
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 061

Fast First-Move Queries through
Run-Length Encoding

Ben Strasser, Daniel Harabor, Adi Botea

July 2014

Fast First-Move Queries through Run-Length Encoding ∗

Ben Strasser
Karlsruhe Institute of Technology

Germany

Daniel Harabor
NICTA

Australia

Adi Botea
IBM Research

Ireland

Abstract

We introduce a novel preprocessing-based algorithm to
solve the problem of determining the first arc of a short-
est path in sparse graphs. Our algorithm achieves query
running times on the 100 nanosecond scale, being sig-
nificantly faster than state-of-the-art first-move oracles
from the literature. Space consumption is competitive,
due to a compression approach that rearranges rows and
columns in a first-move matrix and then performs run
length encoding (RLE) on the contents of the matrix.

Introduction
A compressed path database (or CPD) is a shortest
path oracle. Given a weighted directed input graph
G = (V,E) and a pair of vertices s, t ∈ V (resp. the
source and target nodes) a CPD is able to return the first
edge (i.e. the first move) on the preferred path from s to
t. Our algorithm works in two phases: (i) a preprocess-
ing phase at which only the graph is known; (ii) a query
phase that has s and t as input and should output the first
arc on a shortest st-path. The preprocessing phase may
use a lot of computing time and generates data (i.e. the
CPD) that is accessible in the query phase and used to
accelerate the first move computation. The motivation
for this setup is that in many scenarios the graph is static
but many shortest path queries are executed on the same
graph. CPDs have been used in a variety of contexts in-
cluding fast path finding for video games (Botea 2011;
2012), path finding on road networks (Botea and Hara-
bor 2013) and for improving hunter performance when
chasing a mobile prey (Botea et al. 2013). Consider
for example games on a map with obstacles. Units need
to navigate on the map and maneuver around these ob-
stacles to get to their destination. Note that it is not
necessary to extract the whole path at the moment that
the unit starts moving. For each unit it is sufficient
to know the next edge to take and once it reached the
next node a new query can be performed. This ap-
proach balances the computational load over time re-
∗Partial support by DFG grant WA654/16-2 and EU grant

288094 (eCOMPASS) and Google Focused Research Award.
Copyright c© 2014, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

ducing the lag spike incurred when many units start
moving at the same time. It is often unclear whether
a unit will reach its destination. For example the player
may change his orders midway resulting in a new desti-
nation. In this situation, the approach of extracting first
moves when needed avoids discarding a computed path.
Another scenario where the destination rapidly changes
is moving-target search (Ishida and Korf 1991). Sup-
pose that the hunter unit knows the exact position of the
prey-unit. At each step the hunter can use the prey’s po-
sition as target. As our queries are independent it does
not matter if in the next step the prey will already have
moved or not. The computational costs to navigate to a
moving target are the same as for a static target.

Another scenario in which fast shortest path compu-
tations are needed is to plan routes in road networks.
For example an online navigation service (for example
Google, Bing, OpenStreet, Apple Maps) have many vis-
itors that run queries on the same static road graph. A
vast amount of techniques tailored for this specific sce-
nario has been developed in the last decade. We refer
the interested reader to a recent survey article (Bast et al.
2014). The usual approach taken on roads differs from
the one presented in this paper. The setup includes the
same two phases (i.e., preprocessing and online query-
ing) but the query phase should compute the distance of
a shortest st-path instead of a first move. Determining
a shortest path is viewed as extension of the basic dis-
tance algorithm and is usually not performed by com-
puting independent queries per arc. Most of the algo-
rithms compute some form of coarsened path along the
distance computation and unpack coarsened subpaths as
needed. Unpacking is usually significantly faster than
performing an independent query for each edge.

The simplest encoding for a CPD is an all-pairs ma-
trix where each entry represents the id of the first arc
on the preferred path between a pair of nodes. Com-
puting such a matrix is a challenging research problem
in its own right and the topic of many papers from the
literature (e.g. (Knopp et al. 2007; Planken, de Weerdt,
and van der Krogt 2011; Delling et al. 2013)). Once the
matrix is computed, storage quickly becomes the most
immediate practical consideration, as the size of the re-

157

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

sulting data structure is quadratic in the size of the input
graph. Efficient random access to individual entries is
another another important consideration as the entirety
of the matrix may not fit into RAM.

In this paper we study approaches for compactly en-
coding such APSP matrices in order to derive efficient
and practical CPDs. Our main result is therefore about
compression, not computation. The main idea of our al-
gorithm is simple: we compute an order for the nodes
in the input graph such that nodes which are located in
close proximity have a small ID difference. This or-
dering is used to order the rows and the columns of a
first-move matrix, which is also computed during pre-
processing. Then, we apply run-length encoding (RLE)
to each row of the first-move matrix. We study three
types of orderings: graph-cut order, depth-first order
and input-graph order. We also study two types of
run-length encoding. The first involves a straightfor-
ward application of the algorithm to each row. The
second type is a more sophisticated multi-row scheme
that eliminates redundancies between adjacent RLE-
compressed rows. To answer first-move queries we em-
ploy a binary search on the compressed result. As part
of our contribution we undertake a detailed empirical
analysis including comparisons of our techniques with
Copa and Hub-Labeling. Copa is a recent and very fast
CPD oracle which was among the joint winners at the
2012 Grid-based Path Planning Competition. Using a
variety of benchmarks from the competition we show
that our approaches improve on Copa, both in terms
of storage and query time. Hub-Labeling is a tech-
nique developed to speedup queries on roads but has
been shown to work on different types of input. Hub-
Labeling is to the best of our knowledge the fastest tech-
nique known on roads.

