
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 060

Delay-Robust Journeys in Timetable
Networks with Minimum Expected Arrival

Time

Julian Dibbelt, Ben Strasser, and Dorothea Wagner

June 2014





Delay-Robust Journeys in Timetable Networks
with Minimum Expected Arrival Time∗

Julian Dibbelt, Ben Strasser, and Dorothea Wagner

Karlsruhe Institute of Technology
KIT - ITI Wagner - Box 6980, D-76128 Karlsruhe, Germany
{julian.dibbelt, strasser, dorothea.wagner}@kit.edu

Abstract
We study the problem of computing delay-robust routes in timetable networks. Instead of a
single path we compute a decision graph containing all stops and trains/vehicles that might be
relevant. Delays are formalized using a stochastic model. We show how to compute a decision
graph that minimizes the expected arrival time while bounding the latest arrival time over all
sub-paths. Finally we show how the information contained within a decision graph can compactly
be represented to the user. We experimentally evaluate our algorithms and show that the running
times allow for interactive usage on a realistic train network.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Algorithms, Optimization, Delay-Robustness, Route planning, Public
transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.1

1 Introduction

In recent years there has been considerable progress in quickly computing optimal journeys
in public transportation networks. Unlike road networks, these networks are schedule-based,
that is, they (are supposed to) follow a timetable of planned vehicle departures and arrivals.
Optimality of journeys is typically based on earliest arrival time subject to other criteria
such as number of transfers, latest departure time, or price. See [1] for a recent overview.

In the real-world, however, the scheduled timetable is only worth so much, as train delays
occur. Besides prolonging the time spent traveling, delays might make planned transfers to
other vehicles impossible. Given todays widespread internet coverage and modern route
planning algorithm’s flexibility [2, 12, 6] with timetable updates, replanning these missed
transfers is not a problem. However, with limited transit service during, e.g., the evening
hours, the aggregated delay induced by missed transfers can be considerably more than the
original delay. In the worst case, the traveler has to spent the night in the middle of nowhere.

Therefore, it has been proposed to plan journeys already with possible delays in mind
[8, 11, 10]. A basic approach might just add sufficiently large buffer times to each transfer.
While likely to play out as planned, such journeys would often have unacceptably late arrival
times. Obviously, the user would want to also optimize for arrival time and number of
transfers, too. One approach to tackle this problem is to compute the set of Pareto-optimal
solutions. However, we observe that a single journey is often exclusively either fast or delay-

∗ Partial support by DFG grant WA654/16-2 and EU grant 288094 (eCOMPASS) and Google Focused
Research Award.

© Julian Dibbelt, Ben Strasser, and Dorothea Wagner;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



2 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

resilient but not both. The Pareto set therefore often does not contain a single-path-journey
that is good with respect to all criteria simultaneously.

Hence, in this paper, we consider the problem of computing a travel plan (i.e., a collection
of journeys) that does not break if delays occur but is still fast overall. To that end, we
consider fast journeys but require that for every step of the plan there is always a backup, i.e.,
a viable alternative towards the target in case of missed transfers. We refer to such a plan
as delay-robust. Note that our intuition about delay-robustness goes beyond just avoiding
tight transfers. Tight transfers at a frequently serviced station might be unproblematic.
Conversely, a fastest (i.e. earliest arrival time) journey is not necessarily part of a good
plan, if it transfers at a stop where no good backup departs. Interestingly, our approach
also (implicitly) optimizes the number of transfers (as fewer transfers means fewer situations
for journeys to break), and if there are several stops at which the user can transfer between
two trains, it prefers to transfer at “larger” stations with more connecting trains (giving
more options in case something breaks).

We represent the computed plan in the form of a decision graph that tells for every
transfer how to continue in case of different delays (including no delay). While our primary
goal is to compute the travel plan in advance (so that the traveler might print it), please note
that this plan can easily be recomputed based on the current delay situation of the network
as our query times are well below a second and we do not employ heavy preprocessing.

In [7] we introduced the Connection Scan family of algorithms and very briefly described
the core idea of our approach to delay-robust routing. Since then we have extended the
approach significantly and present our newer results in this paper. Among the new contri-
butions are techniques to represent the decision graphs compactly and to reduce their size.
Our paper is structured as following: In Section 2 we give a brief overview over related work.
We then formally define in Section 3 what a timetable is. Using this terminology we describe
in Section 4 our delay model. In terms of this model we then define in Section 5 formally
what a decision graph and its expected arrival time is. We show some basic properties about
the problem of computing a decision graph with minimum expected arrival time and give an
optimal solution algorithm. We observe that in practice decision graphs can get large. We
therefore propose in Section 6 some strategies to reduce the amount of information presen-
ted to the user. Finally we present in Section 7 an experimental evaluation of the proposed
algorithms.

