → R+. An AG H = (V ′, E′) is a graph with V ′ ⊆ V such that for every edge
e = (u, v) ∈ E′ there is a path Puv in G and a path Pst in H so that e ∈ Pst and w(e) = w(Puv)
(see Figure 7). We call w(Puv) the weight or cost of path Puv.

Figure 7: Upper part: Path Puv in graph G. Lower part: The edge in graph H that corresponds
to path Puv.

In the general case, there are many alternatives. Hence, there is a need of filtering and rating
all alternatives based on certain quality criteria. The main idea of the quality criteria is to discard
routes with poor values. For that purpose, the following quality indicators are used [6]:

totalDistance =
∑

e=(u,v)∈E′

w(e)

dH(s, u) + w(e) + dH(v, t)

averageDistance =

∑
e∈E′ w(e)

dG(s, t) · totalDistance
(22)

decisionEdges =
∑

v∈V ′\{t}

(outdegree(v)− 1)

In the above definitions, dG denotes the shortest distance in graph G, dH the shortest distance
in the alternative graph H, totalDistance measures the extend to which the paths in the AG are
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non-overlapping, averageDistance measures the stretch (i.e. the average cost of the alternatives
compared with the shortest one, as shown in Figure 10), decisionEdges measures the complexity of
the AG (i.e. how much digestible is for a human).

The decisionEdges counts the possible decision “branches” in an AG. The higher the deci-
sionEdges the more confusion creates to a typical user, when he tries to decide his route. The
maximum value of totalDistance for AG is the number of s-t paths, if only all s-t paths are disjoint,
i.e. not sharing common edges. The minimum value of averageDistance is 1. This occurs when
every s-t path in AG has the minimum cost. In this way, for computing a qualitative AG, we aim
at high totalDistance and low averageDistance, i.e. in the best case having acquired disjoint and
shortest (i.e. with minimum cost) s-t paths. The number of decisionEdges is an input parameter
determined by the user, but in general it should be bounded. For example, in Figures 8 and 9 we
present the evaluation of the quality of some AGs according to the above indicators.

Figure 8: Quality measures of alternative paths.

For the graph in Figure 8, the quality indicators take the following values:

totalDistance = (1 + 3 + 5)/9 + (4 + 2 + 3)/9 = 2

averageDistance = 18/(9× 2) = 1

decisionEdges = 1

This figure shows two s-t paths in a AG. The paths are disjoint, because they don’t share edges.
Therefore, in this case the totalDistance gets the optimum value 2. The minimum cost is 9. So in
addition the paths are shortest. The averageDistance of the AG gets the optimum value 1. This
means that the cost of the s-t paths is 0% larger than the minimum.

Figure 9: Quality measures of alternative paths.

For the graph of Figure 9, the quality indicators take the values:

totalDistance =
2 + 3 + 6 + 4

15
+

4 + 5

5 + 9 + 4
+

5 + 7 + 2

2 + 14 + 0
= 1 + 0.5 + 0.875 = 2.375

averageDistance =
38

2.375× 15
=

1× 15 + 0.5× 18 + 0.875× 16

(1 + 0.5 + 0.875)× 15
= 1.067

decisionEdges = 2
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This figure shows three s-t paths in a AG. We depict the paths as P1 = s− a− b− c− t (blue),
P2 = s−a−b−d−c− t (purple) and P3 = s−a−e−f− t (orange). Path P1 has cost 15, P2 has 18
and P3 has 16. Therefore, path P1 has the minimum cost. Over P1, there are two outgoing edges
that forms the alternatives and therefore the decisionEdges are 2. P2 and P3 paths have overlapping
subpaths with P1, and so their contribution in AG is less than P1. Therefore, the totalDistance is
less than 3. The averageDistance is calculated as 1.067, based on the totalDistance - contribution
of the paths (values 1, 0.5 and 0.875) in AG. The weighted average cost is at most 6.7% larger than
the minimum.

Figure 10 provides an illustration of the stretch (averageDistance) of an AG. The stretch is
based on the cost of the alternative paths.

• Big stretch : the alternative paths have high costs in comparison with the minimum cost.

• Small stretch : the alternative paths have cost nearly to minimum.

Figure 10: Cost of alternative routes. The green path has minimum cost.

4.2 Related Work

Several algorithms for computing alternative paths use the classical Dijkstra’s algorithm. We recall
that Dijkstra’s algorithm grows a full shortest path tree rooted at a source node s keeping a partition
of the node set V into a set of nodes with permanent distances (maintained implicitly), and a set of
nodes with tentative distances maintained explicitly in a priority queue Q, where the priority of a
node v is its tentative distance d(s, v) from s. In each iteration, the node u with minimum tentative
distance d(s, u) is deleted from Q, its adjacent vertices get their tentative distances updated, and
u thus becomes settled with d(s, u) = dG(s, u).

A host of approaches have been considered for computing alternative paths, the most important
of which are reviewed in the eCOMPASS Deliverable D2.1. The most promising of them require
preprocessed data computed with constant weights on edges. In general, such approaches are not
suitable for the purposes of eCOMPASS, since the weight on the edges can change (i.e. due to
unavailability of the road) and, moreover, they may be time-dependent. Regarding the generation
of alternative graphs without preprocessed data, two approaches for producing them are the classical
k-shortest path and the Pareto approaches, which have been considered in [6].

• k-Shortest Paths

The k-shortest path routing algorithm [32, 82] finds k shortest paths in order of increasing
cost. The disadvantage of this approach is that the computed alternative paths share many
edges, which makes them difficult to be distinguished by humans. Good alternatives could be
revealed for large k, but at the expense of a rather high computational cost.

• Pareto

The Pareto algorithm [43, 60, 25] computes the Pareto-Optimal paths using more than one
weight function. The weight functions could correspond to travel time, length or fuel con-
sumption. However, even if there is only one function one could define a second function
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with value equal to edge’s weight for the edges included in AG and zero for the edges out-
side AG. When there are many computed paths, by tightening the domination criteria on
Pareto-optimality their number can be decreased.

As the experimental study in [6] showed, both approaches generate alternative graphs of low
quality, and hence will not be investigated any further.

4.3 The eCOMPASS Approach for Alternative Routes

The eCOMPASS approach for computing alternative graphs (and hence routes) is an extension of
the Plateau [6, 1] and Penalty [6, 15] methods that prune the search space and/or filter the resulting
set of paths, resulting in the desired alternative graph. This makes sense, because in general
alternative paths may share common nodes (including s and t nodes) and edges. Furthermore, their
subpaths may be combined to form new alternative paths. The insertion of paths is determined by
the indicators described in Section 4.1. In order to get the best alternatives from each method, we
seek to maximize the targetfunction = totalDistance− averageDistance.

The Plateau method provides alternative paths by combining pairs of s − v and v − t shortest
paths. At first, we have to find the shortest paths between s and t. The s − v shortest paths can
be obtained from the shortest path tree (SPT) of s and the v− t shortest paths from the backward
shortest path tree of t. Note that there is no need to construct the full shortest path trees. For
a node v, let ds(v) be the shortest distance from s to v, and dt(v) be the shortest distance from
v to t. In order to get shortest paths we limit the search space on nodes with ds(v) and dt(v)
≤ ds(t) = dt(s). The reason for this is because a node v that has ds(v) or dt(v) > ds(t) cannot
belong to a s-t shortest path. For this purpose, we can perform an (s, t) single-source single-target
shortest path query using the forward Dijkstra algorithm in G, with root the node s and termination
condition the settle of node t, and the backward Dijkstra algorithm in GT (traversing the edges by
the reversed direction), with root the node t and terminal condition the settle of node s.

Figure 11: The original graph and the forward SPT from s.
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Figure 12: The backward SPT from t and the combined forward and backward SPT.

In order to identify sufficiently long shortest paths we look at the combination of forward and
backward shortest path trees. The overlapping of these trees (see Figures 11 and 12) reveal paths,
called the plateaus, which consist of nodes v which have the same dt(v) +ds(v). In this way, a node
in a plateau following the predecessor nodes in forward SPT and the successor nodes in backward
SPT can form a complete s-t alternative path.

Figure 13: Plateaus.

In order to get the best alternative paths we use two pruning stages. In the first stage, since
there may be many possible plateaus, we efficiently need to select the most promising among them.
This can be implemented by selecting paths in non-decreasing order of rank, where the rank of a
path is defined as rank = (path cost−plateau cost). Hence, a plateau that corresponds to a shortest
path from s to t has rank zero, which is the best value. In the second stage, we interact with the
AG’s quality indicators. This is necessary because, at each step, an insertion of the current best
alternative may lead to a reduced value of totalDistance for the next candidate alternative paths
that share common edges with the already computed AG. Maximization of the target function leads
to select the best set of low overlapping and shortest alternative paths.

The Penalty method provides alternative paths by running shortest path queries and adjusting
the weight of the edges of the resulted paths. The basic steps are the following. We compute a
shortest path Pst with Dijkstra’s algorithm or a speedup variant of it. Then, we penalize Pst by
increasing the weight of its edges. Next, we run a new (s, t) query. If the new computed path
P ′st is short and different enough from the previously discovered s-t paths, we add it to AG. We
repeat until a sufficient number of alternative paths (with the desired characteristics) is found, or
the weight adjustments of s-t paths bring no better results.
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In order to offer the best results we need an efficient and safe way to increase the weights. Our
weight adjustment policy is as follows:

• We continue the increase of the weights while the new computed path has cost, based on the
original weights, close to the shortest path cost dG(s, t) or until successive increases do not
offer new results.

