
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 058

User-Constrained Multi-Modal Route
Planning

Julian Dibbelt, Thomas Pajor, Dorothea Wagner

June 2014

A

User-Constrained Multi-Modal Route Planning

JULIAN DIBBELT, THOMAS PAJOR, DOROTHEA WAGNER
Karlsruhe Institute of Technology

In the multi-modal route planning problem we are given multiple transportation networks (e. g., pedestrian,

road, public transit) and ask for a best integrated journey between two points. The main challenge is that
a seemingly optimal journey may have changes between networks that do not reflect the user’s modal pref-

erences. In fact, quickly computing reasonable multi-modal routes remains a challenging problem: Previous

approaches either suffer from poor query performance or their available choices of modal preferences during
query time is limited. In this work we focus on computing exact multi-modal journeys that can be restricted

by specifying arbitrary modal sequences at query time. For example, a user can say whether he wants to
only use public transit, or also prefers to use a taxi or walking at the beginning or end of the journey; or if

he has no restrictions at all. By carefully adapting node contraction, a common ingredient to many speedup

techniques on road networks, we are able to compute point-to-point queries on a continental network com-
bined of cars, railroads and flights several orders of magnitude faster than Dijkstra’s algorithm. Thereby,

we require little space overhead and obtain fast preprocessing times.

Categories and Subject Descriptors: G.2.2 [Graph Theory]: Graph algorithms

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Shortest Paths, Route Planning, Multi-Modal, Contraction

1. INTRODUCTION
Research on route planning algorithms in transportation networks has undergone a
rapid development over the last years. See [Delling et al. 2009d] for an overview. Usu-
ally the network is modeled as a directed graph G. While Dijkstra’s algorithm can be
used to compute a best route between two nodes of G in almost linear time [Goldberg
2008], it is too slow for practical applications in real-world transportation networks.
They consist of several million nodes and we expect almost instant results. Thus, over
the years a multitude of speedup techniques for Dijkstra’s algorithm were developed,
all following a similar paradigm: In a preprocessing phase auxiliary data is computed
which is then used to accelerate Dijkstra’s algorithm in the query phase. The fastest
techniques today can answer a single query within only a few memory accesses [Abra-
ham et al. 2011]. However, most of the techniques were developed with one type of
transportation network in mind. In fact, the fastest techniques developed for road net-
works heavily rely on structural properties of these and their performance degrades
significantly on other networks [Bast 2009; Bauer et al. 2010].

Partially supported by DFG grant WA 654/16-1 and by the EU FP7/2007-2013 (DG INFSO.G4-ICT for Trans-
port), under grant agreement no. 288094 (project eCOMPASS). An extended abstract appeared at the 14th
SIAM Meeting on Algorithm Engineering & Experiments (ALENEX12).
Authors’ addresses: Julian Dibbelt, Karlsruhe Institute of Technology, P.O. Box 6980, 76128 Karlsruhe,
Germany, email: dibbelt@kit.edu; Thomas Pajor, Karlsruhe Institute of Technology, P.O. Box 6980, 76128
Karlsruhe, Germany, email: pajor@kit.edu; Dorothea Wagner, Karlsruhe Institute of Technology, P.O. Box
6980, 76128 Karlsruhe, Germany, email: dorothea.wagner@kit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1084-6654/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

In the real world different modes of travel are linked extensively, and realistic trans-
portation scenarios imply frequent modal changes. Furthermore, with the increasing
appearance of electric vehicles and their inherent range restrictions, the choice be-
tween taking the car and public transit may become more important. To solve such
scenarios we are interested in an integrated system that can handle multiple trans-
portation networks with a single algorithm. Thereby it is crucial to respect a user’s
modal preferences: Not every mode of transport might be feasible to him at any point
along the journey. In general, the user has restrictions on the sequence of transport
modes. For example, some users might be willing to take a taxi between two train
rides if it makes the journey quicker. Others prefer to use public transit at a stretch.
A realistic multi-modal route-planning system must handle such constraints as a user
input for each query.

Related Work. For an overview on unimodal speedup techniques, we direct the
reader to [Bast 2009; Delling et al. 2009d]. Most techniques are composed of the
following ingredients: Bidirectional search, goal-directed search [Goldberg and Har-
relson 2005; Hart et al. 1968; Lauther 2004; Wagner et al. 2005], hierarchical tech-
niques [Bast et al. 2010; Bast et al. 2007; Geisberger et al. 2008; Gutman 2004; Sanders
and Schultes 2005], and separator-based techniques [Delling et al. 2011b; Delling et al.
2009a; Holzer et al. 2008]. Various combinations have been studied in [Bauer et al.
2010; Schulz et al. 2000].

Regarding multi-modal route planning less work exists. An elegant approach to
restricting modal transfers is the label constrained shortest paths problem (LC-
SPP) [Mendelzon and Wood 1995]: Edges are labeled, and the sequence of edge labels
must be element of a formal language (passed as query input) for any feasible path. A
version of Dijkstra’s algorithm can be used, if the language is regular [Barrett et al.
2000; Mendelzon and Wood 1995]. An experimental study of this approach, including
basic goal-directed techniques, is conducted in [Barrett et al. 2009]. In [Pajor 2009]
it is concluded that augmenting preprocessing techniques for LCSPP is a challenging
task.