2 Related Work

There has been a lot of research in the area of train networks and delays and many of these
papers were published at past ATMOS conferences. In contrast to our algorithm most of
them compute single paths through the network instead of subgraphs containing all backups.
To make this distinction clear we refer to such paths as single-path-journeys. The authors
of [8] define the reliability of a single-path-journey and propose to optimize it in the Pareto-
sense with other criteria such as arrival time or the number of transfers. The availability
of backups is not considered. The authors of [5], based on delays occurred in the past,
search for a single-path-journey that would have provided close to optimal travel times in
every of the observed situations. The authors of [11] propose to first compute a set of safe
transfers (i.e. those that always work). They then develop algorithms to compute single-
path-journeys that arrive before a given latest arrival time and only use safe transfers or at
least minimize use of unsafe transfers. In [10], a robust primary journey is computed such
that for every transfer stop a good backup single-path-journey to the target exists. However,



J. Dibbelt, B. Strasser, and D. Wagner 3

the backups do not have their own backups. The approach optimizes the primary arrival
time subject to a maximum backup arrival time. The authors of [9] study the correlation
between real world public transit schedules in Rom and compare them against the single-
path-journeys computed by state-of-the-art route planners based on the scheduled timetable.
They observe a significant discrepancy and conclude that one should consider the availability
of good backups already at the planning stage. The authors of [2] examine delay-robustness
in a different context: Having computed a set of transfer patters on a scheduled timetable
in a urban setting, they show that single-path-journeys based on these patterns are still
nearly optimal even when introducing delays. The conclusion is that these sets are fairly
robust (i.e., the paths in the delayed timetable often use the same or similar patterns). In
[3] the authors propose to present to the user a small set of transfer patterns that cover most
optimal journeys. They show that in an urban setting few patterns are enough to cover most
single-path-journeys. In a different line of work, the authors of [4] investigate how a delay-
perturbed timetable will evolve over time using stochastic methods. Their study shows that
this is a computationally expensive task (running time in the seconds) if the delay model
accounts many real-world details. Using a model with such a degree of realism therefore
seems unfeasible for delay-robust route planning (requiring query times in the milliseconds).

3 Basics

Every random variable X in this work is denoted by capital letters, is continuous, non-
negative and has a maximum value maxX. We denote by P [X ≤ x] the probability that
the random variable is below some constant x and by E [X] the expected value of X.

A timetable is a triple (S, C, T ) of stops S, (elementary) connections C and trips T . In
terms of these we define a set of rides R. A stop is a location where one may enter or exit a
train. A connection c ∈ C is a tuple (cdepstop, carrstop, cdeptime, carrtime, ctrip,Dc) representing
a train driving from a departure stop cdepstop to an arrival stop carrstop without intermediate
halt. It is scheduled to depart at departure time cdeptime and to arrive at arrival time carrtime.
We require that cdepstop 6= carrstop and cdeptime < carrtime, that is, connections do not form
self-loops and have strictly positive duration. If the train is not on time, it arrives with a
random non-negative delay Dc. For every connection there is a maximum delay max Dc. A
train typically operates several connections in succession, forming a trip. The unique trip
to which c belongs is ctrip ∈ T . For two successive connections c1 and c2 of a trip, we
require c1arrstop = c2depstop and c1arrtime ≤ c2deptime. A ride (center, cexit) is an ordered pair of
connections (i.e., center

deptime < cexit
deptime) within a trip (i.e., center

trip = cexit
trip). It represents the user

taking a train for several stops without exiting at intermediate stops. We denote by R the
set of all rides. Analogous to connections, we define for every r ∈ R: rdepstop = center

depstop,
rarrstop = cexit

arrstop, rdeptime = center
deptime, rarrtime = cexit

arrtime, rtrip = center
trip , and Dr = Dcexit .

A (s, τ, t)-journey is a sequence of rides r1 . . . rn. We refer to s as the source stop, to τ as
the source time and to t as the target stop. For every journey we require that ∀i : ri

arrstop =
ri+1
depstop, ∀i : ri

arrtime ≤ ri+1
deptime, s = r1

depstop, τ ≤ r1
deptime and t = rn

arrstop. A journey is
safe if ∀i : ri

arrtime + max Dri ≤ ri+1
deptime is fulfilled, i.e., even when the trains are delayed

no transfer can break. Analogous to connections and rides, we define jdepstop = r1
depstop,

jdeptime = r1
deptime, jarrstop = rn

arrstop, jarrtime = rn
arrtime, and Dj = Drn . The (s, τ, t)-earliest

(safe) arrival problem consists of finding a (safe) (s, τ, t)-journey j minimizing jarrtime. We
denote by ea(s, τ, t) and esa(s, τ, t), respectively, the arrival time of an optimal (safe) j.

ATMOS’14



4 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

3.1 Modeling Rational

Many publications on public transit networks consider timetables where a finite connection
set repeats, e.g., every day. As such these timetables are infinite and periodic. In contrast—
unless explicitly stated otherwise—we consider finite timetables. We choose this modeling as
most real world timetables do not repeat perfectly. However, we require that the timetable
in our system spans a sufficiently long period to answer all relevant queries. (Experiments
show that our approach scales to at least thirty days in a realistic setting.) Note that for
finite timetables there is naturally a latest connection.

We do not explicitly use minimum change times at stops but implicitly encode them
in Dc. It does not matter whether a train is always delayed by x minutes or whether the
user always needs x minutes to walk from platform to platform. Following most recent
papers on delay-robust timetable routing we omit footpaths from our model. Note that
omitting footpaths in an urban public transit network may be problematic. However this
abstraction is perfectly fine in a long-distant train setting, such as the one which we use in
our experiments. In Appendix A we sketch a way of incorporating them.

4 Delay Model

A crucial component of any delay-robust routing system is choosing against which types
of delays the system should be robust and how to model these delays. This choice has
deep implications throughout the whole system. While a too simplistic model does not yield
useful routes, a too complicated model makes routing algorithms too inefficient to be feasible
in practice. For the model chosen in [11] it is NP-hard to determine whether a transfer is
safe or not. Instead, we propose a simplified stochastic model where this is constant time.
While our model that does not cover every situation and is not delay-robust in every possible
scenario, it works well enough to give useful routes with backups.