• Instead of a constant value, we add a fraction (penalty factor) of the initial edge weight to
the weight of the edge. We avoid using constant values, because they do not guarantee a
balanced adjustment, since in some cases longer edges may be favored over shortest ones. In
general, the higher the penalty factor is, the more the new shortest path differs from the last
one. On the other hand, the lower the penalty factor is, more shortest path queries can be
performed and less alternative paths can be lost.

• We restrict the weight adjustment when it could lead to the loss of good alternatives. Notice
that, an unbounded penalty leads to multiple increases on the edge weights and is risky. For
example, suppose that there is only one fast highway into a city, whereas there are many
alternatives through the city center. If we allow multiple increases on the weights of the
highway then its cost will be increased several times during the iterations. For new (s, t)
shortest path queries, this may result to new computed paths that now begin from a detour
longer than the highway. In this example, any possible alternative inside the city will be lost.
Even worse, the algorithm will terminate with poor results if the stretch is going to be much
higher. To overcome this problem we limit the number of increases or the penalty factor for
the edges already included in AG. Another approach, is to prevent the increase of single edges
e = (u, v) with outdegree(u) = 1, in the computed s-t paths.

• We extend the weight adjustment to the neighborhood of the computed paths. In some cases,
the new computed paths may share many small detours with the previous ones. For example,
the first path computed is a fast highway and the new paths are along the highway except that
they have one or many outgoing and incoming small detours to the highway. This increases
the decisionEdges and offers meaningless alternatives. Therefore, when increasing a shortest
path’s weights, the weights of edges around the shortest path, that leave and join the current
AG are additionally penalized (rejoin-penalty). The rejoin-penalty technique leads to high
totalDistance.

In Figure 14 we illustrate an example of the penalty method.
Since the penalty method works on any pre-computed AG, it can be combined with Plateau. In

this way, we can collect the best alternatives from Penalty and Plateau, so that the resulting set
of alternatives maximizes the target function. This combination outperforms any of the individual
methods.

Independently of the target function, we also bound the decisionEdges of an AG, resulting in an
AG of typically very small size, |V ′| � |V | and |E′| � |E|, thus making it easy to store or process.

Another important issue that has to be taken into account is the optimality according to the
cost of the computed paths. This is achieved online by bounding the averageDistance indicator, and
further in a post-processing phase by setting tighter bounds to the local optimality of the edges or
the subpaths of the AG. In the plateau method, the local optimality is guaranteed because the paths
are selected from the shortest path trees. In the penalty method, however, the adjustment of the
weights can insert non optimal subpaths. To overcome this issue, we perform a global refinement
(focusing on the entire s-t path), and an iterative local refinement (focusing on individual edges).

• Global refinement: remove any edge e = (u, v) : dG(s, u) +w(u, v) + dG(v, t) > δ · dG(s, t), for
some δ ≥ 1.

• Local refinement: remove iteratively any edge e = (u, v) : w(u, v) > δ · dG(u, v), for some
δ ≥ 1.
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Figure 14: ∀e ∈s−t path: wnew(e) = wold(e)(1 + p) , 0 ≤ p ≤ 1

4.4 Current Status and Future Work

In our preliminary experiments, we used the ALT (A∗+Landmarks+triangle inequality) speedup
technique [59, 39], in order to prune efficiently the search space. Note that in the penalty method,
we consider only increases on the weights of the edges and this does not affect the lower bounds
on the shortest distances. However, this may decrease the efficiency of the ALT algorithm. In this
case, efficiency means the number of nodes on the shortest path divided by the number of settled
nodes by the ALT algorithm. This factor has an important effect on the overall execution time.

For both the plateau and the penalty method, we acquired high quality results. For the plateau,
we collect the best alternatives that can be formed from the forward and backward shortest path
trees. This collection is based on the quality indicators. For the penalty method, in order not to miss
a major quantity of alternatives, we developed a new technique in which we prevent the increase
of the edges e = (u, v) with outdegree(u) = 1 (in contrast to decision edges) in the computed
s-t paths. Also, we set the penalty factor parameter in (0, 1] and the rejoin penalty factor to an
non-constant value depending on the shortest path cost. In the average case, a suitable choice for
the penalty factor is 0.2. Setting a larger penalty factor reduces the number of the iterations of the
penalty method; however, it may lead to occurrences with missed alternatives at shared parts that
belong to previously computed paths. With the above methods we derived disjoint or low-overlap
optimal paths that maximize the target function, bounding the parameters decisionEdges ≤ 10
and averageDistance ≤ 1.1.
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5 Robust Route Planning

5.1 Introduction

Motivation Given two places A and B in a road network, the standard goal in route planning is
to compute a fastest route between them. This task can be modeled as the well-known shortest path
problem: the road network is represented by a graph with vertices corresponding to crossings, edges
corresponding to roads connecting the crossings, and the goal is to find a shortest path with respect
to edge costs that typically correspond to travel time estimates. However, when a computed route
is traveled in reality, the travel time is influenced by various factors such as the weather, the traffic
situation, the amount of road work along the route, and so on. Thus, a shortest path with respect to
(precomputed) travel time estimates may be a really bad choice in the case of unforeseen accidents.
In such situations, one often seeks robust routes instead of just fast ones. This part of the project
proposes and develops a novel technique introduced by Buhmann et al. [12] for finding such robust
routes. The only requirement is that two typical instances (e.g., traffic snapshots of yesterday and
today) are provided, and the goal is to compute a solution that is likely to be good for a future (yet
unknown) instance. An advantage of this method is that we can avoid fine-tuning of parameters.
Especially no other knowledge such as the probability of traffic jams, weather conditions, etc., is
required. This section describes the details and the issues related with this approach when applied
to route planning problems. Note that we focus on the so-called non-adaptive scenario: a route is
computed in advance and is taken throughout the whole trip. In contrast, the adaptive scenario
considers (online) algorithms that obtain information addressing uncertainty (delays, traffic jams,
etc.) during the execution and are therefore allowed to change the precomputed route.

The shortest path problem under uncertainty Let G = (V,E, cG) be a directed graph with
a cost function cG : E → Q+

0 . A path P is a sequence 〈v0, ..., vk〉 of vertices vi ∈ V , 0 ≤ i ≤ k,
where (vi−1, vi) ∈ E for i = 1, ..., k, and P is called a simple path iff vi 6= vj for each i 6= j. For an
edge e = (u, v) ∈ E, we write e ∈ P iff there exists an index i ∈ {1, ..., k} such that u = vi−1 and
v = vi. The cost of a path is the sum of the edge costs. The shortest path problem asks, for a given
graph G = (V,E, cG), a source s ∈ V and a target t ∈ V , to compute an s-t-path with minimum
cost. The set of feasible solutions S is the set of all simple s-t-paths in G. The aforementioned goal
translates into finding a simple path s ∈ S that minimizes the objective function

c : S → Q+
0 , c(s) =

∑
e∈s

cG(e). (23)

As previously stated, robust paths are not necessarily shortest paths in given costs. Instead, we
search for a path that is fairly good for a typical scenario. For the shortest path problem under
uncertainty, we assume that the underlying graph (i.e., the topology of the road network) is fixed,
but the edge costs (i.e., the travel times) are subject to uncertainty. The concrete travel times for
a certain time period are denoted as an instance I and are given by a cost function cI : S → Q+

0 . A
blocked road in an instance can be modeled by assigning large costs to the corresponding edge. Note
that all instances share the set of feasible solutions S since the graph topology remains invariant.

5.2 Related work

The following overview concentrates on non-adaptive route planning under uncertainty. A detailed
survey of both adaptive and non-adaptive algorithms can be found in [31].

In the literature, there exist two main directions to handle uncertainty. Stochastic optimization
assumes that the probability for a road to be congested is known in advance, and the goal is to
optimize the expected travel time as well as the probability of taking longer than expected. If we
want to ignore the risk of being late, it is sufficient to compute a shortest path in a graph where
the expected travel time is assigned to each edge [58]. A straightforward approach to regard both
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the travel time as well as the risk is the computation of Pareto-optimal solutions for a bi-criteria
function of the mean and the variance of the solutions. However, the number of such solutions may
be exponential [42]. Nikolova [63, 64] applied a common approach from economics to route planning
to compute a path P that minimizes the convex combination αµP + (1− a)σP of the mean µP and
the standard deviation σP . The parameter α determines the trade-off between the expected travel
time and the risk of arriving later than expected. The situation where early and/or late arrivals
at a given destination are penalized is studied in [65]. The authors also show that the problem to
minimize the expected value of the penalty function is NP-complete in some cases [65]. A different
approach is to compute a route that maximizes the probability that the travel time for this route
remains below a certain threshold [33]. However, no complexity results are given.