A first efficient multi-modal speedup technique, called Access-Node Routing (ANR),
has been proposed in [Delling et al. 2009b]. It skips the road network during queries
by precomputing distances from every road node to all its relevant access points of
the public transportation network. It has the fastest query times of all previous multi-
modal techniques which are in the order of milliseconds. However, the preprocessing
phase predetermines the modal constraints that can be used for queries. Also, it can-
not compute short-range queries and requires a separate algorithm to handle them
correctly.

Another approach adapts ALT by precomputing different node potentials depending
on the mode of transport, called SDALT [Kirchler et al. 2011]. It allows fast preprocess-
ing, but both preprocessing space and query times are high. Also, it cannot handle ar-
bitrary modal restrictions as query input. By combining SDALT with a label-correcting
algorithm, the query time can be improved by up to 50 % [Kirchler et al. 2012].

Finally, in [Rice and Tsotras 2011] a technique based on contraction is presented
that handles arbitrary Kleene languages as user input. The authors use them to ex-
clude certain road categories. They report speedups of three orders of magnitude on
a continental road network. However, Kleene languages are rather restrictive: In a
multi-modal context, they only allow excluding modes of transportation globally. In
particular, they cannot be used to define feasible sequences of transportation modes.

Our Contribution. In this work we present User-Constrained Contraction Hierar-
chies (UCCH), the first multi-modal speedup technique that handles arbitrary mode-
sequence constraints as input to the query—a feature unavailable from previous tech-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

niques. Unlike Access-Node Routing, it also answers local queries correctly and re-
quires significantly less preprocessing effort. We revisit one technique, namely node
contraction, that has proven successful in road networks in the form of Contraction
Hierarchies, introduced by [Geisberger et al. 2008]. By ensuring that shortcuts never
span multiple modes of transport, we extend Contraction Hierarchies in a sound man-
ner. Moreover, we show how careful engineering further helps our scenario. Our ex-
perimental study shows that, unlike previous techniques, we can handle an intercon-
tinental instance composed of cars, railways and flights with over 50 million nodes,
125 million edges, and 30 thousand stations. With only 557 MiB1 of auxiliary data, we
achieve query times that are fast enough for interactive scenarios.

This work is organized as follows. Section 2 sets necessary notation, summarizes
graph models we use, precisely defines the problem we are solving, and also recaps
Contraction Hierarchies. Section 3 introduces our new technique. Finally, Section 4
presents experiments to evaluate our algorithm, while Section 5 concludes this work
and mentions interesting open problems.

2. PRELIMINARIES
Throughout this work G = (V,E) is a directed graph where V is the set of nodes and
E ⊆ V × V the set of edges. For an edge (u, v) ∈ E, we call u the tail and v the head
of the edge. The degree of a node u ∈ V is defined as the number of edges e ∈ E where
u is either head or tail of e. The reverse graph

←−
G = (V,

←−
E) of G is obtained from G

by flipping all edges, i. e., (u, v) ∈ ←−E if and only if (v, u) ∈ E. Note that we use the
terms graph and network interchangeably. To distinguish between different modes of
transport, our graphs are labeled by node labels lbl : V → Σ and edge labels lbl : E → Σ.
Often Σ is called the alphabet and contains the available modes of transport in G, for
example, road, rail, flight. All edges in our graphs are weighted by periodic time-
dependent travel time functions f : Π → N0 where Π depicts a set of time points
(think of it as the seconds of a day). If f is constant over Π, we call f time-independent.
Respecting periodicity in a meaningful way, we say that a function f has the FIFO
property if for all τ1, τ2 ∈ Π with τ1 ≤ τ2 it holds that f(τ1) ≤ f(τ2) + (τ2 − τ1). In
other words, waiting never pays off. Moreover, we require link and merge operations
which generalize the summation and minimum operations from scalar values to travel
time functions. Thereby, the link operation of two functions f1, f2 is defined for any
departure time τ as (f1 ⊕ f2)(τ) = f1(τ) + f2(τ + f1(τ)), and depicts the total travel
time when first evaluating f1 (at departure time τ) and then f2 (at departure time τ +
f1(τ), i. e., the arrival time after “traversing” f1). The merge operation min(f1, f2)(τ) is
defined as the element-wise minimum of f1 and f2, i. e., min(f1(τ), f2(τ)). Note that to
depict the travel time function f(τ) of an edge e ∈ E, we sometimes write len(e, τ), or
just len(e) if it is clear from the context that len(e, τ) is constant over all choices of τ .

In time-dependent graphs there are two types of queries relevant to this work: A
time-query has as input s ∈ V and a departure time τ . It computes a shortest path
tree to every node u ∈ V when departing from s at time τ . In contrast, a profile-query
computes a shortest path graph from s to all u ∈ V , consisting of shortest paths for all
departure times τ ∈ Π.