Related Work
Many techniques from the literature can be employed
in order to compute the first arc on an optimal path.
Standard examples include optimal graph search tech-
niques such A* and Dijkstra’s Algorithm. Significant
improvements over these methods can be achieved by
preprocessing the input graph. A common approach
consists of adding online pruning rules to Dijkstra’s
Algorithms, which rely on data computed in the pre-
processing phase, significantly reducing the explored
graph’s size. As this approach significantly differs from
the technique described in this paper, we omit the de-
tails and refer the interested reader to a recent survey
article (Bast et al. 2014).

SILC (Sankaranarayanan, Alborzi, and Samet 2005)
and Copa (Botea and Harabor 2013) are compressed
path databases with similarities to our work. Like our
work both SILC and Copa can be described as oracles
for spatial networks. Given a start and target vertex
from the input graph, both algorithms return the first
arc on the optimal path. SILC employs a recursive
quad-tree mechanism for compression while Copa uses

a simpler and more effective (Botea 2011) decomposi-
tion based on rectangles. As one of the joint winners of
the 2012 Grid-based Path Planning competition, we re-
gard Copa as the current state-of-the-art for efficiently
encoding path databases. We compare against Copa in
the experimental evaluation.

Hub Labels (HL) were initially introduced by (Cohen
et al. 2003). However, for several years there was only
little research on the topic until Abraham et al. (2011)
discovered that road graphs have tiny hub labels com-
pared to their number of nodes. Since then there has
been a multitude of papers on the topic (Abraham et
al. 2012b; Delling, Goldberg, and Werneck 2013; Abra-
ham et al. 2012a; Akiba, Iwata, and Yoshida 2013). We
compare against the most recent paper (Delling et al.
2014). The algorithm to compute the labels is called
SamPG. These labels are then compressed using two
schemes: RXL and CRXL. Rather than storing a com-
pressed database of first-moves, HL stores a database of
distances. In particular, for each node there is a forward
and backward label containing a list of hub nodes and
the exact distances to them. For each st-pair there must
exist a meeting hub h that is a forward hub of s and a
backward hub of t and is on a shortest st-path. A meet-
ing hub can be determined using a simultaneous scan
over both labels. As hinted in (Abraham et al. 2012a) it
is easy to extend hub labels to solve first move queries.
To achieve this, the entries in the forward and backward
labels are extended with a third component: a first move
arc ID. If h is a forward hub of s then the corresponding
entry is extended using the first arc ID of a shortest sh-
path. If h is backward hub of t then the entry is extended
with the first arc of a shortest ht-path. For a st-query
first the corresponding meeting hub h is determined. If
s 6= h then the first move is the arc ID stored in the for-
ward label s and otherwise the first move is contained
in the backward label of t. This slightly increases mem-
ory consumption but should have a negligible impact on
performance. Note that the distance values are needed
even if one only wishes to compute first-moves.

Another speedup technique with low average query
times is Transit Node Routing (TNR) (Bast, Funke,
and Matijevic 2009; Bast et al. 2007; Antsfeld et al.
2012). However, two independent studies (Abraham et
al. 2011; Arz, Luxen, and Sanders 2013) have come to
the conclusion that (at least on roads) TNR is dominated
by HL in terms of query time. Further, TNR does not
optimize short range queries. In the motivating moving
target scenario the prey-unit is often close to the hunter-
unit, thus making the technique ineffective.

In the context of program analysis it is sometimes de-
sirable to construct an oracle that determines if a partic-
ular section of code can ever be reached. PWAH (van
Schaik and de Moor 2011) is one such example. Like
our work the authors precompute an APSP matrix and
employ a compression scheme based on run-length en-
coding. The main difference is that such reachability or-
acles only return a yes-no answer for every query rather

158

than the identity of a first-arc.

Preliminaries
We consider sparse directed graphs G = (V,A) consist-
ing of the node set V and the arc set A ⊆ V ×V . Every
arc (u, v) has a tail u and a head v. All graphs have
positive weights w, no reflexive-arcs and no multi-arcs.
A node order o : V → [1, |V |] assigns to every node v
a unique node ID o(v). We denote by deg(u) the num-
ber of outgoing arcs of u. The maximum out-degree is
denoted by ∆. The out-arcs (u, v) of every node u are
ordered in an arbitrary but fixed order and their position
is referred to as their out-arc ID. We assume that node
IDs can be encoded within 28-bit integers. Further we
assume throughout the paper that ∆ ≤ 15 which allows
us to encode an out-arc ID within a 4-bit integer and al-
lows us to use 15 to indicate an invalid arc. Note that
the concatenation of a node ID and an out-arc ID fits
into a single 32-bit machine word.

As mentioned in the introduction, we build a |V | ×
|V | all-pairs matrix m. Given a certain ordering of the
rows and the columns, an entry m[i, j] is the id of an
outgoing arc from node i contained in an optimal path
from i to j. The rows of the matrix are compressed with
RLE as discussed later.

Node Order
The node order is essential to the performance of our
algorithm. Informally, we need an ordering that assigns
close IDs to close nodes. Notice that the Bandwidth
problem, which is one way of formalizing this fuzzy cri-
terion, is NP-complete (Garey and Johnson 1979). We
present two heuristics to compute a node ordering.