Another direction to handle uncertainty is robust optimization. No assumptions about proba-
bilities are made, and the goal is to compute a route with acceptable travel time even in the worst
possible scenario. The situation where a set of N possible scenarios is given is studied in [37].
The authors provide two definitions of a robust path: the absolute robust shortest path minimizes
the maximum path length over all instances, while the robust deviation shortest path minimizes the
maximum distance of the computed path to the optimal path over all instances. It is proven that the
computation of both path variants is strongly NP-hard if the number of instances N is not constant.
Both problems can be solved in time O(n3(lpmax)N ) where lpmax is the length of a longest s-t-path.
Furthermore, they prove that both problems are NP-complete for so-called k-layered graphs where
the vertex set is partitioned into k+ 2 disjoint layers Vi, 0 ≤ i ≤ k+ 1, V0 := {s}, Vk+1 := {t}, and

E ⊆
⋃k
i=0 Vi × Vi+1. The problems remain NP-complete if only two instances with only four layers

are given. Yaman et al. [81] study the problem variant where each edge e ∈ E has a cost between
le and ue. The absolute robust shortest path can be efficiently found by computing a shortest path
in the graph where every edge e has edge cost ue. On the other hand, the computation of a robust
deviation shortest path is NP-hard, even if one considers only planar acyclic directed graphs with
a maximum vertex degree of three [83]. Both the computation of an absolute robust as well as a
robust deviation shortest path remain NP-hard if a convex polytope defines an uncertainty region
and the vector of edge costs is drawn from this region [62]. Liebchen et. al. introduced the concept
of recoverable robustness as a compromise between the adaptive and the non-adaptive scenario [57].
In the beginning, there exists only a prediction of the edge costs. After a route has been computed,
the real costs are disclosed and we are allowed to change up to k edges of the precomputed route.
Let F be the set of real costs that can occur, i.e. the set of possible instances. The goal is to
compute a path that minimizes the maximum cost when an instance from F is taken. Büsing [13]
showed that the problem is NP-hard for various choices of F .

Maximizing the similarity of instances The method of Buhmann et al. [12] is substantially
different from the ones proposed in the previous section. They assume that an unknown problem
generator PG generates related instances that differ due to noise. Nothing is known about the
noise or PG itself, and all we are given are two instances I1 and I2 generated by PG. The goal
is to compute a robust (simple) path that is likely to be good for a future (yet unknown) instance
I3 from PG. Since nothing is known about the underlying noise, it is a natural choice to consider
only paths that are good both for I1 and I2. Therefore, we compute the approximation sets Aρ(I1)
and Aρ(I2), where, for a given instance I and a suitable value ρ ≥ 1 (we explain the meaning of
“suitable” later on),

Aρ(I) := {s ∈ S | cI(s) ≤ ρ · c(sOPT(I))} , sOPT(I) := arg min
s∈S

cI(s). (24)

Then we pick a path at random from the intersection Aρ(I1) ∩ Aρ(I2) of the two approximation
sets. It should be clear that not all these paths are robust in the sense that they will be good for a
future instance. Especially, the probability to pick a robust path at random depends on the choice
of ρ: if the intersection size is too small, then the contained paths are too much influenced by the
noise of I1 and I2. On the other hand, if the intersection size is too large, then the ratio of robust
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paths and the intersection size is too small, i.e. the probability to pick a robust path at random is
small. Buhmann et al. propose to choose ρ as the value that maximizes

|Aρ(I1) ∩Aρ(I2)|
EB∈F|Aρ(I1)|,C∈F|Aρ(I2)| (|B ∩ C|)

, (25)

where Fk is the set of all approximation sets of size k. Note that the denominator corresponds to
the expected size of the intersection of two unrelated random instances. The idea behind the ratio
(25), the so-called similarity between instances, is the following: intuitively, if the actual intersection
(for some ρ) is larger than expected, then the instances are somehow related and the intersection
contains paths that are likely to be good for other related instances. Thus, to successfully apply
the above technique to a concrete optimization problem, we essentially need algorithms for the
following tasks:

1) Compute the size of |Aρ(I1) ∩Aρ(I2)| for a given ρ,

2) Compute the expected size of the intersection for a given ρ,

3) Pick a solution from |Aρ(I1) ∩Aρ(I2)| at random.

Properties and complexity issues A straightforward approach to compute the value of ρ that
maximizes the ratio (25) is to sample some values for ρ and to compute the ratio of the intersection
size and the expected intersection size for this concrete value of ρ. For many optimization problems it
is not clear how to do this, because the numerator and the denominator cannot simply be calculated.
Especially the calculation of the expected value is a crucial point. The situation actually is easy if
every subset S′ ⊆ S is an approximation set for some instance, i.e. if for every S′ ⊆ S there exists
an instance I and a value ρ such that S′ = Aρ(I). In this case, the expected size of the intersection
reduces to

EA∈F|Aρ(I1)|,B∈F|Aρ(I2)| (|A ∩B|) =
|Aρ(I1)||Aρ(I2)|

|S|
, (26)

and thus we have to compute

ρ∗ = arg max
ρ

|Aρ(I1) ∩Aρ(I2)|
|Aρ(I1)||Aρ(I2)|

. (27)

As the following example shows, this condition unfortunately does not hold for the shortest path
problem. Consider a network where two edge-disjoint paths P1 and P ′1 connect the source s with
an intermediate vertex v, and two edge-disjoint paths P2 and P ′2 connect v with the target t.

Then, there exists no feasible approximation set that contains exactly the paths P1P2 and P ′1P
′
2.

Suppose there was such an approximation set. Let c(P ) denote the cost of the path P and cOPT

be the length of a shortest path from s to t. Then there exists a constant ρ ≥ 1 such that

c(P1P2) = c(P1) + c(P2) ≤ ρ cOPT (28)

c(P ′1P
′
2) = c(P ′1) + c(P ′2) ≤ ρ cOPT, (29)
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thus c(P1) + c(P ′1) + c(P2) + c(P ′2) ≤ 2ρ cOPT. On the other hand, the paths P1P
′
2 and P ′1P2 are

not contained in the approximation set, so we have

c(P ′1P2) = c(P ′1) + c(P2) > ρ cOPT (30)

c(P1P
′
2) = c(P1) + c(P ′2) > ρ cOPT, (31)

thus c(P1) + c(P ′1) + c(P2) + c(P ′2) > 2ρ cOPT, which is a contradiction. However, it can be shown
[12] that

|Aρ(I1)||Aρ(I2)|
|S|

≤ EA∈F|Aρ(I1)|,B∈F|Aρ(I2)| (|A ∩B|) ≤ |Aρ(I1)||Aρ(I2)|. (32)

Although an asymptotic estimation of the expected intersection size can be derived for some opti-
mization problems such as the maximum subarray sum problem, this is not the case for the shortest
path problem. Unfortunately, the situation is even worse. From the results of Valiant [76], it follows
that the computation of |Aρ(I)| for a given instance I and a value ρ is #P-hard. Furthermore, the
computation of |Aρ(I1) ∩Aρ(I2)| can be reduced to the bi-criteria shortest-path problem, which is
known to be weakly NP-hard [4]. Therefore we cannot hope to develop polynomial-time algorithms
to compute the size of individual approximation sets or their intersection. On the other hand, this
point of view is too pessimistic: we do not need to compute the sizes exactly; rather, an estimation
may be sufficient. For this reason we will also concentrate on approximative methods (see Section
5.4).

5.3 Current solutions

One of the main difficulties of the method proposed by Buhmann et al. is to compute the size of
the approximation sets for two given instances, |Aρ(I1)| and |Aρ(I2)|. When applied to the shortest
path problem under uncertainty, this translates into counting the number of simple paths between
two vertices of a given graph. In this section, we focus on this particular problem, and we propose
a pseudo-polynomial time algorithm that computes an upper bound for this number. We also
consider implementation issues for this algorithm, and we inspect whether well-known heuristics
that are often used to speedup in route planning applications can be extended for this algorithm
as well.

In the following, we assume G = (V,E) to be a directed graph with vertex set V , edge set
E ⊆ V 2 and edge costs c : E → N. Given s, t ∈ V and a value Cmax ∈ N, we want to count the
number of simple paths from s to t with cost at most Cmax. Given that this problem is #P-hard
[76], the best we can hope to achieve without recurring to approximation is a pseudo-polynomial
time algorithm. However, to the best of our knowledge, no such algorithm is known. What we
propose in the following is to compute an upper bound for this value by counting the number of
non-simple paths, or walks, from s to t with cost at most Cmax. This problem is #P-hard as well,
but we provide a pseudo-polynomial algorithm for solving it exactly.

The label propagating algorithm Our algorithm is based on the following observation. Sup-
pose that for a vertex v ∈ V and some cv ∈ N the number nv of simple paths from s to v with cost
equal to cv is known. For every vertex w ∈ V such that (v, w) ∈ E, nv is an upper bound on the
number of paths from s to w with cost equal to cv + c(v, w) having the edge (v, w) as last step. nv
is only an upper bound rather than the exact number because one or more of the nv paths from
s to v may contain w as an intermediate step. From this observation, we can design an algorithm
that counts the exact number of walks from s to t with cost at most Cmax.

The algorithm maintains a set of labels and a counter nst. A label (cv, v, nv) represents a lower
bound nv on the number of walks from s to v with cost cv. The counter nst represents the number
of walks from s to t with cost at most Cmax. The set of labels is partitioned in two parts: For
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Algorithm 1 CountPaths(G = (V,E), c, s, t, Cmax)

1 nst ← 0; Q = ∅;

2 Increase-Label(Q, 0, s, 1)

3 while Q 6= ∅ do

4 (cv, v, nv)← Extract-Min(Q)

5 if v = t then nst ← nst + nv

6 else for each (v, w) ∈ E do

7 cw ← cv + c(v, w)

8 if cw ≤ Cmax then Increase-Label(Q, cw, w, nv)

9 return nst

temporary labels the number nv may be lower than the exact number of walks from s to v with cost
cv. For permanent labels the number nv is equal to the number of walks from s to v with cost cv.

In the beginning nst := 0, the set of permanent labels is empty, and the set of temporary labels
contains only (0, s, 1) (an initialization value with the purpose of simplifying the explanation of the
algorithm).