Whenever appropriate, we use some notion of formal languages. A finite sequence
w = σ0σ1 . . . σk of symbols σi ∈ Σ is called a word. A not necessarily finite set of words
L is called formal language (over Σ). A nondeterministic finite automaton (NFA) is a
tuple A = (Q,Σ, δ, S, F) characterized by the set Q of states, the transition relation

1MiB: 220 = 10242 bytes, GiB: 230 = 10243 bytes

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

δ ⊆ Q× Σ×Q, and sets S ⊆ Q of initial states and F ⊆ Q of final states. A language L
is called regular if and only if there is a finite automaton AL such that AL accepts L.

2.1. Models
Following [Delling et al. 2009b], our multi-modal graphs are composed of different
models for each mode of transportation. We briefly introduce each model and explain
how they are combined.

In the road network, nodes model intersections and edges depict street segments. We
either label edges by car for roads or foot for pedestrian paths. Our road networks are
weighted by the average travel time of the street segment. For pedestrians we assume
a walking speed of 4.5 kph. Note that our road networks are time-independent.

Regarding the railway network, we use the coloring model [Delling et al. 2012] which
is based on the well-known realistic time-dependent model [Pyrga et al. 2008]. It con-
sists of station nodes connected to route nodes. Trains are modeled between route
nodes via time-dependent edges. Different trains use the same route node as long
as they are not conflicting. In the coloring model conflicting trains are computed ex-
plicitly which yields significantly smaller graphs compared to the original realistic
time-dependent model (without dropping correctness). Moreover, to enable transfers
between trains, some station nodes are interconnected by time-independent foot paths.
See [Delling et al. 2012] for details. We label nodes and edges with rail. Note that we
also use this model for bus networks.

Finally, to model flight networks, we use the time-dependent phase II model [Delling
et al. 2009c]. It has small size and models airport procedures realistically. Nodes and
edges are labeled with flight.

Note that the travel time functions in our networks are a special form of piecewise
linear functions that can be efficiently evaluated [Pyrga et al. 2008; Delling et al. 2012].
Also all edges in our networks have the FIFO property.

Merging the Networks. To obtain an integrated multi-modal network G = (V,E), we
merge the node and edge sets of each individual network. Detailed data on transfers
between modes of transport was not available to us. Thus, we heuristically add link
edges labeled link. More precisely, we link each station node in the railway network
to its geographically closest node of the road network. We also link each airport node
of the flight network to their closest nodes in the road and rail networks. Thereby we
only link nodes that are no more than distance δ apart, a parameter chosen for each
instance. The time to traverse a link edge is computed from its geographical length
and a walking speed of 4.5 kph.

2.2. Path Constraints on the Sequences of Transport Modes
Since the naı̈ve approach of using Dijkstra’s algorithm on the combined network G
does not incorporate modal constraints, we consider the Label Constrained Shortest
Path Problem (LCSPP) [Barrett et al. 2000]: Each edge e ∈ E has a label lbl(e) assigned
to it. The goal is to compute a shortest s-t-path P where the word w(P) formed by
concatenating the edge labels along P is element of a language L, a query input.

Modeling sequence constraints is done by specifying L. To represent mode sequence
constraints, regular languages of the following form suffice. The alphabet Σ consists of
the available transport modes. In the corresponding NFAAL, states depict one or more
transport modes. To model traveling within one transport mode, we require (q, σ, q) ∈ δ
for those transport modes σ ∈ Σ that q represents. Moreover, to allow transfers be-
tween different modes of transport, states q, q′ ∈ Q, q 6= q′ are connected by link labels,
i. e., (q, link, q′) ∈ δ. Finally, states are marked as initial/final if its modes of transport
can be used at the beginning/end of the journey. Example automata are shown in Fig. 1.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

link link

foot rail foot

(a) foot-and-rail.

foot

car

foot

car

rail railflight

(b) hierarchical.

Fig. 1. Two example automata. In the right figure, light edges are labeled as link.

We refer to this variant of LCSPP as LCSPP-MS (as in Modal Sequences). In general,
LCSPP is solvable in polynomial time, if L is context-free. In our case, a generalization
of Dijkstra’s algorithm works [Barrett et al. 2000].

2.3. Contraction Hierarchies (CH)
Our algorithm is based on Contraction Hierarchies [Geisberger et al. 2008]. Prepro-
cessing works by heuristically ordering the nodes of the graph by an importance value
(a linear combination of edge expansion, number of contracted neighbors, among oth-
ers). Then, all nodes are contracted in order of ascending importance. To contract a
node v ∈ V , it is removed from G, and shortcuts are added between its neighbors to
preserve distances between the remaining nodes. The index at which v has been re-
moved is denoted by rank(v). To determine if a shortcut (u,w) is added, a local search
from u is run (without looking at v), until w is settled. If len(u,w) ≤ len(u, v) + len(v, w),
the shortcut (u,w) is not added, and the corresponding shorter path is called a witness.