Depth First Search Node Order We can traverse
graphs using a depth first search and order the nodes
in the order that they are first reached (i.e. a preorder
traversal). This order has the property that for many
nodes v the parent node of v will have ID o(i) − 1
and the first child node of v will have the ID o(i) + 1.
This motivates the proposed ordering: Start at a ran-
dom node and perform a depth first search. Assign IDs
to the nodes in the order that they are visited. If after
the search unvisited nodes remain then perform another
depth first search from a random unvisited node scan-
ning only unvisited nodes. Repeat until all nodes are
visited and have a unique ID. If the graph is sufficiently
sparse then many nodes are a first child and therefore
many neighboring nodes will have neighborng IDs.

Cut Node Order The required ordering property can
also be formulated as following: For every edge, both
endpoints should have a close ID. Obviously this can
not be fulfilled for all edges at once. For this reason the
proposed ordering tries to identify a small set of edges
for which this property may be violated. It does this us-
ing balanced edge cuts. Given a graph with n nodes we

want to assign IDs in the range [1, n] using recursive bi-
section. In the first step our algorithm bisects the graph
into two parts of nearly equal node counts and a small
edge cut size. It then divides the ID range in the middle
and assigns the lower IDs to one part and the upper IDs
to the other part. It continues by recursively bisecting
the parts and further dividing the associated ID ranges
until only parts of constant size are left. As described
so far the algorithm is free to decide to which part it as-
signs the lower and to which the upper ID ranges. For
this reason we augment it by tracking for every node v
two counters h(v) and `(v) representing the number of
neighbors with guaranteed higher and a lower IDs. Ini-
tially these counters are zero. At every bisection after
the ranges are assigned the algorithm iterates over the
edge cut increasing the counters for the border nodes.
When deciding which of two parts p and q gets which
ranges it uses these counters to estimate the ID distance
of both parts to the nodes around them. It evaluates∑

v∈q

h(v)−
∑
v∈q

`(v) <
∑
v∈p

h(v)−
∑
v∈p

`(v)

and assigns the higher IDs to p if the condition holds.
When the algorithm encounters a part that is too small
to be bisected it assigns the IDs ordered by `(v)−h(v).

Compression
Let a1 . . . an denote an uncompressed row. Every row
corresponds to a source node s and every entry at is the
first arc of a shortest st-path (or an invalid value if there
is no path). We refer to a sequence of identical ai as a
run, to the value of the ai in a run as the run’s value and
to the first node ID of the run as the run’s start. Instead
of storing the uncompressed row we store a list of runs
ordered by their start. Each run is represented by its
start and its value. As the compressed rows vary in size
we need an additional index array that maps each source
node s onto the memory offset of the first run in the row
corresponding to s. We arrange the rows consecutively
in memory and therefore the end of s’s row is also the
start of s + 1’s row. We therefore do not need to store
the row ends.

Memory Consumption Recall that we required node
IDs to be encodable in 28 bits and out-arc IDs in 4 bits.
We encode each run’s start in the upper 28 bits of a 32-
bit machine word and its value in the lower 4 bits. The
total memory consumption is therefore 4 · (|V |+ 1 + r)
bytes where r is the total number of runs over all rows
and |V |+ 1 is the number of offsets in the index array.

Computing Rows Rows are computed individually
by running a variant of Dijkstra’s one-to-all algorithm
for every source node s and then compressed as de-
scribed in detail in the next paragraph. However, de-
pending on the graph it is possible that shortest paths are

159

not unique and may differ in their first arc. It is there-
fore possible that multiple valid uncompressed rows ex-
ist that tie-break paths differently. These rows may also
differ in their number of runs and therefore have differ-
ent compressed sizes. To minimize the compressed size
of a row, instead of using Dijkstra’s algorithm to com-
pute one specific row a1 . . . an we modify it to com-
pute sets A1 . . . An of valid first move arcs. We require
that for each at ∈ At a shortest st-path must exist that
uses at as its first arc. Our algorithm maintains along-
side the tentative distance array d(t) for each node t a
set of valid first move arcs At. If the algorithm relaxes
an arc (u, v) decreasing d(v) it performs Av ← Au. If
d(u)+w(u, v) = d(v) then it performs Av ← Av∪Au.
As we restricted the out-degree of each node to 15 we
can store the At sets as 16-bit bitfields. Set union is
performed using a bitwise-or operation.

Compressing Rows with Run Length Encoding For
every target the compression method is given a set of
valid first move arcs and may pick the one that mini-
mizes the compressed size. We formalize this subprob-
lem as following: Given a sequence of sets A1 . . . An

find a sequence a1 . . . an with ai ∈ Ai that mini-
mizes the number of runs. We show that this sub-
problem can be solved optimally using a greedy algo-
rithm. Our algorithm begins by determining the longest
run that includes a1. This is done by scanning over
the A1 . . . AiAi+1 until the intersection is empty, i.e.,⋂

j∈[1,i] Aj 6= ∅ but
⋂

j∈[1,i+1] Aj = ∅. The algorithm
then chooses a value from the intersection (it does not
matter which) and assigns it to a1 . . . ai. It continues
by determining the longest run that starts at and con-
tains ai+1 in the same way. This procedure is iterated
until the row’s end is reached. This approach is opti-
mal because we can show that an optimal solution with
a longest first run exists. No valid solution can have
a longer first run. An optimal solution with a shorter
first run can be transformed by increasing the first run’s
length and decreasing the second one’s without modi-
fying their values. As subsequences can be exchanged
without affecting their surroundings we can conclude
that the greedy strategy is optimal.