At any intermediate step, the algorithm considers the smallest temporary label (cv, v, nv) in
lexicographical order and declares it as permanent. Then, if v = t, it increases nst by nv. Otherwise,
for every vertex w ∈ V such that (v, w) ∈ E and cv+c(v, w) ≤ Cmax, it checks whether a temporary
label (cv + c(v, w), w, nw) exists for some nw ∈ N (it will be clear from the algorithm that there
will be at most one such label). If it does, it is updated by setting nw := nw + nv. Otherwise,
the algorithm generates a new temporary label (cw, w, nw) with nw := nv and cw := cv + c(v, w).
The algorithm terminates when the set of temporary labels is empty and no temporary label can
be declared as permanent. At this point, nst is the number of walks from s to t with cost at most
Cmax. The correctness of the algorithm (proved below) is based on the fact that we can always
designate the smallest temporary label in lexicographical order as permanent.

For the set of temporary labels, we use a data structure Q. Such structure supports the following
operations:

Extract-Min(Q) extract from Q the smallest temporary label in lexicographical order and set it
as permanent;

Increase-Label(Q, cw, w, nw) checks whether a label (cw, w, nx) exists in Q, for some nx ∈ N. If
it does, it updates the value of nx by increasing it by nw. Otherwise, the label (cw, w, nw) is
created and inserted in Q.

Given this data structure, Algorithm 1 shows the pseudo-code of the above algorithm for count-
ing the number of walks from s to t with cost at most Cmax. Since the main operations of this
algorithm concern generating and propagating labels, we refer to it as a label propagating algorithm.

Correctness To prove the correctness of the algorithm we first show that at every iteration of
the external loop, the cost of the label declared permanent is at least the cost of the label declared
permanent in the previous iteration. That is, the costs of the labels declared permanent is not
decreasing. We prove this by contradiction. Let (cv, v, nv) be the label declared permanent at
the current iteration, and suppose toward contradiction that (cu, u, nu) is the permanent label of
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the previous iteration, for some u, v ∈ V , nu, nv ∈ N, and cu > cv. When (cu, u, nu) is declared
permanent, the label (cv, v, nv) was not present in Q because it is smaller in lexicographical order
and it would have been chosen instead. Therefore, (cv, v, nv) must have been created after (cu, u, nu)
was declared permanent. From the algorithm, this implies that (u, v) ∈ E and cv = cu + c(u, v).
This is a contradiction, because cu > cv and c(u, v) > 0.

Given the above, we prove correctness by showing that, for every v ∈ V and 0 ≤ c ≤ Cmax, if
nv > 0 is the number of walks from s to v with cost c, the algorithm declares the label (c, v, nv) as
permanent exactly once. This implies correctness because the value nst returned in the end is the
sum of all nt, for every permanent label (c, t, nt) with 0 ≤ c ≤ Cmax.

The proof is by induction on the integer value Cmax. For Cmax = 0 it is trivially true, because
the only label declared permanent is the dummy label (0, s, 1). We now assume that the algorithm
declares permanent labels correctly up to Cmax − 1 and we show that it also declares permanent
labels correctly for Cmax. Let v ∈ V be a vertex for which there exists at least one walk from s
to v with cost Cmax, and N (v) = {u|(u, v) ∈ E} be the vertices from which there exists an edge
to v. Clearly, any walk from s to v must cross one of the vertices in N (v) in the last step before
v. For each u ∈ N (v), let cu = Cmax − c(u, v). If cu < 0, there cannot be a path from s to v
having the edge (u, v) as last step. If Cmax > cu > 0, we know by inductive hypothesis that a
label (cu, u, nu) is declared permanent exactly once, where nu is the number of walks from s to u
with cost cu, and that it is declared permanent before any label with cost Cmax. When (cu, u, nu)
is declared permanent, the operation Increase-Label(Q,Cmax, v, nu) is invoked, and a label with
cost Cmax and vertex v is either created or updated. Since labels are removed from Q only when
they are declared permanent, and there exists a temporary label with cost Cmax and vertex v, a
label (Cmax, v, nv) will be declared permanent, for some nv ≥ nu. When this happens, every label
with node u ∈ N (v) and cost Cmax − c(u, v) > 0 has been declared permanent exactly once, and
since the vertices in N (v) are the only ones that can reach v, nv is equal to the sum of the number
of walks from s to any node u ∈ N (v) with cost Cmax − c(u, v) > 0. Thus, nv is the number of
walks from s to v with cost Cmax.

Running Time We now study the worst-case complexity of the label propagating algorithm. In
the following, we assume the operations Increase-Label and Extract-Min require both time
O(log |Q|) when invoked on a data structure of size O(|Q|). In the following sections, we show how
we can implement Q in order to meet this requirement.

First, we consider the external loop. By construction, this loop is repeated as many times as
the number of permanent labels. Since there can be a permanent label for every v ∈ V and every
0 ≤ c ≤ Cmax, the external cycle can be repeated up to nCmax times, where n = |V |.

At every iteration of the external cycle, we perform one Extract-Min operation and at most
one Increase-Label operation for every vertex that can be reached from the current vertex. From
above we know that the cost of the labels declared as permanent is not decreasing and that every
temporary label in Q is declared permanent exactly once. Thus, for every cost 0 ≤ c ≤ Cmax, we
can have at most one Increase-Label operation per edge in E. In overall, the running time of
Algorithm 1 is O((n+m)Cmax · log(nCmax)), where m = |E|.

5.3.1 Implementation details

In this section we give implementation details of the label propagating algorithm. In particular, we
discuss our choice of data structures, and existing alternatives to this.

Recall that the input to the algorithm consists of a graph G = (V,E) with a function c that
indicates a cost for each edge, a source vertex s, a target vertex t, and a value Cmax that specifies
the upper bound on the cost of the admitted path/walk. The graph G is stored as a vector of
adjacency lists, where the i-th list corresponds to the neighbors of the vertex vi and for each of the
neighbors the list also contains the weight/cost of the corresponding edge.
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The label propagating algorithm, as described above, requires a data structure Q that has
properties of a priority queue and additionally allows updating the values of the stored elements in
the described way. In other words, we need a data structure that performs efficiently the elementary
operations update, insert, and extract minimum.

A standard way to implement a priority queue in a Dijkstra-like algorithm is using a heap (for
example, a Fibonacci heap that gives better asymptotic running time than other heaps). However,
since in our algorithm the size of the queue is not known upfront and we need to search for specific
keys in the queue efficiently, implementing the queue as a standard heap is not a right choice in our
case.

For our purposes a more suitable option is to implement the priority queue using a self-balancing
binary search tree, for example an AVL tree. An AVL tree is a data structure that stores elements
as key-value pairs and allows to search according to its keys. To specify what we use as keys and
values in this search tree, we first explore the needs of the algorithm in more detail. Recall that
the algorithm works with labels (cv, v, nv), and the data structure Q that holds the labels needs to
support mainly the operations Extract-Min and Increase-Label that in effect consist of the
following operations:

• insert (cv, v, nv) into Q,

• update the value nv in a triple (cv, v, nv) that is already present in Q,

• extract the lexicographical minimum label from Q.

These operations lead to the following principal options for key-value pairs in Q.

i) The first variant is to use the pairs (cv, v) as keys (cv as a primary key, and v as a secondary
key), and the corresponding nv as values.

ii) In the second variant, the keys are only the costs. The value corresponding to a cost c is then
a data structure S holding key-value pairs (v, nv) that correspond to labels (cv, v, nv) with
cv = c. Some of the options for this inner data structure S are:

– (Self-balancing binary) search tree, AVL for example. This might be a good choice
especially in case there are many labels with the same cost, since this allows for efficient
search.

– Linked list or other simple data structure with no overhead for the cases where only a
couple of labels share the same cost value.

To compare the variants i) and ii), we first assume that each cost c appears in approximately
the same number of labels. We then observe that the running time of an operation will be roughly
the same for the two variants:

i) In the first variant, the running time is O(log k), where k is the number of (c, v) pairs.

ii) In the second variant, the running time is O(log a+ log bc), where a is the number of different
costs and bc is the number of (c, v) pairs for a cost c. We get O(log a+log bc) = O(log a ·bc) =
O(log k), where the last equality follows from the assumption.

In the case the assumption does not hold, the worst case running time of an operation in the second
variant is at most twice as bad as in the first variant, since the size of both outer and inner tree is
bounded by k. Thus, the running time is asymptotically the same for both variants.

The second variant might be more space-efficient. This will depend mostly on the number of
different entries per cost value.

Note that we assume the costs of the edges in G to be positive, so a cost c appearing in an
operation Increase-Label triggered by a label (cv, v, nv) is always strictly greater than cv. Thus,
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when extracting the minimum, the algorithm always processes consecutively all the entries for
one cost. Therefore, the second variant gives better amortized running time for the operation
Extract-Min, since to extract all the labels with the same cost c it needs to search the outer tree
only once.

We chose to implement the data structure Q as an AVL tree, where each node is keyed by
the cost c and a value contains an inner AVL tree that holds key-value pairs (v, nv) for each label
(cv, v, nv) with cv = c.

5.3.2 Exact heuristics for speedup

Early elimination of labels from Q The label propagating algorithm at each step extracts
from Q a label (cv, v, nv) with a minimum cost. The value nv of this label corresponds to a number
of walks from s to v with cost cv. This label is then “propagated” to the out-neighbors of v, and
for each neighbor of v either a new label is added to Q, or a label that is already present in Q is
updated. The only cases when a label (cv, v, nv) is not propagated to a neighbor w of v is either
if v is the target t, or if the cost c = cv + c(v, w) of the walk extended from v to w is greater than
Cmax.