The CH query is a bidirectional Dijkstra search operating on G, augmented by the
shortcuts computed during preprocessing. Both searches (forward and backward) go
“upward” in the hierarchy: The forward search only visits edges (u, v) where rank(u) ≤
rank(v), and the backward search only visits edges where rank(u) ≥ rank(v). Nodes
where both searches meet represent candidate shortest paths with combined length µ.
The algorithm minimizes µ, and a search can stop as soon as the minimum key of
its priority queue exceeds µ. Furthermore, we make use of stall-on-demand: When
a node v is scanned in either query, we check for all its incident edges e = (u, v) of
the opposite direction if dist(u) + len(e) < dist(v) holds (dist(v) denotes the tentative
distance at v). If this is the case, we may prune the search at v. See [Geisberger et al.
2008] for details.

Partial Hierarchy. If the preprocessing is aborted prematurely, i. e., before all nodes
are contracted, we obtain a partial contraction hierarchy (PCH). Let rank(v) = ∞ if
and only if v is never contracted, then the same query algorithm as for Contraction
Hierarchies is applicable and yields correct results [Bauer et al. 2010]. The induced
subgraph of all uncontracted nodes is called the core, and the remaining (contracted)
subgraph the component. Note that both core and component can contain shortcuts not
present in the original graph.

Performance. Both preprocessing and query performance of CH depend on the num-
ber of shortcuts added. It works well if the network has a pronounced hierarchy, i. e.,
far journeys eventually converge to a “freeway subnetwork” which is of a small fraction
in size compared to the total graph [Abraham et al. 2010]. Note that if computing a
complete hierarchy produces too many shortcuts, one can always abort early and com-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

pute a partial hierarchy. A possible stopping criterion is the average node degree on the
core that is approached during the contraction process.

3. OUR APPROACH
We now introduce our basic approach and show how CH can be used to compute short-
est path with restrictions on sequences of transport modes. We first argue that apply-
ing CH on the combined multi-modal graph G without careful consideration either
yields incorrect results to LCSPP-MS or finalizes the automaton A during prepro-
cessing. We then introduce UCCH: A practical adaption of Contraction Hierarchies to
LCSPP-MS that enables arbitrary modal sequence constraints as query input. Further
improvements that help accelerating both preprocessing and queries are presented in
Section 3.3.

3.1. Contraction Hierarchies for Multi-Modal Networks
Let G = (V,E) be a multi-modal network. Recall that G is a combination of time-
independent and time-dependent networks (for example, of road and rail), hence, con-
tains edges having both constants and travel time functions associated with them.
Applying CH to G already requires some engineering effort: Shortcuts may represent
paths containing edges of different type. In order to compute the shortcuts’ travel time
functions, these edges have to be linked, resulting in inhomogeneous functions that
slow down both preprocessing and query performance. More precisely, when a path
P = (e1, . . . , ek) is composed into a single shortcut edge e′, its labels need to be concate-
nated into a super label lbl(e′) = lbl(e1) · · · lbl(ek). In particular, if there are subsequent
edges ei, ej in P where lbl(ei) 6= lbl(ej), the shortcut induces a modal transfer. Running
a query where this particular mode change is prohibited potentially yields incorrect
results: The shortcut must not be used but the label constrained path (i. e. the one
without this transfer) may have been discarded during preprocessing by the witness
search (see Section 2.3). Note that the partial time-dependent nature of G further com-
plicates things. A shortcut e′ = (u, v) needs to represent the travel time profile from u
to v, that is, the underlying path P depends on the time of day. As a consequence, the
super label of e′ is time-dependent as well.

If the automaton A is known during preprocessing, we can modify CH preprocessing
to yield correct query results with respect to A. While contracting node v ∈ G and
thereby considering to add a shortcut e′ = (u,w), we look at its super label lbl(e′) =
lbl(e1) · · · lbl(ek). To determine if e′ has to be inserted, we run multiple witness searches
as follows: For each state q ∈ A where q represents lbl(v), we run a multi-modal profile-
search from u (ignoring v). We run it with q as initial state and all those states q′ ∈ A
as final state, where q′ is reachable from q in A by applying lbl(e′). Only if for all
these profile-searches dist(w) ≤ len(e′) holds, the shortcut e′ is not required: For every
relevant transition sequence of the automaton, there is a shorter path in the graph.
Note that shortcuts e′ = (u,w) may be required even if an edge from u to w already
existed before contraction. This results in parallel edges for different subsequences of
the constraint automaton.

This approach which we call State-Dependent CH (SDCH) has some disadvantages,
however. First, witness search is slow and less effective than in the unimodal scenario,
resulting in many more shortcuts. This hurts preprocessing and query performance.
Adding to it the more complicated data structures required for inhomogeneous travel
time functions and arbitrary label sequences, SDCH combines challenges of both Flex-
ible CH [Geisberger et al. 2010] and Timetable CH [Geisberger 2010]. As a result we
expect a significant slowdown over unimodal CH on road networks. But most notably,
SDCH requires a predetermined automaton A during preprocessing.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

3.2. UCCH: Contraction for User-Constrained Route Planning
We now introduce User-Constrained Contraction Hierarchies (UCCH). Unlike SDCH,
it can handle arbitrary sequence constraint automata during query and has a simpler
witness search. We first turn toward preprocessing before we go into detail about the
query algorithm.