The central simplification is that we assume that all random variables are independent.
Clearly, in reality this is not always the case. However, if delays between many trains
interact then the timetable perturbation must be significant. Train tracks blocked for an
extended period of time is a specific example of significant perturbation. As reaction to such
a perturbation even trains in the medium or distant future need to be rescheduled (or arrive
at least not on-time). The set of possible outcomes and the associated uncertainty is huge.
Accounting for every outcome seems infeasible to us. We argue that if the perturbation
is large then we can not account for all possible recovery scenarios in advance. Instead,
the user should replan his journey based on the actual situation. Furthermore, even if we
could account for all scenarios, we would still face the problem of explaining every possible
outcome to the user, which is a show-stopper in practice. Our model therefore only accounts
for small disturbances as we only intend to be robust against these.

Formally, our model contains one random variable Dc per connection c. This variable
indicates with which delay the train will arrive at carrstop. We assume that all connections
depart on time. This assumption does not induce a significant error because it roughly does
not matter whether the incoming or the outgoing train is delayed. Furthermore, we assume
that every connection c has a maximum delay, i.e., max Dc is a finite value. Finally, we
assume that all random variables are independent. Delays between trips are independent
because if they were not then the perturbation would be large. We can assume that delays
within a trip are independent: The typical user would not be willing to exit a trip at a stop
just to reenter it later on at a different stop.



J. Dibbelt, B. Strasser, and D. Wagner 5

The only remaining modeling issue is to define what distribution the random variables
Dc should have. An obvious choice is to estimate a distribution based on historic delay data.
However, this has two shortcomings: (i) it is hard to get access to delay data (we do not
have it), and (ii) you need to have records of many days with precisely the same planned
schedule. Suppose for example that the user is in the middle of his journey and a significant
perturbation occurs. The operator then adjusts the short-term timetable to reflect this and
the user wants to reroutes based on this adjusted data. With historic data this often is
not possible because this exact recovery scenario may never have occurred in the past and
almost certainly not often enough to extrapolate from the historic data.

0 10 20 30

0.0
0.2
0.4
0.6
0.8
1.0

x

P
[D

c
<

x
]

Figure 1 Plot showing
P [Dc ≤ x] in function of x for
m = 5 and d = 30.

For these reasons we propose to use synthetic delay
distributions that are only parametrized on the planned
timetable. We propose to add to each connection c a
synthetic delay variable Dc that depends on the minimum
change time m of carrstop and on a global1 maximum delay
parameter d. We define Dc as follows: ∀x ∈ (−∞, 0] :
P [Dc ≤ x] = 0, ∀x ∈ (0,m] : P [Dc ≤ x] = 2x

6m−3x , ∀x ∈
(m,m+d] : P [Dc ≤ x] = 31(x−m)+2d

30(x−m)+3d , and ∀x ∈ (m+d,∞) :
P [Dc ≤ x] = 1. The function is illustrated in Figure 1 and
the rational for our design is given in Appendix B.

5 Decision Graphs

In this section, we first formally define the decision graph and then discuss three problem
variants: (i) the unbounded, (ii) the bounded, and (iii) the α-bounded MEAT problems. The
first two are of more theoretical interest, whereas the third one has the highest practical
impact. We prove basic properties of the unbounded and bounded problems and show
a relation to the earliest safe arrival problem. Finally, we give an exact optimal-solution
algorithm for the unbounded problem on finite networks and show how it is adapted to solve
the bounded and the α-bounded problems.

5.1 Formal Definition
A (s, τ, t)-decision graph from source stop s to target stop t with the user departing at time τ
is a directed reflexive-loop-free multi-graph G = (V,A) whose vertices correspond to stops
(i.e., V ⊆ S) and whose arcs correspond to rides r (i.e., A ⊆ R) directed from rdepstop to
rarrstop. There may be several rides between a pair of stops, but they must be of part of
different trips and depart at different times. We formalize this as: ∀r1, r2 ∈ A : r1

deptime 6=
r2
deptime ∨ r1

depstop 6= r2
depstop. We require that the user must be able to reach every ride

and must always be able to get to the target. Formally, we require that for every r ∈ A
there exists a (s, τ, rdepstop)-journey j with jarrtime ≤ rdeptime to reach the ride, and a safe
(rarrstop, rarrtime +max Dr, t)-journey j′ to reach the target. To exclude decision graphs with
unreachable stops, we require that every stop in V except s and t have non-zero in- and out
degree. For simplicity, we further require that s 6= t.

We first recursively define the expected arrival time e(r) (short EAT) of a ride r ∈ A

and define in terms of e(r) the EAT e(G) of the whole decision graph G. If rarrstop = t, we
define e(r) = rarrtime +E [Dr]. Otherwise e(r) is defined in terms of other rides. Denote by

1 d is global since we lack per-train data. Our approach can be adjusted, if such data became available.

ATMOS’14



6 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

q1 . . . qn the sequence of rides ordered by departure time, departing at rarrstop after rarrtime,
i.e., every ride that the user could reach after r arrives. Denote by d1 . . . dn their departure
times and set d0 = rarrtime. We define e(r) =

∑
i∈{1...n} P [di−1 < Dr < di] · e(qi), i.e., the

average of the EATs of the connecting rides weighted by the transfer probability. Note
that this definition is well-defined because e(r) only depends on e(q) of rides with a later
departure time, i.e., rdeptime < qdeptime. Further notice that P [Dr < dn] = 1. Otherwise no
safe journey to the target would exist invalidating the decision graph.