However, there may be many labels (cv, v, nv) in Q that, in some sense, correspond to s-v walks
that can never be successfully extended to the vertex t below the cost Cmax. This will be observed,
however, only after they are extended enough to exceed the cost Cmax. Removing these labels from
the data structure Q early leads to a noticeable speedup of the label propagating algorithm.

To identify a label (cv, v, nv) that cannot be extended to t, we use an admissible heuristic h(v, t)
to estimate the distance from v to t. In other words, we use a similar approach as the A* search
algorithm [44]. As the admissible heuristic h(v, t), we use the shortest path from v to t. We calculate
the values of h(v, t) for all the vertices v upfront. In particular, we run Dijsktra’s algorithm from the
vertex t to all other vertices in a graph G′, where G′ is the input graph G with reversed orientations
of the edges. The cost of the shortest path from t to v in G′ corresponds then to h(v, t).

Therefore, when a label (cv, v, nv) is extracted from Q and propagated to the neighbors, a
new label for a neighbor w of v is added to Q only if the corresponding cost cw is smaller than
Cmax − h(w, t). Note that this approach does not affect the result in any way, it only speeds up
the running time of the algorithm.

Why a straightforward bidirectional search is of no help Another standard technique to
speed up Dijsktra-like algorithms is using bidirectional search. The basic idea consists of running
the shortest path search simultaneously from both source s and target t. In the case of the classical
shortest s-t path problem, a shortest path can be output as soon as the searches from the two
directions meet in the middle. In practice, this approach often leads to reducing the branching
factor of the search and to speeding up the running time notably.

However, in the case of the label propagating algorithm, this approach seems to offer too little
advantage. A straightforward way to apply bidirectional search in this case is to start to propagate
the labels from both s and t. When two labels meet at some vertex, this gives us a number of certain
walks and we update the result accordingly. The problem here is that since we are not looking for a
single path but for all the walks within some cost limit, we cannot remove the two labels that have
met from the data structure Q. In fact, we need to propagate both the labels further, as there may
be also other ways how to extend the walks they represent. Thus, we do not save any calculation
this way; quite the opposite, the algorithm needs to perform twice as much work as before.

The situation is slightly better with the use of the admissible heuristic h(v, t) to identify non-
extendable labels. There, we can stop the calculation already when the search from one direction
is finished, but this hardly offers any advantage.
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Figure 15: Some edges have implicit orientation if we know s and t, even if the edges of the
transportation network are not directed.

5.4 Future Directions

The main difficulty for counting simple paths in graphs is to detect and avoid cycles. In the
following, we propose two ways to deal with this issue.

The first one is to consider networks that are acyclic by construction, or that are made acyclic
artificially. For this particular class of graphs, we propose an algorithm that computes the number
of simple paths between two vertices of the network with arbitrary precision.

The second one is to extend the proposed algorithm in order to detect cycles and avoid the
propagation of labels in case a cycle has been detected. This can be done by spending some
additional effort during the computation.

What is shown in this section is ongoing work, and will be developed further during the following
months of the project.

5.4.1 Shortest paths on DAGs

In the previous sections we have shown that it is difficult to count exactly shortest simple paths
in a general graph. A large part of the difficulty seems to stem from the fact that the graph can
contain cycles. We need to keep track of them if we are searching for simple paths, but they make
it difficult to order vertices so as to facilitate a dynamic programming approach even if we try to
count paths that may contain loops.

It is however possible that we are making the problem more difficult than it really is. For
instance, it seems unlikely that any reasonably short path would contain a long loop. Consider the
s–t path problem in Figure 15. Some of the paths have obvious implicit orientation. No reasonably
optimal path would take any of the edges in direction opposite to the denoted orientation. On the
other hand, there might be edges with no implicit orientation, such as the edge from the vertex a
to the vertex b. If we could find a heuristic that orients a large number of edges in a intuitively
reasonable way, leaving only a constant number of un-oriented edges, we could try all possible
orientations of these and count short paths on a directed acyclic graph instead. Alternatively, we
might be able to devise algorithms that count more effectively in parts on highly oriented parts of
the graphs and less effectively elsewhere.

In this section we explore how to count approximately short paths in a directed acyclic graph
more efficiently, than our existing algorithms for general graphs. Before showing how to do this,
we will introduce a related problem.

Counting small sums in X1 +X2 + . . .+Xn Let X1,. . . ,Xn be sets of integers. Given a value
S, we are interested in the number of ways one can choose (x1, x2, . . . , xn) ∈ X1 ×X2 × . . . ×Xn

such that
∑
i xi < S. This is a variant of a problem that was introduced by Mizoguchi and Johnson
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Figure 16: Precomputed lengths of paths from s to a, from a to b, and from b to t.

[49]. They asked for the element with K-th smallest sum from X1 +X2 + . . .+Xn and showed that
this problem is NP-complete.

Having an efficient algorithm would allow us to combine pre-computed parts of the shortest
path problem under uncertainty. Consider for instance the network in Figure 16. If we know that
any s to t path has to go through the vertices a and b (for instance local highway exits), we can
pre-compute the lengths of all paths and store the lengths of all s to a paths as the set X1, a to b
paths as the set X2, and b to t paths as the set X3 and calculate the number of ρ-optimal s to t
paths by counting sums in X1 +X2 +X3.

NP-completeness reduction It is perhaps unsurprising that counting the number of approx-
imate solutions for both problems is NP-complete. We can reduce the decision version of the
partition problem to the problem of counting sums in X1 +X2 + . . .+Xn. Given a set of positive
integers S = s1, . . . , sn, the partition problem asks if there is a partition of S into sets S1 and S2

such that the sums of numbers in both sets are equal. We let the sets Xi for the problem of counting
sums in X1, X2, . . . , Xn be Xi = {−si, si}. The partition problem on the set S has a solution, if
we can achieve a choice of xi ∈ Xi (each xi being equal to si or −si), such that the sum of xi is
equal to 0. If we can efficiently count sums in X1 +X2 + . . .+Xn, then we can count the number
of solutions when the sum of xi ∈ Xi is 0 and when it is 1. If these two counts are not equal,
there must exist a solution with the sum of 0 and the answer to the partition problem is “yes”.
Otherwise the answer is “no”. Since the partition problem is known to be weakly NP-complete, the
X1 +X2 + . . .+Xn problem is weakly NP-hard. It is easy to see that we can reduce the partition
problem to the problem of counting paths in a DAG in the same manner, if the graph is a chain of
vertices v1, . . . , vn with multiple edges between vertices vi and vi+1.

FPTAS for directed acyclic graphs We showed that we cannot count ρ-approximate shortest
paths in directed acyclic graphs exactly in polynomial time. We can, however, approximate this
number with arbitrary precision in polynomial time. We will sketch the method and algorithms
here. A more complete exposure along with proofs of theorems can be found in the technical reports
series of eCOMPASS [61].

We first show a recurrence that can be used to exactly count the number of paths that ap-
proximate the shortest path in a graph with single set of edge weights within some multiplicative
threshold ρ, i.e. the size of the approximation set Aρ(I). Evaluating the recurrence takes exponen-
tial time, but we will later show how to group partial solutions together in such way that we trade
accuracy for the number of recursive calls. We adapt the approach of Stefankovic et al. [74], which
they used to approximate the number of all feasible solutions to the knapsack problem.
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Let G be a directed acyclic graph with n vertices. We will label the vertices v1, . . . , vn in such
order that there is no path from vi to vj unless i < j, i.e. v1, . . . , vn defines a topological ordering.
We suppose that v1 = s and vn = t, otherwise the graph can be pruned by discarding all vertices
that appear before s and after t in the topological order, since no path from s to t ever visits these.

For a concrete vertex vi with in-degree d, let us denote its d neighbors that precede it in
the topological order by p1, . . . , pd and let us denote the corresponding incoming edge lengths by
l1, . . . , ld. Instead of asking for the number of s-t paths that are shorter than L for a given L, we
indirectly ask for smallest threshold L, such that there are at least a paths from s to t, shorter than
L. Let τ(vi, a) denote the minimum length L such that there are at least a paths from v1 to vi of
length at most L. τ(vi, a) can be computed by the recurrence

τ(v1, 0) = −∞
τ(v1, a) = 0,∀a : 0 < a ≤ 1

τ(v1, a) =∞,∀a : a > 1

τ(vi, a) = min
α1,...,αd∑
αj=1

max


τ(p1, α1a) + l1
...
τ(pd, αda) + ld

.

Intuitively, the at least a paths starting at v1 and arriving at vi must split in some way among
incoming edges. The values αj define this split. We look for a set of α1, . . . , αd that minimizes the
maximum allowed path length needed such that the incoming paths can be distributed according
to αj , j = 1, . . . , d.

To find the number of paths of length at most L, we search for a such that τ(vn, a) ≤ L <
τ(vn, a+ 1). In particular, if the length of the shortest s-t path is OPT , we can find the number of
ρ-approximate s-t paths by setting L := ρOPT .

Calculating τ using the given recurrence will not result in a polynomial time algorithm since
we might need to consider an exponential number of values for a, namely 2n−2 on a DAG with
maximal number of edges. To overcome this, we will consider only a polynomial number of possible
values for a, and always round down to the closest one in the evaluation. If we are looking for an
algorithm that counts with 1 + ε precision, the ratio between two successive considered values of a
must be at most 1 + ε.

For this purpose, we introduce a new function τ ′. In order to achieve precision of 1 + ε, we will
only consider values of τ ′ for minimum path numbers in the form of qk for all positive integers k
such that qk < 2n−2, where q = n+1

√
1 + ε. The values of τ ′ for other numbers of paths will be

undefined. The function τ ′ is defined by the following recurrence.