Preprocessing. The main reason behind the disadvantages discussed in Section 3.1
is the computation of shortcuts that span over boundaries of different modal networks.
Instead, let Σ be the alphabet of labels of a multi-modal graph G. We now process each
subnetwork independently. We compute—in no particular order—a partial Contraction
Hierarchy restricted to the subgraph Glbl = (Vlbl, Elbl) (for every lbl ∈ Σ). Here, Glbl is
exactly the original graph of the particular transportation mode (before merging). We
consider the traditional contraction order with the exception of transfer nodes: Nodes
which are incident to at least one edge labeled link in G. We fix the rank of all such
nodes v to infinity, i. e., they are never contracted. Note that all other nodes have only
incident edges labeled by lbl in G. As a result, shortcuts only span edges within one
modal network. Hence, we neither obtain inhomogeneous travel time functions nor
“mixed” super labels. We set the label of each shortcut edge e′ to lbl(e), where e is an
arbitrary edge along the path, represented by e′.

To determine if a shortcut e′ = (u,w) is required (when contracting a node v), we
restrict the witness search to the modal subnetwork Glbl of v. Restricting the search
space of witness searches does not yield incorrect query results: Only too many short-
cuts might be inserted, but no required shortcuts are omitted. In fact, this is a common
technique to accelerate CH preprocessing [Geisberger et al. 2008]. Note that broaden-
ing the witness search beyond network boundaries is prohibitive in our case: It may
find a shorter u-v-path using parts of other modal networks. However, such a path is
not necessarily a witness if one of these other modes is forbidden during the query.
Thus, we must not take it into account to determine if e′ can be dropped.

Our preprocessing results in a partial hierarchy for each modal network of G. Its
transfer nodes are not contracted, thus, stay at the top of the hierarchy. Recall that
we call the subgraph induced by all nodes v with rank(v) = ∞ the core. Because of
the added shortcuts, the shortest path between every pair of core nodes is also fully
contained in the core. As a result, we achieve independence from the automaton A
during preprocessing.

A Practical Variant. Contraction is independent for every modal network of G: We
can use any combination of partial, full or no contraction. Our practical variant only
contracts time-independent modal networks, that is, the road networks. Contracting
the time-dependent networks is much less effective. Recall that we do not contract
station nodes as they have incident link edges. Applying contraction only on the non-
station nodes, however, yields too many shortcuts (see Fig. 2 and [Geisberger 2010]). It
also hides information encoded in the timetable model (such as railway lines), further
complicating query algorithms [Berger et al. 2009].

Query. Our query algorithm combines the concept of a multi-modal Dijkstra algo-
rithm with unimodal CH. Let s, t ∈ V be source and target nodes and A some finite
automaton with respect to LCSPP-MS. Our query algorithm works as follows. First,
we initialize distance values for all pairs of (v, q) ∈ V × A with infinity. We now run a
bidirectional Dijkstra search from s and t. Each search runs independently and main-
tains priority queues

−→
Q and

←−
Q of tuples (v, q) where v ∈ V and q ∈ A. We explain

the algorithm for the forward search; the backward search works analogously. The
queue

−→
Q is ordered by distance and initialized with (s, q) for all initial states q in A

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

(a) Input graph.

1 2 3 4 5

∞ ∞ ∞ ∞ ∞

(b) Graph after contraction.

Fig. 2. Contracting only route nodes in the realistic time-dependent rail model [Pyrga et al. 2008]. The
bottom row of nodes are station nodes, while the top row are route nodes contracted in the order depicted by
their labels. Grey edges represent added shortcuts. Note that these shortcuts are required as they incorpo-
rate different transfer times (for boarding and exiting vehicles at different stations).

(the backward queue is initialized with respect to final states). Whenever we extract
a tuple (v, q) from Q, we scan all edges e = (v, w) in G. For each edge, we look at all
states q′ in A that can be reached from q by lbl(e). For every such pair (w, q′) we check
whether its distance is improved, and update the queue if necessary. To use the pre-
processed data, we consider the graph G, augmented by all shortcuts computed during
preprocessing. We run the aforementioned algorithm, but when scanning edges from
a node v, the forward search only looks at edges (v, w) where rank(w) ≥ rank(v). Sim-
ilarly, the backward search only looks at edges (v, w) where rank(v) ≥ rank(w). Note
that by these means we automatically search inside the core whenever we reach the
top of the hierarchy. Thereby we never reinitialize any data structures when entering
the core like it is typically the case for core-based algorithms, e. g., Core-ALT [Delling
et al. 2009d]. The stopping criterion carries over from basic CH: A search stops as soon
as its minimum key in the priority queue exceeds the best tentative distance value µ.
We also use stall-on-demand, however, only on the component.

Intuitively, the search can be interpreted as follows. We simultaneously search up-
ward in those hierarchies of the modal networks that are either marked as initial or
as final in the automaton A. As soon as we hit the top of the hierarchy, the search
operates on the common core. Because we always find correct shortest paths between
core nodes in any modal network, our algorithm supports arbitrary automata (with re-
spect to LCSPP-MS) as query input. Note that our algorithm implicitly computes local
queries which use only one of the networks. It makes the use of a separate algorithm
for local queries, as in [Delling et al. 2009b], unnecessary.