We denote by Gfirst the ride r ∈ A with minimum rdeptime. This is the ride that the
user must initially take at s. We define the expected arrival time e(G) (short EAT) of
the decision graph G as e(Gfirst). Furthermore, the latest arrival time Gmaxarrtime is the
maximum rarrtime + max Dr over all r ∈ A. Note that by minimizing Gmaxarrtime we can
bound the worst case arrival time giving us some control over the arrival time variance.

The unbounded (s, τ, t)-minimum expected arrival time (short MEAT) problem consists
of computing a (s, τ, t)-decision graph G minimizing e(G). The bounded (s, τ, t)-MEAT
problem consists of computing a (s, τ, t)-decision graph G minimizing e(G) subject to a
minimum Gmaxarrtime. As a compromise between bounded and unbounded we further define
the α-bounded MEAT problem: We require that Gmaxarrtime − τ ≤ α (esa (s, τ, t)− τ), i.e.,
the maximum travel time must not be bigger than α times the delay-free optimum. Notice
that the bounded and 1-bounded MEAT problems are equivalent.

5.2 Decision Graph Existence
I Lemma 1. There is a (s, τ, t)-decision graph G iff there exists a safe (s, τ, t)-journey j.

Proof. By definition there must be a safe (Gfirst
arrstop, G

first
arrtime + max DGfirst , t)-journey j′.

Prefixing j′ with Gfirst yields j. Conversely, as the rides in the sequence of j already form
a (s, τ, t)-decision graph we have shown both directions. J

A direct consequence of this lemma is that the minimum Gmaxarrtime over all (s, τ, t)-decision
graphs G is equal to esa(s, τ, t). Using this observation we can reduce the bounded MEAT
problem to the unbounded MEAT problem. Formally stated:

I Lemma 2. An optimal solution G to the bounded (s, τ, t)-MEAT problem on timetable T
is an optimal solution to the unbounded (s, τ, t)-MEAT problem on a timetable T ′ where T ′
is obtained by removing all connections c with carrtime above the esa(s, τ, t).

Proof. There are two central observations needed for the proof: First, every (s, τ, t)-decision
graph on timetable T ′ is a (s, τ, t)-decision graph on the strictly larger timetable T . Second,
every safe (s, τ, t)-journey in T ′ is an earliest safe (s, τ, t)-journey in T . Suppose that a
(s, τ, t)-decision graph G′ on T ′ would exist with a suboptimal G′maxarrtime then there would
also exist a safe (s, τ, t)-journey j′ in T ′ with a suboptimal j′arrtime, which is not possible by
construction of T ′, which is a contradiction. J

Having shown how to explicitly bound Gmaxarrtime it is natural to ask what would happen
if we dropped this bound and solely minimized e(G). For this we consider the infinite
timetable Tp illustrated and defined in Figure 2. Notice that Tp is constructed such that it
does not matter whether the user arrives at a at moment 1 + 4N or at b at moment 3 + 4N
as the two states are completely symmetric with the stops a and b swapping roles. By
exploiting this symmetry we can reduce the set of possibly optimal (s, 0, t)-decision graphs
to 2 elements: the decision graph G1 that waits at a and never goes over b, and the decision
graph G2 that oscillates between a and b. The corresponding expected arrival times are



J. Dibbelt, B. Strasser, and D. Wagner 7

s

a b

t

0→1

1⇒2 3⇒4

2⇒3

4⇒5

Figure 2 A timetable Tp has 4 stops: s, a, b and t. The arrows denote connections. An arrow
annotated with its departure time and arrival time. A simple arrow (→) denotes a single non-
repeating connection. A double arrow (⇒) is repeated every 4 time units, i.e. 1⇒ 2 is a shorthand
for 1 + 4i → 2 + 4i for every i ∈ N. All connections are part of their own trip and have the same
delay variable D. We define P [D = 0] = p (with p 6= 0) and P [D < 1] = 1.

defined using e(G1) = p (2 + E [D]) + (1 − p) (7 + E [D]) and e(G2) = p (2 + E [D]) + (1 −
p)
(
3 + e(G2)

)
. The later equation can be resolved to e(G2) = E [D]− 1 + 3

p . We can solve
e(G1) < e(G2) in terms of p. The result is that G1 is better if p <

√
43−4
9 ≈ 0.28. If they

are equal then G1 and G2 are equivalent and otherwise G2 is better.
This has consequences even for timetables with a finite C. One could expect that to

compute a decision graph it is sufficient to look at a time-interval proportional to its expected
travel time: It seems reasonable that a connection scheduled to occur in ten years would not
be relevant for a decision graph departing today with an expected travel time of one hour.
However, this intuition is false in the worst case: Consider the finite sub-timetable T ′ of the
periodic timetable Tp that encompasses the first ten years (i.e., we “unroll” Tp for ten years).
For p>0.28, an optimal (s, 0, t)-decision graph will use all connections in T ′, including the
ones in ten years (as G2 would). Fortunately, the bounded MEAT problem does not suffer
from this weakness: No connection arriving after esa(s, 0, t) can be relevant. Therefore, even
on infinite networks the bounded MEAT problem always admits finite solutions.