Merging Rows using Groups To compress individ-
ual rows we have exploited that shortest paths from s
to t1 and t2 often have the same first move if t1 and t2
are close. A similar observation can be made for close
source nodes s1 and s2. Their compressed rows tend
to resemble each other. We want to further compress
the data by exploiting this redundancy. We partition the
nodes into groups and store for each group the infor-
mation shared by all nodes in the group. At each row
we only store the information unique to it. Denote by
g(s) the unique group of node s. Two runs in different
rows with the same start and same value will have the
same 32-bit pattern. Denote by Rs the set of runs in the

row of s. Instead of storing for each row s the whole
set Rs we store for each group h the intersection of all
rows, i.e., we store R′h =

⋂
i∈h Ri. For each row s we

store R′s = Rs \ Rg(s). Recall that a query with target
t consists of finding max{x ∈ Rs | x < t′} (where
t′ = 15t + 16). Notice that this formula can be rewrit-
ten using basic set logic as max{max{x ∈ R′s | x <
t′}, max{x ∈ R′g(s) | x < t′}} which can be imple-
mented using two binary searches if all R′i are stored as
ordered arrays. Note that we need a second index array
to lookup the R′g for the groups g.

Computing Row Groups By design close source
nodes have close node IDs and thus neighbouring rows.
This motivates restricting ourselves to row-run group-
ings, i.e., for each group h there are rows i and j such
that all rows in [i, j] belong to the group. An opti-
mal row-run grouping can be computed using dynamic
programming. Denote by S(n) maximum number of
runs saved compared to using no group-compression re-
stricted to the first n rows. Notice that S(1) = 0. Given
S(1) . . . S(n) we want to compute S(n+1). Obviously
the n + 1’s row must be part of the last group. Suppose
that the last group has length ` then we save in total
S(n + 1 − `) + (` − 1) · ⋂i∈[n+1−`,n+1] Ri runs. As
there are only n different values for ` we can enumerate,
with brute force, all possible values, resulting in an al-
gorithm with a running time in Θ(n2). We observe that
the intersection of large groups often seems to be nearly
empty and therefore we only test values for ` ≤ 100
resulting in a Θ(n) heuristic.

Queries
Given a source node s and a target node t (with s 6= t)
the algorithm determines the first arc of a shortest st-
path. It does this by first determining the start and the
end of the compressed row of s using the index array. It
then runs a binary search to determine the run contain-
ing t and the corresponding out-arc ID. More precisely
the algorithm searches for the run with the largest start
that is still smaller or equal to t. Recall that we en-
code each run in a single 32-bit machine word with the
higher 28 bits being the run’s start. We can reinterpret
these 32-bits as unsigned integers. The algorithm then
consists of a binary search in an ordered 32-bit integer
for the largest element not larger than 16t + 15 (i.e. t in
the higher 28 bits and all 4 lower bits set).

Extracting a path using CPDs is an extremely sim-
ple recursive procedure: beginning at the start node we
extract the first move toward the target. We follow the
resultant edge to a neighbouring node and repeat the
process until the target is reached.

Experimental Setup
To evaluate our work we consider two types of graphs:
road graphs and grid-based graphs. In the case of grid
graphs we have chosen two benchmark problem sets

160

drawn from real computer games and which have ap-
peared in the 2012 Grid-based Path Planning Compe-
tition. In addition to the maps used in the competition
we also pick the two largest maps (in terms of nodes)
for both games available at (Sturtevant 2012). Note that
these two maps were not used in the competition. All
maps in each benchmark set are undirected and feature
two types of arcs: straight arcs which have a weight of
1.0 and diagonal arcs which have a weight of

√
2.

27 maps come from the game Dragon Age
Origins. These maps have 16K nodes and 119K
edges, on average. The largest map called ost100d
with 137K nodes and 1.1M edges is evaluated sepa-
ratately. 11 maps come from the game StarCraft.
These maps have 288K nodes and 2.24M edges, on av-
erage. The largest map called FrozenSea and has
754K nodes and 5.8M edges is evaluated separatately.

In the case of road graphs we have chosen several
benchmarks made available during the 9th DIMACS
challenge (Demetrescu, Goldberg, and Johnson 2009).
The New York City map (henceforth, NY) has
264K nodes and 730K arcs. The San Francisco
Bay Area (henceforth, BAY) has 321K nodes and
800K arcs. Finally, the State of Colorado
(COL) has 436K nodes and 1M arcs. For all three
graphs travel time weights (denoted using a -t suffix)
and geographic distance weights (denoted using -d) are
available.

Our experiments were performed on a quad core i7-
3770 CPU @ 3.40GHz with 8MB of combined cache,
8GB of RAM running Ubuntu 13.10. All algorithms
were compiled using g++ 4.8.1 with -O3. All reported
query times use a single core.

Results
We implemented our algorithm in two variants: single-
row-compression (SRC) not using the row merging op-
timization, and multi-row-compression (MRC), using
this optimization. We compare both of these approaches
with Copa and RXL. Note that there are two variants
of Copa. The first variant, which we denote Copa-G,
appeared at the 2012 GPPC and is optimised for grid-
graphs. We use the authors’ original C++ implemen-
tation which is available from the competition reposi-
tory.1 The second variant, which we denote Copa-R, is
optimised for road graphs. This algorithm is described
in (Botea and Harabor 2013); we used the authors’ orig-
inal C++ implementation.