Handling Time-Dependency. Some of the networks in G are time-dependent.
Weights of time-dependent edges (u, v) are evaluated for a departure time τ . However,
running a reverse search on a time-dependent network is non-trivial, since the arrival
time at the target node is not known in advance. Several approaches, such as using
the lower-bound graph for the reverse search, exist [Delling and Nannicini 2008; Batz
et al. 2010], but they complicate the query algorithm. Recall that in our practical vari-
ant we do not contract any of the time-dependent networks, hence, no time-dependent
edges are contained in the component. This makes backward search on the component
easy for us. We discuss search on the core in the next section.

3.3. Improvements
We now present improvements to our algorithm, some of which also apply to CH.

Average Node Degree. Recall that whenever we contract a modal network, we never
contract transfer nodes, even if they were of low importance in the context of that
network. As a result, the number of added shortcuts may increase significantly. Thus,

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

we stop the contraction process as soon as the average node degree in the core exceeds
a value α. By varying α, we trade off the number of core nodes and the number of core
edges: Higher values of α produce a smaller core but with more shortcut edges. We
evaluate a good value of α experimentally.

Edge Ordering. Due to the higher average node degree compared to unimodal CH,
the search algorithm has to look at more edges. Thus, we improve performance of iter-
ating over incident edges of a node v by reordering them locally at v: We first arrange
all outgoing edges, followed by all bidirected edges, and finally, all incoming edges. By
these means, the forward respective backward search only needs to look at their rel-
evant subsets of edges at v. The same optimization is applied to the stalling routine.
Preliminary experiments revealed that edge reordering improves query performance
up to 21 %.

Node Ordering. To improve the cache hit rate for the query algorithm, we also re-
order nodes such that adjacent nodes are stored consecutively with high probability.
We use a DFS-like algorithm to determine the ordering [Delling et al. 2011a]. Because
most of the time is spent on the core, we also move core nodes to the front. This im-
proves query performance up to a factor of 2.

Core Pruning. Recall that a search stops as soon as its minimum key from the pri-
ority queue exceeds the best tentative distance value µ. This is conservative, but nec-
essary for CH (and UCCH) to be correct. However, UCCH spends a large fraction of
the search inside the core. We can easily expand road and transfer edges both forward
and backward, but because of the conservative stopping criterion, many core nodes are
settled twice. To reduce this amount, we do not scan edges of core nodes v, where v has
been settled by both searches and did not improve µ. A path through v is provably not
optimal. This increases performance by up to 47 %. Another alternative is not applying
bidirectional search on the core at all. The forward search continues regularly, while
the backward search does not scan edges incident to core nodes. This approach turns
out most effective with a performance increase by a factor of 2.

State Pruning. Recall that our query algorithm maintains distances for pairs (v, q)
where v ∈ V and q ∈ A. Thus, whenever we scan an edge (u, v) ∈ E resulting in some
state q ∈ A, we update the distance value of (v, q) only if it is improved, and discard
(or prune) it otherwise. However, we can even make use of a stronger state pruning
rule: Let qi and qj be two states in A. We say that qi dominates qj if and only if the
language LA(qj) accepted byA with modified initial state qj is a subset of the language
LA(qi) accepted by A with modified initial state qi. In other words, any feasible mode
sequence beginning with qj is also feasible when starting at qi. As a consequence, when
we are about to update a pair (v, qj), we can additionally prune (v, qj) if there exists
a state qi that dominates qj and where (v, qi) has smaller distance: Any shortest path
from v is provably not using (v, qj). As an example, consider the first automaton in
Fig. 1. Let its states be denoted by {q0, q1, q2}, from left to right. Here, q0 dominates
q2 with respect to our definition: Any foot path beginning at state q2 is also a feasible
(foot) path beginning at state q0. Therefore, any pair (v, q2) can be pruned if (v, q0) has
better distance than (v, q2). State pruning improves performance by ≈ 10 %.

State-Independent Search in Component. Automata are used to model sequence con-
straints, however, by definition their state may only change when traversing link
edges. In particular, when searching inside the component, there is never a state
transition (recall that all link edges are inside the core). Thus, we use the automa-
ton only on the core. We start with a regular unimodal CH-query. Whenever we are
about to insert a core node v into the priority queue for the first time on a branch of

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Table I. Comparing size figures of our input instances. The column “Col.” indicates whether we use the
coloring approach (see Section 2.1) to model the railway subnetwork. The bottom two instances are
taken from [Delling et al. 2009b].

Public Transportation Road

Network Stations Connections Col. Nodes Edges Density

ny-road-rail 16 897 2 054 896 • 579 849 1 527 594 1 : 56
de-road-rail 6 822 489 801 • 5 055 680 12 378 224 1 : 749
europe-road-rail 30 517 1 621 111 • 30 202 516 72 586 158 1 : 1 133
wo-road-rail-flight 31 689 1 649 371 • 50 139 663 124 625 598 1 : 1 846

de-road-rail(long) 498 16 450 ◦ 5 055 680 12 378 224 1 : 10 711
wo-road-flight 1 172 28 260 ◦ 50 139 663 124 625 598 1 : 139 277

the shortest path tree, we create labels (v, q) for all initial/final states q (regarding for-
ward/backward search). Because the amount of settled component nodes on average
is small compared to the total search space, we do not observe a performance gain.
However, on large instances with complicated query automata we save up to 1.1 GiB of
RAM during query by keeping only one distance value for each component node. Recall
that component nodes constitute the major fraction of the graph.