5.3 Solving the Unbounded MEAT Problem
The unbounded MEAT problem can be solved to optimality on finite networks, and by ex-
tension also the α-bounded MEAT problem. Our algorithm is based on the Profile Connec-
tion Scan algorithm [7] and exploits three key insights: (i) Every optimal (s, τ, t)-decision
graph G = (V,A) contains for every ride r ∈ A an optimal (rdepstop, rdeptime, t)-decision
sub-graph, (ii) exchanging an optimal (rdepstop, rdeptime, t)-sub-graph of G with another op-
timal (rdepstop, rdeptime, t)-decision graph yields an optimal (s, τ, t)-decision graph, and (iii)
the first connection of all decision sub-graphs H of G have a later departure time, i.e.,
Gfirst

deptime ≤ Hfirst
deptime. Together these three ingredients give rise to a dynamic programming

algorithm. Denote for every c ∈ C an optimal (cdepstop, cdeptime, t)-decision graph by G(c)
subject to G(c)first

enter = c, i.e., the user must start his travel sitting in c. Further denote by
e(c) = e(G(c)) the EAT of G(c) if one exists and e(c) = ∞ otherwise. Our base algorithm
works in two phases: (i) Compute e(c) for all c ∈ C, (ii) extract a desired (s, τ, t)-decision
graph using the e(c). The actual algorithm used to solve the α-bounded problem variant
differs slightly and is detailed in Section 5.4.

5.3.1 Phase 1: Computing all Expected Arrival Times
The core idea consists of starting with the trivial sub-timetable with C = ∅ and then iter-
atively adding the connections ordered decreasing by departure time. When c is inserted

ATMOS’14



8 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

we compute e(c). Once all connections are inserted the phase is finished. During com-
putations we maintain two extra data structures: (i) for every trip h ∈ T we store the
best known EAT using h, i.e., q(h) = minctrip=h e(c), (ii) for every stop p ∈ S we store
the list of outgoing connections q (p, 1) , q (p, 2) . . . q (p, np) ordered increasing by departure
time for which G (q (p, i)) is an optimal (q (p, i)depstop , q (p, i)deptime , t)-decision graph (i.e.
the connections for which the restriction G (q (p, i))first

enter = q (p, i) can be dropped). We
refer to the lists of (ii) as profiles. Observe that an optimal (x, y, z)-decision graph is
also an optimal (x, y′, z)-decision graph for y′ ≤ y. We therefore know that the profiles
must be domination reduced, i.e., ∀p, i, j : i ≤ j ⇒ e(q(p, i)) ≤ e(q(p, j)). In terms
of these data structures we can describe the actual algorithm: Denote by c the connec-
tion being inserted. The data structures are correct for the sub-timetable without c. We
need to correct them to accommodate for c. As we insert connections decreasing by de-
parture time we know that c has a minimum cdeptime among all connections in the sub-
timetable at the moment c is inserted. As additionally cdeptime < carrtime must hold, we
know that if a decision graph G uses c then Gfirst

enter = c must hold. The user has three
options when c arrives. We calculate the EATs for all three and the minimum is the de-
sired e(c). The options are: (i) remain seated, (ii) arrive at the target stop t, and (iii) ar-
rive at carrstop and pick another train. The EAT for (i) is just q(ctrip). For (ii) the EAT
is carrtime + E [Dc] or ∞, depending on whether t = carrstop. For (iii) computing the EAT
is slightly more complex: If carrtime + max Dc > q (carrstop, np)deptime then no safe journey
to t exists and the EAT is ∞. Otherwise the EAT is

∑
i P [di−1 < Dc < di] e (q (carrstop, i))

where di is a shorthand for q (carrstop, i)deptimeand d0 is carrtime. After computing e(c)
we need to repair the q data structures to accommodate for c: the trips are fixed using
q(ctrip)← min {e(c), q(ctrip)} and we add c to cdepstop’s profile if it is not dominated, i.e., if
e(c) < e (q(cdepstop, 1)). If e(c) = e (q (cdepstop, 1)) then we may add it but do not have to.
If cdeptime = q (cdepstop, 1)deptime then the first profile element is replaced and otherwise the
profile list grows by one element.

5.3.2 Phase 2: Extracting Decision Graphs

We extract a (s, τ, t)-decision graph G = (V,A) by enumerating all rides in A. The stop
set V can then be inferred from A. At the core, our algorithm uses a min-priority queue
that contains connections ordered increasing by their departure time. Initially, we add the
earliest connection in the profile of s to the queue. While the queue is not empty we pop
the earliest connection c1 from it. Denote by c2 . . . cn all subsequent connections in the trip
c1trip. The desired ride r = (c1, ci) is given by the first i such that e(c1) 6= e(ci+1) (or i = n if
all are equal). We add r to G. If ci

arrstop 6= t we add the following connections to the queue:
(i) All connections in the profile of ci

arrstop departing between ci
arrtime and ci

arrtime +max Dci ,
and (ii) the first connection in the profile of ci

arrstop departing after ci
arrtime + max Dci .

5.3.3 Optimizations

Instead of storing the EAT for each connection we store the values inside of the stop profiles,
resulting in better memory locality. We further store the corresponding rides in the profiles
to avoid the iteration over the trip’s connections during the extraction. Recall that all
connections in a decision graph must be reachable. We exploit this by skipping connections c
for which cdeptime < ea(s, τ, cdepstop) instead of adding them to the network. We determine
this earliest arrival time by running a basic one-to-all Connection Scan.