RXL is the newest version of the Hub-Labeling algo-
rithm. We asked the original authors to run the experi-
ments for us presented below. As a result the RXL ex-
periments were run on a different machine. They were
run on a Xeon E5-2690 @ 2.90 GHz. The reported
query times are therefore scaled by a factor of 2.90/3.40
= 85% to adjust for the lower clock speed. Note, how-
ever that their implementation computes path distances

1https://code.google.com/p/gppc-2012/

Avg. Preprocessing Time (seconds)
Order Time SRC Time MRC Time

Dragon Age 2
+cut 2 32 33
+dfs <1 35 36
+input 0 38 40

DIMACS
+cut 16 1950 1953
+dfs <1 1982 1985
+input 0 2111 2125

StarCraft
+cut 18 1979 1993
+dfs <1 2181 2195
+input 0 2539 2574

Table 1: Preprocessing time on each of our four benchmarks.
We give results for (i) the average time required to compute
each node ordering; (ii) the total time required to compute the
entire database for each of SRC and MRC. Values are given
to the nearest second.

instead of first-moves. As detailed in the related work
section, this should not make a significant difference
for query times. However it is unclear to us whether
it is possible to incorporate the additional data needed
into the compression schemes presented in (Delling et
al. 2014). The reported RXL-sizes are therefore only
(probably very tight) lower bounds.

Preprocessing Time Table 1 gives the average pre-
processing time for SRC and MRC on the 6 road graphs
and the two competition sets. Each variant is distin-
guished by suffix. The suffix +cut indicates a node or-
dering based on the balanced edge-separators graph cut-
ting technique described earlier. The suffix +dfs indi-
cates a node ordering based on depth-first search traver-
sal, again as described earlier. The suffix +input indi-
cates the order of the nodes is taken from the associated
input file. For map graphs we ordered the fields lexico-
graphically first by y- and then by x-coordinates.

The time in each case is dominated by the need to
compute a full APSP table. As we have previously com-
mented, APSP compression is the central point of our
work; not computation. Our preprocessing approach
involves executing Dijkstra’s algorithm repeatedly; the
time required could likely be significantly improved (at
least for roads with unique shortest paths) using modern
APSP techniques (e.g. (Delling et al. 2013)).

Creating a node order is fast; +dfs requires only frac-
tions of a second. Even the +cut order requires not more
than 18 seconds on average using METIS (Karypis and
Kumar 1998). Meanwhile, the difference between the
running times of SRC and MRC indicate that multi-row
compression does not add more than a small overhead
to the total time. For most of our test instances the
recorded overhead was on the order of seconds.

161

Map |V | |E|
|V |

DB Size (MB) Query Time (nanos)

Copa-G MRC SRC Copa-G MRC SRC
+cut +dfs +input +cut +dfs +input +cut +dfs +input +cut +dfs +input

Dragon Age: Origins (27 maps)
Min 244 7 < 1 < 1 < 1 < 1 < 1 < 1 < 1 34 19 26 26 14 19 18
Q1 1828 7.2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 63 22 31 35 16 22 26
Med 5341 7.4 1 < 1 1 1 < 1 1 2 81 30 44 54 20 31 38
Avg 30740 7.4 12 5 7 23 6 8 53 156 34 50 72 25 36 54
Q3 52050 7.6 18 6 10 29 7 12 65 266 36 62 106 28 45 82
Max 99630 7.7 75 31 39 106 35 44 349 316 95 116 176 67 78 138

StarCraft (11 maps)
Min 104900 7.7 60 20 35 89 25 42 187 304 63 93 130 47 63 88
Q1 172600 7.7 128 28 61 144 33 71 281 324 70 103 142 51 69 102
Med 273500 7.8 183 69 111 393 83 126 956 334 95 121 187 66 77 133
Avg 288200 7.8 351 148 203 444 172 222 983 358 105 130 195 66 82 132
Q3 396100 7.8 510 189 282 621 222 308 1318 396 126 146 226 72 90 156
Max 493700 7.8 934 549 626 1245 630 660 2947 436 197 195 311 108 118 208

Table 2: Comparative performance of both Copa-G and a range of SRC and MRC variants. We test each one on two sets of grid
graphs which have appeared in the 2012 GPPC. We measure (i) the size of the compressed database (in MB) and; (ii) the time
needed to extract a first query (in nanos). We give results for both grid graphs and road graphs. All values are rounded to the nearest
whole number (either MB or nano, respectively).

Graph |V | |E|
|V |

DB Size (MB) Query Time (nanos)

Copa-R Hub Labels MRC SRC Copa-R Hub Labels MRC SRC
RXL CRXL +cut +dfs +cut +dfs RXL CRXL +cut +dfs +cut +dfs

BAY-d 321270 2.5 317 90 19 141 129 160 144 527 488 3133 89 100 62 69
BAY-t 321270 2.5 248 65 17 102 95 117 107 469 371 1873 74 87 52 60
COL-d 435666 2.4 586 138 24 228 206 268 240 677 564 3867 125 111 68 85
COL-t 435666 2.4 503 90 22 162 150 192 175 571 390 2131 88 97 58 65
NY-d 264346 2.8 363 99 21 226 207 252 229 617 621 4498 112 122 75 83
NY-t 264346 2.8 342 66 18 192 177 217 198 528 425 2529 98 111 67 75

Table 3: Comparative performance of SRC, MRC, Copa-R and two recent Hub Labeling algorithms. We test each one on six
graphs from the 9th DIMACS challenge. We measure (i) database sizes in MB; (ii) the time needed to extract a first query (in
nanos). All values are rounded to the nearest whole number (MB or nano, respectively).