Parallelization. In general, the multimodal graph G is composed of more than one
contractable modal subnetwork, for instance foot and car. In this case, we have to
run the aforementioned unimodal CH-query on every component individually. Because
these queries are independent from each other, we are able to parallelize them easily.
In a first phase, we allocate one thread for every contracted network which then runs
the unimodal CH-query on its respective component until it hits the core. In the second
phase, we synchronize the threads, and continue the search on the core sequentially.
Note that we only need to run the first phase on those components that are represented
by an initial or final state in the input automaton A.

Combining all improvements yields a speedup of up to factor 4.9. (Section 4.5 of the
experimental evaluation will show detailed figures.)

4. EXPERIMENTS
We conducted our experiments on an Intel Xeon E5430 processor running SUSE Linux
11.1. It is clocked at 2.66 GHz, has 32 GiB of RAM and 12 MiB of L2 cache. The pro-
gram was compiled with GCC 4.5, using optimization level 3. Our implementation is
written in C++ using the STL and Boost. We use our own custom implementations for
most data structures. In particular, we represent graphs as adjacency arrays, and as a
priority queue we use a 4-ary heap. All runs are sequential for comparison.

Inputs. We assemble a total of six multi-modal networks where two are imported
from [Delling et al. 2009b]. Their size figures are reported in Table I. For ny-road-rail,
we combine New York’s foot network with the public transit network operated by
MTA [Metropolitan Transportation Authority of the State of New York 1966]. We link
bus and subway stops to road intersections that are no more than 500 m apart. The
de-road-rail network combines the pedestrian and railway networks of Germany.
The railway network is extracted from the timetable of the winter period 2000/01. It
includes short and long distance trains, and we link stations using a radius of 500 m.
The europe-road-rail network combines the road (as in car) and railway networks of
Western Europe. The railway network is extracted from the timetable of the winter pe-
riod 1996/97 and stations are linked within 5 km. The wo-road-rail-flight network
is a combination of the road networks of North America and Western Europe with the
railway network of Western Europe and the flight network of Star Alliance and One

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Table II. Comparing preprocessing performance of UCCH on de-road-rail with varying average core
degree limit. For queries we use the foot automaton. We also report numbers for unconstrained uni-
modal CH and partial CH (PCH).

Preprocessing Query

Avg. Core- Core- Shortcut- Time Settled Relaxed Touched Time
Algorithm Degree Nodes Edges [min] Nodes Edges Edges [ms]

UCCH

10 30 908 42.3 % 6 15 531 27 506 155 776 5.85
15 16 003 43.1 % 7 8 090 16 844 121 631 3.11
20 12 239 43.7 % 9 6 240 14 425 124 201 2.82
25 10 635 44.2 % 10 5 465 13 687 135 151 2.80
30 9 742 44.7 % 12 5 049 13 486 148 735 2.96
35 9 171 45.1 % 14 4 794 13 598 163 376 3.15
40 8 788 45.4 % 15 4 628 13 787 179 483 3.38

PCH 13 10 635 41.7 % 6 5 567 11 402 71 860 1.93
PCH 15 6 750 41.8 % 7 3 636 7 970 53 655 1.37
CH — 0 41.8 % 9 677 1 290 11 434 0.25

World. The flight networks are extracted from the winter timetable 2008. As radius we
use 5 km.

Both de-road-rail(long) and wo-road-flight are from [Delling et al. 2009b]. The
data of the Western European and North American road networks (thus Germany
and New York) was kindly provided to us by PTV AG [PTV AG – Planung Transport
Verkehr 1979] for scientific use. The timetable data of New York is publicly available
through General Transit Feeds [General Transit Feed 2010], while the data of the
German and European railway networks was kindly provided by HaCon [HaCon - In-
genieurgesellschaft mbH 1984]. Unlike the data from HaCon, the New York timetable
did not contain any foot path data for short transfers between nearby stops (as typi-
cally defined by the operator). Thus, we generated artificial foot paths with a known
heuristic [Delling et al. 2012].

Our instances vary in the fractional size of their public transit subnetwork with
respect to the total network size. We call the fraction of linked nodes in a subgraph
density (see last column of Table I). Our densest network is ny-road-rail, which also
has the highest number of connections. On the other hand, de-road-rail(long) and
wo-road-flight are rather sparse. However, we include them to compare our algorithm
to Access Node Routing (ANR). Note that we take the figures for ANR from [Delling
et al. 2009b]. Since they used a different machine, we scale the running time figures
by comparing the running time of Dijkstra’s algorithm on our machine to theirs. Also
note that for comparison we do not use the improved coloring model (see Section 2.1)
on these two instances.