τ ′(v1, 0) = −∞
τ ′(v1, a) = 0,∀a : 0 < a ≤ 1

τ ′(v1, a) =∞,∀a : a > 1

τ ′(vi, q
j) = min

α1,...,αd∑
αj=1

max


τ ′(p1, q

bj+logq α1c) + l1
...

τ ′(pdi , q
bj+logq αdc) + ld

(33)

To give a meaning to the expression qbj+logq αic when αi = 0, we define it, for our purposes, to be
equal to 0, which is consistent with its limit when αi goes to 0. We can show that the rounding does
not make the values of τ ′ too different from the values of τ , namely that τ(vi, q

j−i) ≤ τ ′(vi, q
j) ≤

τ(vi, q
j).

We will then evaluate the function τ ′ and find k such that τ ′(vn, q
k) ≤ L < τ ′(vn, q

k+1). We
can show that the value qk will be a (1 + ε)-approximation of the “correct” value a, for which
τ(vn, a) ≤ L < τ(vn, a+ 1).
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The time necessary to do this is O(mn2ε−1 log n). There are only O(n2ε−1) many different
values of qk that we need to consider. The rough idea is that we calculate, for each vertex vi, all
the values of τ ′(vi, q

k) for different k in one go, by progressively increasing the values α1, . . . , αd in
the recurrence.

FPTAS for solutions that approximate two instances We can extend the result to an
algorithm that counts solutions that are ρ-approximate for two instances at the same time. We
will define a function τ2 similar to τ that adds one of the edge lengths in a form of a “budget”.
τ2(vi, a, L1) will be equal to the shortest length L2 with respect to the edge lengths in the second
instance such that there are at least a paths from v1 to vi, no longer than L1 with respect to the
edge lengths in the first instance. We will denote the edge lengths of the d incoming edges of vertex
vi in the second instance by l′i. τ2 can then be evaluated by the following recursion.

τ2(v1, 0, x) = −∞,∀x ∈ R+

τ2(v1, a, x) = 0,∀a : 0 < a ≤ 1,∀x ∈ R+

τ2(v1, a, x) =∞,∀a : a > 1,∀x ∈ R+

τ2(vi, a, L1) = min
α1,...,αd∑
αj=1

max


τ2(p1, α1a, L1 − l1) + l′1
...
τ2(pd, αda, L1 − ld) + l′d

If used to solve the problem, the function τ2 would have to be evaluated not only for an expo-
nential number of path counts a but also for a possibly exponential number of values of L1. To
end up with polynomial runtime, we need to consider only a polynomial number of values for both.
We will introduce a function τ ′2 that does this by considering only path lengths in the form of rk,
where r = n

√
1 + δ, and path numbers a in the form of qj , where q = n

√
1 + ε, for positive ε and δ.

τ ′2(v1, 0, x) = −∞,∀x ∈ R+

τ ′2(v1, a, x) = 0,∀a : 0 < a ≤ 1,∀x ∈ R+

τ ′2(v1, a, x) =∞,∀a : a > 1,∀x ∈ R+

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max


τ ′2(p1, q

bj+logq α1c, rblogr(rk−l1)c) + l′1
...

τ ′2(pd, q
bj+logq αdc, rblogr(rk−ld)c) + l′d

We can again show that τ ′2 approximates τ2, this time in both variables. Compared to the single
variable version, we cannot get a (1 + ε) approximation to the optimal value, because we need to
round the value of L1 to a power of r in order for it to be legal parameter of τ ′2 and we further
round it during the evaluation of τ ′2. We will therefore relate the result of τ ′2 to the results of τ2 we
would have gotten if we considered the value of L1 when rounded up towards the nearest number
that can be represented as rk for integer k and the value rk−n. Due to the choice of r, the ratio of
these two values is 1 + δ.

We will look for a qk such that τ ′2(vn, q
k, rdlogr L1e) ≤ L < τ ′2(vn, q

k+1, rdlogr L1e), and this qk

will be by a factor of at most (1 + ε) different from the number that is correct for some L′1, which is
different from the “true” value L1 by a factor of at most 1+ δ. By an analysis similar to the one for
a single variable, we can show that the running time of our algorithm is O(mn3ε−1δ−1 log n logL1),
where m denotes the number of edges in the graph.

FPTAS for counting small sums in X1 +X2 + . . .+Xn The modification of the approximation
schemes for paths on directed acyclic graphs into approximation schemes for counting sums in
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X1 +X2 + . . .+Xn is analogous to the NP-hardness reduction from this section. We transform the
set of sets Xi into a directed acyclic graph with n + 1 vertices and m :=

∑
i |Xi| edges. We can

therefore calculate the ε-approximation to the number of sums smaller than some value v in time
O(mn2ε−1 log n) for a single instance, and in time O(mn3ε−1δ−1 log n logL1) for two instances, if
we allow multiplicative error of (1 + δ) for v.

5.4.2 Cycle avoidance

The label propagating algorithm proposed above also considers walks that contain cycles, and we
would like to avoid such walks. In this section we describe a method to extend the algorithm to
avoid walks containing cycles up to a given length (i.e., the number of edges). The algorithm is
especially efficient when the maximum degree of the input graph is bounded by some small constant
d and when the cycles to be avoided are short. Assuming a bounded degree graph as an input is
reasonable in practice, where the input graphs, representing road networks for example, usually
have this property.

When we propagate a label (cv, v, nv) to an out-neighbor w of v, we create a new label (cw, w, nw).
However, the label (cv, v, nv) aggregates several s-v walks, and by extending them to w we may
create a cycle in some of these extended walks. We would like to identify every such walk and to
exclude it from the label (cw, w, nw). In other words, we would like to decrease the number nw by
1 for each such s-w walk that ends with a cycle.

Unfortunately, counting the number of simple s-t paths is #P-hard, thus avoiding all such walks
with cycles is a difficult task. We focus on avoiding walks that contain short cycles, whose length
is at most k. When k is a constant, the running time of the whole algorithm increases only by a
constant factor. From a practical point of view, we believe that this would already make a difference,
since in typical road networks the number of big cycles is usually much smaller than the number of
small cycles.

For avoiding cycles of length at most k in a single s-v walk, we could remember the last k vertices
and then, when extending to a vertex w, we would only check if w appears in the set of the currently
stored vertices. However, applying this approach to the labels would cause increasing the number
of labels, as each label typically aggregates several walks. Instead, we propose to decompose the
label that we want to propagate into groups of walks, where each group corresponds to walks that
for the last k steps followed the same path. The decomposition of the label is not stored but made
on demand at the time of propagating the label. Then, by checking the last k vertices of each such
group, we can identify those groups of walks for which extending to the vertex w creates a cycle.

More formally, let (cv, v, nv) be a label we want to propagate, let w be an out-neighbor of v that
is currently considered to extend the walks aggregated in (cv, v, nv), and let n′w denote the number
of these walks that after extending to w end with a cycle of length at most k. Initially, we set
n′w = 0. Assume that we have stored all the labels previously extracted from the data structure Q
in some data structure S, with a time T (S) necessary to access an entry of S. In other words, Q
contains temporary labels, and S contains permanent labels. The data structure S contains each
label (cv, v, nv) as a key-value pair, (v, cv) being the key and nv the corresponding value.

In order to calculate how many of the walks aggregated in (cv, v, nv) and extended to w contain
a newly created cycle, we decompose (cv, v, nv) iteratively as follows. We determine the set of labels
that are direct predecessors of (cv, v, nv)—we say that a label (cu, u, nu) is a direct predecessor of
(cv, v, nv) if u is in-neighbor of v and cu = cv − c(u, v). This can be done by iterating over the
in-neighbors of v: for each in-neighbor u of v we calculate the cost cu = cv − c(u, v) and obtain the
corresponding number of walks nu by querying the data structure S, thus we obtain (cu, u, nu), a
direct predecessor of v (or not, if the label is not in S). Afterwards, for each of the predecessors
we determine its predecessors. We continue up to depth k. Then, for each label (cu, u, nu) visited
this way we check whether the vertex u is the same as w. If this is the case, then all the walks
aggregated in (cv, v, nv) that correspond to those extended from (cu, u, nu) will contain a cycle
if they are further extended to w, so we add nu to n′w. Thus, at the end of this process n′w will
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correspond to the number of walks extended from (cv, v, nv) to w that contain a cycle shorter than k
ending in w.

We modify the label propagating algorithm as follows. At each step, after we extract a la-
bel (cv, v, nv) from Q, we determine the set P of label predecessors of (cv, v, nv) up to depth k.
Then, for each out-neighbor w of v, for which cv + c(v, w) is at most Cmax, we determine the
number n′w of walks aggregated in (cv, v, nv) whose extending to w creates a short cycle: n′w =∑

(cu,u,nu)∈P , with u=w nu. Next, if the label for the vertex w and the cost cw = cv + c(v, w) is

already in Q, we update the corresponding nw by adding nv − n′w to it. Otherwise, we create a
new label (cw, w, nw) with cw = cv + c(v, w), and nw = nv − n′w and insert it to Q. After all the
out-neighbors of v are processed, the label (cv, v, nv) is inserted to the data structure S.

In terms of running time, we need additional O(dk ·T (S)) time per label to perform the described
modification. Since in the basic label propagating algorithm we only needed to store the temporary
labels in Q and we could forget the temporary labels as soon as they were processed, we need
additional space to store the data structure S.

The algorithm is not yet implemented, but a hash table is a reasonable candidate for the data
structure S.

Remembering the short cycles One can observe that some cycles will appear repeatedly during
the described process. In the case of short cycles, this is likely to happen relatively often. Thus, a
natural effort is to try to store and reuse these cycles.