Compression and Query Performance In Table 2
we give an overview of the compression and query time
performance for both Copa-G and a range of SRC and
MRC variants on the competition benchmark sets. To
measure the query performance run 108 random queries
with source and target nodes picked uniformly at ran-
dom and average their running times.

MRC outperforms SRC in terms of compression but
at the expense of query time. Node orders significantly
impact the performance of SRC and MRC. In most
cases +cut yields a smaller database and faster queries.
SRC and MRC using +cut and +dfs convincingly out-
perform Copa-G on the majority of test maps, both in
terms of space consumption and query time.

In Table 3 we look at performance for the 6 road
graphs and compare Copa-R, SRC, MRC, RXL and
CRXL. The main observations are that on road graphs
+dfs leads to smaller CPDs than +cut. Surprisingly,
the lower average row lengths do not yield faster query
times. Copa-R is dominated by RXL, SRC, and MRC.
SRC+cut outperforms all competitors by several fac-
tors in terms of speed. RXL wins in terms of CPD-
size. However the factor gained in space is smaller than
the factor lost in query time compared to SRC. CRXL

clearly wins in terms of space but is up to two orders of
magnitude slower than the competition. On road graphs
distance weights are harder than travel time weights.
This was already known for algorithms that exploit sim-
ilar graph features as RXL. However, it is interesting
that seemingly unrelated first-move compression based
algorithms incur the same penalties.

In Table 4 we evaluate the performance of SRC,
MRC, RXL and CRXL on the larger game maps. We
dropped Copa-R because from the experiments on the
smaller graphs it is clear that it is fully dominated.
Other than on road graphs, the space consumption for
SRC and MRC is lower for the +cut order than for +dfs.
As a result the +cut order is clearly superior to +dfs on
game maps. On ost100d both SRC and MRC beat RXL
in terms of query time and of space consumption. On
FrozenSea RXL needs less space than SRC and MRC.
However, note that on game maps RXL gains a factor
of 2 by exploiting that the graphs are undirected which
SRC and MRC do not.

To investigate the behaviors of the SamPG (i.e. RXL
without the label compression) and SRC algorithms in
greater detail, we report in Table 5 the average num-
ber of hubs per label and the average number of runs

162

Map |V | |E|
|V |

DB Size (MB) Query Time (nanos)
Hub Labels MRC SRC Hub Labels MRC SRC

RXL CRXL +cut +dfs +cut +dfs RXL CRXL +cut +dfs +cut +dfs
ost100d 137375 7.7 62 24 39 50 49 57 598 5501 89 110 58 71
FrozenSea 754195 7.7 429 135 576 634 753 740 814 9411 176 192 104 109

Table 4: Comparative performance of SRC, MRC, RXL, and CRXL. We test two large grid graphs. TheFrozenSea is drawn from
the game StarCraft; ost100d is drawn from the game Dragon Age Origins. We measure (i) database sizes in MB; (ii) the time
needed to extract a first query (in nanos). All values are rounded to the nearest whole number. RXL & CRXL exploit that the
graphs are undirected while SRC & MRC do not. For directed graphs the space consumption of RXL would double.

Graph

Average Row and Label
Length Space (Bytes)

SamPG SRC SamPG SRC
+cut +dfs + Plain +cut +dfs

BAY-d 51 129 108 816 516 432
BAY-t 34 94 79 544 376 316
COL-d 59 160 131 944 640 524
COL-t 35 114 96 560 456 384
NY-d 70 248 203 1120 992 812
NY-t 44 214 175 704 856 700
FrozenSea 92 260 256 1472 1040 1024
ost100d 80 91 108 1280 364 432

Table 5: We report the average number of hubs per label
(length), number of runs per row (length), and average space
usage per node. The reported hub label lengths accomodate
only for one direction, i.e., we need two labels per node.
SamPG is the label creation algorithm used by RXL without
the encoding. The Plain encoding assumes 8 bytes per entry.
The memory reported for SRC assumes 4 bytes per run.

per row using SRC. Using the straightforward encoding
SamPG needs to store for each hub a 32-bit distance
value, a 28-bit node ID and a 4-bit out-arc ID, whereas
a compressed SRC-run consists of only a 28-bit node
ID and a 4-bit out-arc ID. SRC-runs are therefore more
compact as we do not have to store the 32-bit distance
value. On the other hand, in general there are more
runs than hubs. It is surprising that SamPG+Plain la-
bels consistently occupies more bytes than SRC rows,
even though the experiments to far suggest that RXL is
more compact. The explanation is that RXL (in contrast
to SamPG+Plain) applies some additional compression
compared to SamPG+Plain, such as for example delta-
compression, while SRC does not.

RXL has some advantages not visible in the tables.
For example it does not require computing an APSP
in the preprocessing step significantly reducing prepro-
cessing time. Further it computes besides the first move
also the shortest path distance.

Discussion
We compared SRC and MRC with Copa and RXL.
Copa is a recent and successful technique for creating
compressed path databases. As one of the joint win-
ners at the 2012 Grid-based Path Planning Competition
(GPPC-12) we regard Copa as the current state-of-the-
art for a range of pathfinding problems including the

efficient storage and extraction of optimal first-moves.
RXL is the newest version of the Hub-Labeling algo-
rithm and to our knowledge the state-of-the-art in terms
of minimizing query times on road graphs.