J. Dibbelt, B. Strasser, and D. Wagner 9

Karlsruhe
9:01

Mannheim
9:24
9:31
10:06

Hannover
13:17
13:31
14:03

Berlin
14:16
15:07
15:53

(a) Expanded

Karlsruhe
9:01

Berlin

Mannheim
9:31
10:06

13:31-14:03
Hannover

(b) Compact

Figure 3 Decision graph representations from Karlsruhe at 9:00 to Berlin.

5.4 Solving the α-Bounded MEAT Problem
We assume that C is stored as an array ordered by departure time. To solve the α-bounded
(s, τ, t)-MEAT problem we perform the following steps: (i) run a binary search on C to
determine the earliest connection cfirst departing after τ , (ii) run a trip-aware one-to-one
Connection Scan from s to t that assumes all connections c are delayed by max Dc to
determine esa (s, τ, t) (iii) let τlast = τ + α · (esa (s, τ, t)− τ) and run a second binary search
on C to find the last connection clast departing before τlast, (iv) run a trip-unaware one-to-
all Connection Scan from s restricted to the connections from cfirst to clast to determine all
ea (s, τ, ·), (v) run Phase 1 of the base algorithm scanning the connections from clast to cfirst

skipping connections c for which carrtime > τlast or ea(s, τ, cdepstop) ≤ cdeptime does not hold,
and finally (vi) run Phase 2 of the base algorithm, i.e., extract the (s, τ, t)-decision graph.

6 Decision Graph Representation

In the previous section we described how to compute decision graphs. In practice this is not
enough and we must be able to represent the graph in a form that the user can effectively
comprehend. The main obstacle here is to prevent the user from being overwhelmed with
information. A secondary obstacle is how to actually layout the graph. In this section we
solely focus to reducing the amount of information. Producing actual layouts is still the
focus of ongoing research. The presented drawings were created by hand.

6.1 Expanded Decision Graph Representation
The expanded decision graph subdivides each node v into slots sv,1 . . . sv,n that correspond
to moments in time that an arc arrives or departs at v. The slots in each node are ordered
from top to bottom in chronological order. Each arc (u, v) connects the corresponding slots
su,i and sv,j . To determine his next train the user has to search for the box corresponding
to his current stop and pick the first departure slot after the current moment in time. The
arrows guide him to the box corresponding to his next stop. Figure 3a illustrates this.

6.2 Compact Decision Graph Representation
The scheduled arrival time of trains is an information contained in the expanded decision
graph that is not strictly necessary. (Besides being inaccurate because of delays.) To decide
on the next connecting train to take at a transfer stop, it suffices to know the available next
rides departing after “now”, that is, the actual arrival time at that stop.

The compact decision graph exploits this observation by removing the arrival time in-
formation from the representation. Each arc (u, v) connects the corresponding departure
slot su,i directly to the stop v instead of a slot. Time slots that only appear as arrival

ATMOS’14



10 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

slots are removed. If two outgoing arcs of a node u have the same destination and de-
part subsequently (as for high-frequency lines), they are grouped and only displayed once.
The compact decision graph is never larger than the expanded one and most of the time
significantly smaller. See Figure 3b for an example.

6.3 Relaxed Dominance
Decision graphs exist that contain rides that have near to no impact on the EAT. Removing
them increases the EAT by only a small amount, resulting in an almost optimal decision
graph that can be significantly smaller. To exploit this, we introduce a relaxation tuning
parameter β. EATs are regarded as equal if their difference is below β. We only add a
connection c to the profile q if e (c) ≤ e (q (cdepstop, 1))− β.

6.4 Displaying only the Relevant Subgraphs
In many scenarios we have a canvas of fixed size. If even the compact relaxed decision
graph is too large to fit, we can only draw parts of it. We observe that the decision graph
extraction phase does not rely on the actual distributions of the delay variables Dc but
only on max Dc. It extracts all connections departing in a certain interval I, plus the first
connection directly afterwards. Reducing the size of I reduces the number of rides displayed,
while still guaranteeing that backup rides exist (they just are not displayed). We refer to the
size of I as display window. Given an upper bound γ on the number of arcs in the compact
(or expanded) representation, we use a binary search to determine the maximum display
window and draw the corresponding subgraph. (Note that in the worst case the display
window has size 0. Then the decision graph degenerates to a single-path-journey.)

7 Experiments

Table 2 Instance Size.

#Stop 16 991
#Conn. 55 930 920
#Trip 3 965 040

For our experiments we used on a single core of a Xeon E5-2670
at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3
and 256 KiB of L2 cache and we used g++ 4.7.1 with -O3.

The timetable is based on the data of bahn.de during winter
2011/2012. We extracted every vehicle except for most buses2
as we mainly target train networks. We focus on long-distance
networks where delays have a significantly larger impact than
in high-frequent inner-city transit. We removed footpaths longer than 10min, connected
stops with a distance below 100m, and then contracted stops connected through footpaths
adjusting their minimum change times resulting in an instance without footpaths. We pick
the largest strongly connected component to make sure that there always exists a journey
(assuming enough days are considered). We extract one day of maximum operation (i.e.
extract everything regardless of the day of operation and remove exact duplicates). We then
replicated this day 30 times to have a timetable spanning about one month of operation.
The detailed sizes are in Table 2. We ran 10 000 random queries. Source and target stop
are picked uniformly at random. The source time is chosen within the first 24h. We filter
queries out that have an minimum delay-free travel time above 24h.