Having in mind the above described modification of the label propagating algorithm, we observe
the following. When we are at the situation of propagating a label (cv, v, nv) to an out-neighbor
w and calculating the number n′w of those walks in (cv, v, nv) that will create a short cycle, we
considered the set P of all the label predecessors of (cv, v, nv) up to depth k. However, next
time when we are in a similar situation of propagating a label (c∗v, v, n

∗
v) from the vertex v to

the out-neighbor w, the set P ∗ of label predecessors will be in a certain sense similar to the
previous set P . In particular, there is the following one to one mapping between the two sets:
(cu, u, nu) ∈ P 7→ (c∗u, u, n

∗
u) ∈ P ∗ if and only if cv − cu = c∗v − c∗u. This comes from the fact that

the short paths passing through the vertices u and v do not change in time, i.e., the length and the
cost of such a path is the same both times. Similarly, also the set of cycles passing through u and
v is always the same.

Next, we realize that in order to calculate the number n′w, we only need to query the data
structure S for those label predecessors (up to depth k) where the vertex w appears, that is those
that by extending via v to w give a cycle. Therefore, together with the previous observation, to
calculate n′w the next time we propagate from a label that contains v, we only need to know the
relative cost c = cv − cu for each label predecessor (cu, u, nu) of (cv, v, nv), where u = w. From
that we can reconstruct the corresponding label predecessors directly, query the data structure S
for them, and calculate n′w in the described way.

Thus, for a pair of vertices v, w we can store a list of all relevant relative costs, and we will never
need to explore the label predecessors again, when propagating from a label with v to the vertex w.
The shorter the list is, the less additional space is needed to store it, and the more computational
time is saved. In particular, depending on the length of the list, we need at most O(dk) additional
space to store one such list; and one such list saves up to O(dk) operations every time we propagate
from v to w.

Further tweaks Obviously, the above explained approach provides us with a lot of trade-off
options to explore. One possibility is to determine these lists of relative costs for each pair of
vertices. This could be done even upfront, before we start the process of counting the number
of s-t paths/walks. However, this may not be the best option, as a lot of additional space would
be needed. Moreover, there might be vertices that will never be considered in the computation,
since they are too far apart from all the reasonable s-t paths, and thus the information stored for
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them is never used. Another possibility is then to determine these lists only on demand, whenever
necessary, but then store them for a later use. Also, we may consider storing only those lists that
are reasonably short, since they take less space and at the same time offer bigger advantage in
terms of saved running time.

5.4.3 Other Directions

Future work will be focused mainly on improving the time needed to answer a query for a robust
route. For this goal, a promising direction is to develop a good preprocessing techniques for the
shortest path problem under uncertainty.

Query structures Since a main bottleneck for the computation of robust routes is to count
approximate paths, we can inspect whether well-known preprocessing techniques for the shortest
path problem can be extended for counting. However, preliminary investigations suggest that this
cannot be done efficiently. The main difficulty is that typical preprocessing techniques for shortest
path queries involve the partition of the vertices of the graph into a hierarchy. Queries are then
answered by performing a search from the source and a reverse search from the target upward or
downward in the hierarchy until the two searches meet. This is true both for techniques that are
good theoretically, and for those used in practice. When it comes to counting approximate paths,
though, the search criteria that are used for shortest paths do not apply. In this case, a hierarchical
structure built on top of a road network may not be useful at all.

Alternative routes The second approach to speed-up the computation of robust routes is to
consider only a fixed set of feasible s-t paths, and to count and use only approximate solutions
that lie in this set. Since one of the goals of Task 2.2 of eCOMPASS is to compute meaningful
alternatives routes for users, we could use these alternatives as the starting set of routes in which
we look for the most robust one. At the moment of writing it is not clear if this could be done
efficiently, and whether we could expect competitive results when compared to the solution obtained
by solving the shortest path problem under uncertainty from scratch.

Approximation and Randomization The third direction for speeding-up the computation
of robust routes is to consider approximation algorithms and randomized algorithms. For some
problems involving counting, there exist techniques that can approximate the correct answer, or
that can find the correct answer with good probability. It is interesting to inspect whether this
techniques can be applied to the shortest path problem under uncertainty as well.
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6 Fleets-of-Vehiles Route Planning

6.1 Problem statement and Preliminaries

One important aspect of the eCOMPASS project is route planning for fleets of vehicles. In this
problem there are given: a set of customers and the demand of each customer, a time window
associated with each customer, a depot, a fleet of vehicles and a cost measure (in our case distance
and time) for traveling from customer i to customer j. Each customer is also associated with a
quantity of goods that needs to be delivered. A time window is a time interval with an earliest
arrival time that a vehicle can begin serving the customer and a latest arrival time after which
serving is no longer possible. For a formal definition of time windows see Section 6.3.1. A cluster is
a group of customers with compatible time windows. This means that if a vehicle serves a customer
i in a cluster, it can also serve a customer j that belongs to the same cluster. The goal is to create
routes (tours) which start and end at the depot, serve all customers and minimize the total traveling
distance (or time) of the vehicles.

For eCOMPASS there is an additional objective: the routes created have to be environmentally
friendly (e.g. minimizing fuel used, CO2 emissions etc . . . ). In order to do so, compact and balanced
clusters need to be created which lead to eco-friendly routes. A cluster C is called compact if for
every pair of customers i, j ∈ C there is a way (through the road network) to reach customer j from
customer i and respect customer’s j time window. In other words, a vehicle that visits cluster C
can reach all customers that belong to this cluster. Recall that each customer expects a quantity
of goods to be delivered. So, the capacity of a cluster is defined as the sum of all customers’ goods
that belong to this cluster. Moreover, two clusters Ci, Cj are called balanced if Ti ≈ Tj where Ti, Tj
is the total capacity of cluster i and j, respectively. If the goals of compactness and balance are
met, then they lead to eco-friendly routes in an implicit way. Eco-friendliness is achieved due to
the fact that all created routes are similar in terms of the load of each vehicle (all vehicles’ load
is even). Each vehicle has a maximum capacity Q and a vehicle’s load ld is a number in [0, Q].
Furthermore, each vehicle that serves a cluster C can reach all customers that belong to this cluster
due to its construction. Thus, a vehicle will not spend additional resources (fuel, time) traveling
back and forth to the depot because some customers were unreachable.

6.2 Related Work

The problem of finding routes (starting and ending at a depot) that serve a set of customers and
minimize costs is known in the literature as the Vehicle Routing Problem (VRP). In its simplest
form, there are given: a depot, a fleet of vehicles and a set of customers. The goal is to find routes
(tours) that start and end at the depot, service all customers and minimize the total cost of the
route. The cost of the route could be: total traveling distance, total traveling time or a combination
of distance/time. These are the most common measures of cost studied in the literature and in
real-life examples. The VRP is an important problem in the fields of transportation, distribution
and logistics with many applications.

Since the introduction of VRP many variants have been introduced such as the Capacitated
VRP (CVRP) in which a homogeneous fleet of vehicles is available and the only constraint is the
vehicle capacity, or the VRP with Time Windows (VRPTW) in which each customer must be served
within a specific time interval. Recently, much attention has been devoted to more complex variants
of VRP known as “rich” VRPs (RVRPs) that are closer to real-life problems. In particular, rich
VRPs take into account one or more depots, (multiple) time windows for each customer, multiple
vehicle types, loading constraints, multiple tours for each vehicle and capacity constraints for each
vehicle. Although rich VRPs capture real life scenarios, they are more complicated than other
variants (such as CVRP), hence, are more challenging to solve.

VRP and its many variants have been studied since the problem was first introduced by Dantzig
and Ramser [19] in 1959. The Traveling Salesman Problem (TSP) is a subproblem of VRP, known
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to be NP-Hard. This means it is unlikely that exact solutions to real life instances of the VRP
can be computed quickly. The most common ways of overcoming this hurdle is by using heuristics,
metaheuristics, and approximation algorithms. We refer the reader to the book edited by Toth and
Vigo [75] for a comprehensive overview of many techniques used for solving VRPs.

Many heuristics and metaheuristics have been used to solve variants of the VRP. The heuristics
can be roughly classified into construction heuristics and improvement heuristics. As the name
suggests, a construction heuristic is used to construct initial or candidate tours. These tours are
then improved by an improvement heuristics. The classical construction heuristics are the savings
based method of Clarke and Wright [17] and the insertion heuristic [48]. Other methods like the
two phase method of Fisher and Jaikumar [35] are also widely used. Among the improvement
heuristics, the methods of [52] and [54] are well known and used.

Since almost a decade now the emphasis of research has been gradually shifting towards real life
VRPs (RVRPs). For those we refer the interested reader to the survey article of Drexl [29].

For the approach adopted in this project, we studied the literature in depth, e.g., [14],[28],[73].
A general comment is that in related work, many researchers focus on the creation of clusters, due
to the complexity of the VRP problem. In [14] the authors develop a clustering method, creating
balanced clusters. They use the k-means algorithm in order to create clusters and suggested an
improved version of the k-means algorithm. In [28] the authors also create clusters and then solve
a mixed integer linear program (MILP) in order to calculate the actual routes. For the clustering
phase they use a heuristic approach. Finally, in [73] the authors describe a variety of heuristics,
and conduct an extensive computational study of their performance.

6.3 The eCOMPASS 3-Phase Approach

The model adopted in eCOMPASS is inspired by the “rich” VRP since we are dealing with a set
of customers with (multiple) time windows, one depot, a homogeneous fleet of vehicles and further
objectives to be met like compactness, balanced and eco-friendly routes.