We performed experiments on a large number of re-
alistic grid-graphs used at GPPC-12 and find that both
SRC and MRC significantly improve on both the query
time and compression power of Copa. For a large num-
ber of experiments and on a broad range of input maps
we were able to extract a first move in just tens or hun-
dreds of nano-seconds (a factor of 3 to 5 faster than
Copa). There are two main reasons why SRC and MRC
are performant vs. Copa: Our approach uses less mem-
ory and our query running time is logarithmic in the
label size.

Our approach requires less memory than Copa. Part
of the explanation stems from the differences between
the sizes of the “building blocks” in each approach. In
SRC and MRC, the “building block” is an RLE run rep-
resented with two numbers: the start of the run, which is
a node id and thus requires log2(|V |) bits, and the value
of the run, which is an out-arc id and requires log2(∆)
bits. In Copa, a building block is a rectangle that re-
quires 2 log2(|V |) + log2(∆) bits. In the actual imple-
mentations, both SRC and MRC store only a single 32-
bit machine word per run, which allows for graphs with
up to 228 nodes. The Copa code used in the 2012 Grid-
based Path Planning Competition stores a rectangle on
48 bits, corresponding to a max node count of 222.

Clearly, the size of the building blocks is not the only
reason for the different compression results. The num-
ber of RLE runs in SRC or MRC can differ from the
total number of rectangles in Copa. When more than
one optimal out-arc exists, SRC and MRC select an arc
that will improve the compression, whereas Copa sticks
with one arbitrary optimal out-arc. On the other hand,
besides rectangle decomposition, Copa implements ad-
ditional compression methods, such as list trimming,
run length encoding and sliding window compression,
all performed on top of the original rectangle decompo-
sition (Botea and Harabor 2013).

Our approach has an asymptotic query time of
O(log2(k)) where k is the number of compressed la-
bels that must be searched. By comparison, Copa stores
a list of rectangles in the decreasing order of their size.
Rectangles are checked in order. While, in the worst-
case, the total number of rectangle checks is linear in

163

the size of the list, the average number is much im-
proved due to the ordering mentioned (cf. (Botea 2011;
Botea and Harabor 2013)).

The reason why a CPD is faster than RXL is due to
the basic query algorithm. The algorithm underlying
RXL consists of a merge-sort like merge of two integer
arrays formed by the forward label of s and the back-
ward label of t. This is a fast and cache friendly op-
eration but needs to look at each entry resulting in an
inherently linear time operation. SRC on the other hand
builds upon a binary search which is slightly less cache
friendly as memory accesses are not sequential it but
has a logarithmic running time.

One can regard the compressed SRC rows as one-
sides labels. For each st-pair the first move can be de-
termined using only the label of s. HL on the other hand
needs the forward label of s and the backward label of t.
HL-labels tend to have less entries than the SRC labels.
However, each HL-entry needs more space as they need
to store the distance values in addition to node-IDs.

Conclusion
We study the problem of creating an efficient com-
pressed path database (CPD): a shortest path oracle
which, given two nodes in a weighted directed graph,
always returns the first-move of an optimal path con-
necting them. We develop two novel approaches: SRC,
using a simple run-length encoding scheme, and MRC,
which improves compression by identifying common-
alities between sets of labels compressed by SRC.

In a range of experiments we show that SRC and
MRC can compress the APSP matrix for graphs with
hundreds of thousands of nodes in as little as 1-200MB.
Associated query times regularly require less than 100
nanoseconds. We also compare our approaches with
Copa (Botea 2012; Botea and Harabor 2013), and RXL.
Copa is a state-of-the-art CPD method and one of the
joint winners at the 2012 Grid-based Path Planning
Competition. RXL is the state-of-the-art for distance
oracles on road graphs. We show that SRC and MRC
are not only competitive with Copa but often several
factors better, both in terms of compression and query
times. We show that SRC and MRC outperform RXL
in terms of query times.

A strength that all CPDs have, in addition to fast
move extraction, is that they can compress any kind of
path – not just those that are network-distance optimal.2
In multi-agent pathfinding for example it is sometimes
useful to guarantee properties like “there must always
be a local detour available” (e.g. as in (Wang and Botea
2011)). Another example are turn-costs in road graphs.
A possible direction for future work is creating CPDs
that store only paths satisfying such constraints.

The MRC compression relies on the 32-bit patterns

2Suboptimal paths, however, introduce the additional chal-
lenge of avoiding infinite loops when extracting such a path
from a CPD.

being exactly the same. The intuition we want to ex-
ploit is that the upper 28 bits coding the run starts are
similar. However, there is no real reason why the lower
4 bits encoding the out-arc ID should be the same. In
our experiments arranging the out-arc IDs in the same
order as the arcs appear in the input resulted in the best
MRC compression. Devising an algorithm that opti-
mizes the out-arc ID assignment would directly trans-
late in smaller MRC space consumption.

Acknowledgment
We would like to thank Daniel Delling & Thomas Pajor
for running some experiments for us.