Our experimental results are presented in Table 1. The compact representation is smaller
by a factor of 2 in terms of arcs than the expanded one. As expected, a larger relaxation

2 Not having buses explains the significant instance size difference compared to [12].



J. Dibbelt, B. Strasser, and D. Wagner 11

Table 1 The time (in ms) needed to compute a decision graph and its size. Arcs is the number
of arcs in the compact representation. The number of rides corresponds to the number of arcs
in the expanded representation. The maximum delay parameter is set to 1h. We report average,
maximum and the 33%-, 66%- and 95%-quantiles.

Unbounded 2.0-Bounded 1.0-Bounded
T
im

e

St
op

s

R
id
es

A
rc
s

T
im

e

St
op

s

R
id
es

A
rc
s

T
im

e

St
op

s

R
id
es

A
rc
s

0m
in
-R

el
ax

Avg 6 452 12 98 42 138 12 87 35 26 9 45 19
33% 6 209 7 22 10 84 7 22 10 16 7 15 7
66% 7 407 13 70 31 162 13 69 31 27 10 40 19
95% 7 635 25 349 125 312 24 330 119 66 19 149 57
Max 7 805 280 35 450 28 848 817 173 5 540 4 703 288 38 1 607 366

1m
in
-R

el
ax

Avg 5 122 12 88 39 116 12 73 31 25 9 39 17
33% 4 628 8 26 12 75 8 25 12 16 6 14 7
66% 6 026 13 66 31 136 13 64 30 26 10 36 17
95% 6 368 24 284 110 249 24 257 100 64 18 123 52
Max 6 595 50 12 603 6 558 685 50 1 576 478 240 37 1 390 289

5m
in
-R

el
ax

Avg 4 180 11 66 33 100 11 51 25 24 9 29 15
33% 3 845 8 24 12 66 8 23 11 15 6 13 6
66% 4 808 13 53 26 115 12 51 25 25 10 30 15
95% 5 028 22 178 82 216 22 155 74 61 17 84 42
Max 5 159 54 6 640 3 220 553 54 760 285 196 34 590 183

parameter gives smaller graphs. Increasing the α-bound leads to larger graphs and running
times grow. The running times of unbounded queries are proportional to the timespan of
the timetable (i.e. 30 days). On the other hand, the running times of bounded queries
depend only on the maximum travel time of the journey. This explains the gap in running
time of two orders of magnitude. As the maximum values are significantly higher than the
95%-quantile we can conclude that the graphs are in most cases of manageable size with
a few outlines that distort the average values. Upon closer inspection we discover that
most outliers with large decision graphs connect remote rural areas, where even no “good”
delay-free journey exists. We can therefore not expect to find any form of robust travel plan.

In Figure 4 we evaluate the display window such that the extracted graphs have less
than 25 arcs in the compact representation. Recall that this modifies what is displayed to
the user. It is still guaranteed that backups exist. As the 1.0-bounded graphs are smaller
than 2.0-bounded graphs we can display more, explaining the larger display window. The
difference between 2.0-bounded graphs and unbounded graphs is small. A greater relaxation
parameter also reduces the graph size and thus allows for slightly larger display windows. If
there is no “good” way to travel the decision graphs degenerate to single-path-journeys.

8 Conclusion & Future Work

We studied variants of the MEAT-problem to compute decision graphs. Experimentally, we
determined that, while the resulting graphs are not tiny, they are sufficiently small to be
useful to the user. Running times are small enough to allow interactive usage. Possible direc-
tion for future work include: (i) incorporate trains that wait on other trains, (ii) explore the
feasibility of stochastic footpaths (note that Appendix A discusses deterministic footpaths),

ATMOS’14



12 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(a) 1.0-Bounded

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(b) 2.0-Bounded

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(c) Unbounded

Figure 4 Display windows in min (y-axis) for each of the 10 000 test queries (x-axis) ordered
increasingly. The maximum delay parameter is set to 2h.

and (iii) determine whether more sophisticated delay models can be solved efficiently.

Acknowledgment. We would like to thank Thomas Pajor for his valuable input.

9 Bibliography

References
1 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas

Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in trans-
portation networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

2 Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-robustness of transfer patterns
in public transportation route planning. In Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’13), Open-
Access Series in Informatics (OASIcs), pages 42–54, September 2013.

3 Hannah Bast and Sabine Storandt. Flow-based guidebook routing. In Proceedings of the
16th Meeting on Algorithm Engineering and Experiments (ALENEX’14), pages 155–165.
SIAM, 2014.

4 Annabell Berger, Andreas Gebhardt, Matthias Müller–Hannemann, and Martin Ostrowski.
Stochastic delay prediction in large train networks. In Proceedings of the 11th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’11), volume 20 of OpenAccess Series in Informatics (OASIcs), pages 100–111, 2011.

5 Kateřina Böhmová, Matúš Mihalák, Tobias Pröger, Rastislav Šrámek, and Peter Widmayer.
Robust routing in urban public transportation: How to find reliable journeys based on
past observations. In Proceedings of the 13th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS’13), OpenAccess Series in
Informatics (OASIcs), pages 27–41, September 2013.

6 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public transit rout-
ing. In Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALE-
NEX’12), pages 130–140. SIAM, 2012.

7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and
fast transit routing. In Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science, pages 43–54.
Springer, 2013.