Figure 17: Instance of a VRP Problem

A directed graph G = (V,E) is given where V represents the set of nodes (customers) and E
the set of edges. Usually, node v0 represents the depot and nodes vi ∈ {1, . . . , n−1} represent each
customer. Every customer vi ∈ V requires qvi units to be served. There is a fleet of m vehicles
each associated with a maximum capacity Q. For each edge (i, j) ∈ E a non negative routing cost
cij is given which represents the cost to travel from customer i to customer j. An example of a
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VRP instance is shown in Figure 17. There is one depot (green triangle) and a set of customers
represented as red dots. There are two routes represented with bold lines; the grey thin lines were
not chosen for any of the two routes.

More specifically, the eCOMPASS approach comprises 3 Phases. Phase I is the Clustering with
Time Windows Phase, where the customers are divided into clusters. The goal of Phase I is to
create clusters with the following property: a vehicle serving a customer within a cluster can also
serve all the other customers in the same cluster. In other words, each cluster forms a strongly
connected component not in the real life instance but in a modified graph. The construction of the
modified graph is explained in Section 6.3.1. Phase II is the Partition Phase, where the original
graph is partitioned into cells. A cell is a group of customers that are geographically close. The
main idea is that customers that belong to the same cell are geographically close to each other and
they may belong to the same final cluster if their time windows are compatible. Phase III is the
Merge & Split Phase, where the previously created clusters and cells are merged together or split
in order to form the final clusters.

6.3.1 Phase I - Clustering with Time Windows

In this phase a graph G = (V,E) is created. Every customer i is represented by a node and is
associated with a time window [ei, li] where ei is the earliest arrival time at customer i and li is
the latest departure time from customer i. For two customers (nodes) vi, vj variable tij denotes the
traveling time needed to travel from customer i to customer j in seconds and variable dij denotes
the distance between nodes i and j in meters. An edge eij connects nodes i, j if li + tij < lj .
The inequality shows that when a vehicle serves a customer i and leaves at the customer’s latest
departure time, it can reach customer j taking into account the time needed to travel from i to j
respecting customer’s j latest departure time.

After all edges have been created for all customers the process of creating the clusters can begin.
The main idea is to find Strongly Connected Components (SCC) inside the graph G. A Strongly
Connected Component is a maximal subgraph H of G with the following property: for any two
nodes vi, vj ∈ H there is a path from vi to vj and also there is a path from vj to vi. Each strongly
connected component k is then considered a cluster Ck. For every strongly connected component
the following property holds: node vi ∈ Ck is reachable from any other node vj that belongs to the
same cluster Ck

6.3.2 Phase II - Geographic Partition

The second phase is responsible for the geographical partition of the area. Since we are dealing with
instances where each customer is associated with coordinates (longitude,latitude) an instance can
be represented on a map by its coordinates. Hence, given an area (usually urban) the main idea
is to create a partition of M cells where customers that belong to the same cell are geographically
close to each other. The algorithm that performs the partition is the following: given the four
outermost points and some parameters describing the height h, width w of each cell and depth d
of the partition, the area is partitioned into l = h ∗ w cells. This creates the first level of partition
Level 0. Then, the process is repeated d times where d denotes the number of levels that need to
be created. The challenge is to experiment with the values of h,w, d because we would like to avoid
creating a few cells, because all nodes will be gathered there, and also avoid creating too many
small cells as this will lead to many empty cells or cells that have 1 or 2 customers in them. This
is a preprocessing step thus it can be executed off-line and not create extra burden for the actual
calculation of the routes. An example of the Partition Phase can be seen in Figures 18,19. For
simplicity the initial area is represented by a square although this may not be the general case. To
conclude, a cell corresponds to a geographical area and its size depends on its depth. For example,
cells that belong to Level 0 correspond to a wider geographical area than cells that belong to Level
1. This can be seen on Figures 18,19 where cell 0 is divided into cells 00 through 08.
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Figure 18: First level of Geographic Partition. An area is divided into 9 cells.

Figure 19: Second level of Geographic Partition. Each cell from the first level is further divided.

6.3.3 Phase III - Cluster Refinement: Merge & Split

The third phase deals with the clusters and cells created from Phases I and II respectively. Recall
that Phase I created clusters that achieved a first level of compactness and Phase II created cells
in order to get balanced routes. The main idea of Phase III is the refinement of the previous two
phases in order to eliminate possible problems. For example, there may exist a cluster C where
there is a path connecting any two customers but their time windows are incompatible, some have to
be served in the morning and others in the afternoon. This cluster must be split into two (or more,
if necessary) sub-clusters that will satisfy compactness (connectivity) and balance (geographical
proximity). Another case is that two cells created from Phase II can contain customers that are
geographically close and they may have compatible time windows. In this case the two cells have to
be merged to create a bigger cell that satisfies the properties of compactness and balance. Also, if
there are empty cells from Phase II, they can be merged with their neighbour cells. Then for each
final cluster any heuristic or metaheuristic algorithm can be executed in order to calculate the actual
routes of the vehicles. The situation is depicted in Figures 20,21. In Figure 20, clusters C1, C2 are
merged because they are both connected and geographically close, whereas in Figure 21 cluster C3

is split into two sub-clusters because it contains customers that lay in different geographical areas.
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6.4 Future Directions

6.4.1 Cluster Balancing

One issue that is worth studying, is the concept of balanced clusters. Recall that two clusters
Ci, Cj are called balanced if Ti ≈ Tj where Ti, Tj is the total capacity of cluster i and j respectively.
Balanced clusters will lead to balanced tours since the average load for each vehicle is the same.
Furthermore, balanced tours have a positive impact on environmental issues due to the fact that
every vehicle’s load is approximately the same. This leads to less CO2 emissions and less fuel used
since there are no cases where one or more vehicles are heavily loaded and others are empty.

Figure 20: Phase III: Cluster Refinement - Merge Operation. Examine phases I and II and perform
a merge operation.

Figure 21: Phase III: Cluster Refinement - Split Operation. Examine phases I and II and perform
a split operation.
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7 Conlusions and Work for Next Period

In this document we presented the research results obtained by the eCOMPASS project partners in
the first 18 months of the project with respect to routing problems for private vehicles and fleet of
vehicles in urban areas. What is shown are the algorithms and algorithmic solutions developed for
these problems. Starting from the next period the testing stage will begin, and we will experiment
on real-world data in order to fine-tune the proposed algorithms for practical use. We will also
implement these algorithms on prototypes, and during the pilot test stage we will assess their
validity for every-day use.

However, research for even more efficient and precise algorithm will not stop. In parallel with
the experimental stage we will continue to research for new solutions and algorithm, and our belief
is that research and experiments will benefit one from the other. In the following, we summarize
some of the most prominent future plans for each research topic presented in this document.

Traffic Prediction Concerning traffic prediction, the effectiveness of the techniques given for
travel time forecasting shall be benchmarked in future deliverables. In any case, forecasting travel
times is a quite challenging task, to be explored further by both Machine Learning and Time Series
Analysis perspectives. Future scope could lie in clustering approaches (aimed towards regression),
that may be applied along with proper feature selection in order to fully exploit the data. Different
dimensions of the data can be used to improve on the application of the techniques analyzed in
this deliverable, while new methods may also be designed and tested in terms of effectiveness and,
possibly, efficiency. Apart from the well-specified problem of travel time forecasting, several tasks,
such as traffic congestion and incident detection, shall be considered, since their effect is generally
significant, when it comes to routing, either for individuals or fleets. Literature on these topics shall
be analyzed and techniques for predicting and visualizing congestion/incidents will be explored so
as to draw useful conclusions.

Alternative Route Planning The experiments show that both the plateau and the penalty
method provide good results. We plan to evaluate the computed alternatives with respect to the
quality indicators. The plateau method forms the alternatives by overlapping the shortest path tree
from s with the one from t. The penalty method yields the alternatives iteratively. At each step
it finds the shortest path and then penalizes its edges by increasing their weight. In the penalty
method, a new technique is developed to prevent the increase of the weight of non-decision edges.
Also, we propose to set the value of the penalization factors depending on the length of the shortest
path, instead of a constant factor.

Robust Route Planning For the computation of robust routes it turned out that avoiding
paths containing cycles is much harder than expected. In the next period we will inspect how to
avoid these cycles as well as how to speed-up the proposed algorithms for counting simple paths.
Our focus will be on special graph classes that do not contain cycles (DAGs), extending the label
propagating algorithm as to avoid cycles, and developing preprocessing techniques for robust routes.

Other possible directions involve computing robust routes among a set of meaningful alterna-
tives. This solution has the potential of decreasing the time required to compute a route significantly,
but we will have to inspect the trade-off between the speed-up and the quality of the computed
solution. Furthermore, we will consider the possibility to design approximation algorithms or ran-
domized algorithm for counting simple paths.

Fleet-of-Vehicles Route Planning Regarding route planning for fleet-of-vehicles we have com-
pleted the 3-phase approach. Early experiments show that the creation of clusters and cells does
not require high computation time. In any case, this step can be done off-line and the actual com-
putation of the routes of each cluster will be done by using a heuristic algorithm. In this direction,
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we plan to use PTV’s heuristic algorithms which perform performing really well in practice. As
regards next steps, our focus will be towards creating balanced clusters, an element that can make
of approach more concrete. In parallel, we will also focus on extending and improving the work
conducted so far. As for the experiments, we already use real world instances of VRP problems
and we are planning to test our algorithms in more real world instances in order to evaluate their
behaviour.
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