References
Abraham, I.; Delling, D.; Goldberg, A. V.; and Wer-
neck, R. F. 2011. A hub-based labeling algorithm for
shortest paths on road networks. In Proceedings of the
10th International Symposium on Experimental Algo-
rithms (SEA’11), volume 6630 of Lecture Notes in Com-
puter Science, 230–241. Springer.
Abraham, I.; Delling, D.; Fiat, A.; Goldberg, A. V.; and
Werneck, R. F. 2012a. HLDB: Location-based services
in databases. In Proceedings of the 20th ACM SIGSPA-
TIAL International Symposium on Advances in Geo-
graphic Information Systems (GIS’12), 339–348. ACM
Press. Best Paper Award.
Abraham, I.; Delling, D.; Goldberg, A. V.; and Wer-
neck, R. F. 2012b. Hierarchical hub labelings for short-
est paths. In Proceedings of the 20th Annual European
Symposium on Algorithms (ESA’12), volume 7501 of
Lecture Notes in Computer Science, 24–35. Springer.
Akiba, T.; Iwata, Y.; and Yoshida, Y. 2013. Fast ex-
act shortest-path distance queries on large networks by
pruned landmark labeling. In Proceedings of the 2013
ACM SIGMOD international conference on Manage-
ment of data (SIGMOD’13). ACM Press.
Antsfeld, L.; Harabor, D.; Kilby, P.; and Walsh, T. 2012.
Transit routing on video game maps. In AIIDE.
Arz, J.; Luxen, D.; and Sanders, P. 2013. Transit
node routing reconsidered. In Proceedings of the 12th
International Symposium on Experimental Algorithms
(SEA’13), volume 7933 of Lecture Notes in Computer
Science, 55–66. Springer.
Bast, H.; Funke, S.; Matijevic, D.; Sanders, P.; and
Schultes, D. 2007. In transit to constant shortest-path
queries in road networks. In Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments
(ALENEX’07), 46–59. SIAM.
Bast, H.; Delling, D.; Goldberg, A. V.; Müller–
Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.; and
Werneck, R. F. 2014. Route planning in transporta-
tion networks. Technical Report MSR-TR-2014-4, Mi-
crosoft Research.
Bast, H.; Funke, S.; and Matijevic, D. 2009. Ultrafast
shortest-path queries via transit nodes. In The Shortest

164

Path Problem: Ninth DIMACS Implementation Chal-
lenge, volume 74 of DIMACS Book. American Mathe-
matical Society. 175–192.
Botea, A., and Harabor, D. 2013. Path planning with
compressed all-pairs shortest paths data. In Proceed-
ings of the 23rd International Conference on Automated
Planning and Scheduling. AAAI Press.
Botea, A.; Baier, J. A.; Harabor, D.; and Hernández,
C. 2013. Moving target search with compressed path
databases. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling ICAPS.
Botea, A. 2011. Ultra-fast optimal pathfinding with-
out runtime search. In Proceedings of the Seventh
AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment (AIIDE’11), 122–127. AAAI
Press.
Botea, A. 2012. Fast, optimal pathfinding with com-
pressed path databases. In Proceedings of the Sympo-
sium on Combinatorial Search SoCS.
Cohen, E.; Halperin, E.; Kaplan, H.; and Zwick, U.
2003. Reachability and distance queries via 2-hop la-
bels. SIAM Journal on Computing 32(5):1338–1355.
Delling, D.; Goldberg, A. V.; Nowatzyk, A.; and Wer-
neck, R. F. 2013. PHAST: Hardware-accelerated short-
est path trees. Journal of Parallel and Distributed Com-
puting 73(7):940–952.
Delling, D.; Goldberg, A. V.; Pajor, T.; and Werneck,
R. F. 2014. Robust distance queries on massive net-
works. In Proceedings of the 22nd Annual European
Symposium on Algorithms (ESA’14), Lecture Notes in
Computer Science. Springer. to appear.
Delling, D.; Goldberg, A. V.; and Werneck, R. F. 2013.
Hub label compression. In Proceedings of the 12th
International Symposium on Experimental Algorithms
(SEA’13), volume 7933 of Lecture Notes in Computer
Science, 18–29. Springer.
Demetrescu, C.; Goldberg, A. V.; and Johnson, D. S.,
eds. 2009. The Shortest Path Problem: Ninth DI-
MACS Implementation Challenge, volume 74 of DI-
MACS Book. American Mathematical Society.
Garey, M. R., and Johnson, D. S. 1979. Comput-
ers and Intractability. A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company.
Ishida, T., and Korf, R. E. 1991. Moving Target Search.
In Proceedings of the International Joint Conference on
Artificial Intelligence, 204–210.
Karypis, G., and Kumar, V. 1998. Metis, a software
package for partitioning unstructured graphs, partition-
ing meshes, and computing fill-reducing orderings of
sparse matrices, version 4.0.
Knopp, S.; Sanders, P.; Schultes, D.; Schulz, F.; and
Wagner, D. 2007. Computing many-to-many shortest
paths using highway hierarchies. In Proceedings of the
9th Workshop on Algorithm Engineering and Experi-
ments (ALENEX’07), 36–45. SIAM.

Planken, L.; de Weerdt, M.; and van der Krogt, R. 2011.
Computing all-pairs shortest paths by leveraging low
treewidth. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Sankaranarayanan, J.; Alborzi, H.; and Samet, H. 2005.
Efficient query processing on spatial networks. In Pro-
ceedings of the ACM International Symposium on Ad-
vances in Geographic Information Systems (GIS), 200–
209.
Sturtevant, N. 2012. Benchmarks for grid-based
pathfinding. Transactions on Computational Intelli-
gence and AI in Games.
van Schaik, S. J., and de Moor, O. 2011. A memory effi-
cient reachability data structure through bit vector com-
pression. In Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of Data, SIG-
MOD ’11, 913–924. New York, NY, USA: ACM.
Wang, K.-H. C., and Botea, A. 2011. Mapp: a scal-
able multi-agent path planning algorithm with tractabil-
ity and completeness guarantees. J. Artif. Intell. Res.
(JAIR) 42:55–90.

165