J. Dibbelt, B. Strasser, and D. Wagner 13

8 Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. In Proceedings of the 7th Workshop on Experi-
mental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science, pages
347–361. Springer, June 2008.

9 Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Is time-
tabling routing always reliable for public transport? In Proceedings of the 13th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’13), OpenAccess Series in Informatics (OASIcs), pages 15–26, September 2013.

10 Marc Goerigk, Sascha Heße, Matthias Müller–Hannemann, and Marie Schmidt. Recover-
able robust timetable information. In Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’13), Open-
Access Series in Informatics (OASIcs), pages 1–14, September 2013.

11 Marc Goerigk, Martin Knoth, Matthias Müller–Hannemann, Marie Schmidt, and Anita
Schöbel. The price of robustness in timetable information. In Proceedings of the 11th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Sys-
tems (ATMOS’11), volume 20 of OpenAccess Series in Informatics (OASIcs), pages 76–87,
2011.

12 Ben Strasser and Dorothea Wagner. Connection scan accelerated. In Proceedings of the
16th Meeting on Algorithm Engineering and Experiments (ALENEX’14), pages 125–137.
SIAM, 2014.

A Footpaths

In the paper we omitted footpaths from the model as nearly all related work on delay-
robust routing does so and because the timetable used in the experiments is still meaningful
without. Incorporating footpaths is not as straight-forward as it seems at first. The main
obstacle is finding a meaningful formalization. Depending on this formalization solving the
problem can be easy or hard from an algorithmic point of view.

In [7], we used a very simplistic model with the following assumptions: (i) footpaths are
always exact and never delayed, (ii) the user can use a footpath right after he exits a train,
and (iii) the user can use a footpath at the start and end of his journey. This model implies
that if the user walks from a stop p to a stop q and misses the train he wanted to get, then
he will wait at q for his next train and not try to walk back to p.

Assuming this model, our algorithm can be extended to incorporate footpaths as follow-
ing: Every time we add a non-dominated connection c with corresponding EAT τ to the
profile of stop p, we iterate over all footpaths from a stop q to p with duration d. We add
c also to q if τ − d is not dominated at q. This covers initial and intermediate footpaths.
Final footpaths need special attention. We incorporate them by maintaining an array A that
maps every stop ID onto the footpath distance to the target stop. Case ii in Phase 1 of the
algorithm, where the user arrives at the target, must be modified. We do not check whether
the current connection c arrives at the target stop t but we look up in A the distance from
carrstop to t.

B Rational For Synthetic Delays

It is important to realize that there are many different ways to come up with formulas for
synthetic delays. The lack of any effectively accessible ground truth makes any conclusive
experimental evaluation of their quality very difficult. The only real criteria that we have
is “intuitively reasonable”. The approach presented here is by no means the final answer to

ATMOS’14



14 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

the question of what is the best synthetic delay distribution. In this section we describe the
rational for our design decisions.

We define for every connection c its delay Dc by defining its cumulative distribution
function fm,d(x), where d is the maximum delay of c and m the minimum change time at
carrstop. Our delays do not depend on any other parameters than m and d. We have the
following hard requirements on fm,d resulting from our algorithm:

fm,d(x) is a probability, i.e., ∀x : 0 ≤ f(x) ≤ 1
fm,d(x) is a cumulative distribution function and therefore non-decreasing, i.e., ∀x :
f ′m,d(x) ≥ 0
max Dc should be m+ d, i.e., ∀x ≥ m+ d : f(x) = 1
Our model does not allow for trains that arrive too early, i.e.,∀x < 0 : f(x) = 0

These requirements already completely define what happens outside of x ∈ (0,m + d).
Because of the limitations of current hardware, we have two additional more fuzzy but
important requirements:

We need to evaluate fm,d(x) many times. The formula must therefore not be computa-
tionally expensive.
Our algorithm computes a lot of (fm,d(x1) + a1) · (fm,d(x2) + a2) · (fm,d(x3) + a3) · · ·
chains. The chain length reflects the number of rides in the longest journey considered
during the computations. As 64-bit-floating points only have a limited precision we must
make sure that order of magnitude of the various values of fm,d do not differ too much.
If they do differ a lot then the less likely journeys have no impact on the overall EAT
because their impact is rounded away.

Finally there are a couple of soft constraints coming from our intuition:
f(m) is the probability that everything works as scheduled without the slightest delay. In
practice this does happen and therefore this should have reasonable high probability. On
the other hand a too high f(m) can lead to problems with rounding. We set f(m) = 2

3
as we believe that it is a good compromise.
We want f to be continuous.
The maximum variation should be at x = m, i.e., f ′(m) should be the unique local
maximum of f ′.
Initially the function should grow slowly and then once x = m is reached the growth
should slow down. This can be formalized as f ′′(x) > 0 for x ∈ (0,m) and f ′′(x) < 0 for
x ∈ (m,m+ d).

We define f using two piece function f1 and f2. For these pieces we assume m = 5min and
d = 30min and scale them to accommodate for different values, as following:

fm,d(x) =


0 if x < 0
f1( 5x

m ) if 0 ≤ x ≤ m
f2

(
30(x−m)

d

)
if m < x < m+ d

1 if m+ d ≤ x

It remains to define f1 and f2. We started with a −1/x function and shifted and stretched
the function graphs until we ended up with something that looks “intuitively reasonable”.

f1(x) = 2x
3(10− x)

f2(x) = 31x+ 60
30(x+ 3)

The resulting function f fulfills all requirements and is illustrated in Figure 1.