We use the following automata as query input. The foot-and-rail automaton al-
lows either walking, or walking, taking the railway network and walking again. Simi-
larly, the car-and-rail automaton uses the road network instead of walking, while the
car-and-flight automaton uses the flight network instead of the railway network. The
hierarchical automaton is our most complicated automaton. It hierarchically com-
bines road, railways and flights (in this order). All modal sequences are possible, except
of going up in the hierarchy after once stepping down. For example, if one takes a train
after a flight, it is impossible to take another flight. Note that completely disallowing
walking is not reasonable. Instead, taking the predefined (by the timetable) transfer
foot paths within the rail (flight) model is always allowed within the rail (flight)
state. Finally, the everything automaton allows arbitrary modal sequences in any or-
der. See Fig. 1 for transition graphs of foot-and-rail and hierarchical.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Table III. Preprocessing figures for UCCH and Access-Node Routing on the road subnetwork. Figures for
the latter are taken from [Delling et al. 2009b], which were obtained on a different machine. We thus scale
the preprocessing time with respect to running time figures compared to Dijkstra.

UCCH ANR

Avg. Core- Core Nodes Shortcuts Shortcuts Time Space Time
Network Degree Total Ratio Percent [MiB] [min] [MiB] [min]

ny-road-rail 8 11 057 1:52 48.3 % 8 < 1 — —
de-road-rail 25 10 635 1:475 44.2 % 63 10 — —
europe-road-rail 25 39 665 1:761 39.0 % 324 38 — —
wo-road-rail-flight 30 38 610 1:1 298 39.1 % 558 87 — —

de-road-rail(long) 35 996 1:5 075 42.3 % 60 10 504 26
wo-road-flight 35 727 1:68 967 38.0 % 542 78 14 050 184

Methodology. We evaluate both preprocessing and query performance. The contrac-
tion order is always computed according to the aggressive variant from [Geisberger
et al. 2008]. We report the time and the amount of computed auxiliary data. Queries
are generated with source, target nodes and departure times uniformly picked at ran-
dom. For Dijkstra we run 1,000 queries, while for UCCH we run a superset of 100,000
queries. We report the average number of: (1) extracted nodes in the implicit product
graph from the priority queue (settled nodes), (2) priority queue update operations (re-
laxed edges), (3) touched edges, (4) the average query time, and (5) the speedup over
Dijkstra. Note that we only report the time to compute the length of the shortest path.
Unpacking of shortcuts can be done efficiently in less than a millisecond [Geisberger
et al. 2008].

4.1. Evaluating Average Core Degree Limit
The first experiment evaluates preprocessing and query performance with varying av-
erage core degree. We abort contraction as soon as the average node degree in the core
exceeds a limit α. In our implementation we compute the average node degree by di-
viding the number of edges by the number of nodes in our graph data structure. Note
that we use edge compression [Delling 2009]: Whenever there are edges e = (u, v) and
e′ = (v, u) where len(e) = len(e′), we combine both edges in a single entry at u and v. As
a result, the number we report may be smaller than the true average degree (at most
by a factor of 2) which is, however, irrelevant for the result of this experiment.

Table II shows preprocessing and query figures on de-road-rail. For queries we use
the foot automaton, which does not use public transit edges. With higher values of α
more nodes are contracted, resulting in higher preprocessing time and more shortcuts
(we report them as a fraction of the input’s size). At the same time, less nodes (but with
higher degree) remain in the core. Setting α =∞ is infeasible. The amount of shortcuts
is too large, and preprocessing does not finish within reasonable time. Interestingly,
the query time decreases (with smaller core size) up to α ≈ 25 and then increases
again. Though we settle less nodes, the increase in shortcuts results in more touched
edges during query, that is, edges the algorithm has to iterate when settling a node.
We conclude that for de-road-rail the trade-off between number of core nodes and
added shortcut edges is optimal for α = 25. Hence, we use this value in subsequent
experiments. Accordingly, we determine α for all instances.

Comparison to Unimodal CH. In Table II we also compare UCCH to CH when run
on the unimodal road network. Computing a full hierarchy results in queries that are
faster by a factor of 11.2. Since UCCH does not compute a full hierarchy by design, we
evaluate two partial CH hierarchies: The first stops when the core reaches a size of
10,635—equivalent to the optimal core size of UCCH. We observe a query performance

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Table IV. Query performance of UCCH compared to plain multi-modal Dijkstra and Access-Node Routing. Figures
for the latter are taken from [Delling et al. 2009b], which were obtained on a different machine. We thus scale the
running time with respect to Dijkstra.

Dijkstra ANR UCCH

Settled Time Settled Time Speed- Settled Time Speed-
Network Automaton Nodes [ms] Nodes [ms] Up Nodes [ms] Up

ny-road-rail foot-and-rail 404 816 226 — — — 25 525 13.61 17
de-road-rail foot-and-rail 2 611 054 2 005 — — — 18 275 12.78 157
europe-road-rail car-and-rail 30 021 567 23 993 — — — 90 579 53.78 446
wo-road-rail-flight car-and-flight 36 053 717 33 692 — — — 42 056 26.72 1 260
wo-road-rail-flight hierarchical 36 124 105 35 261 — — — 126 072 70.52 500
wo-road-rail-flight everything 25 267 202 23 972 — — — 71 389 50.77 472

de-road-rail(long) foot-and-rail 2 735 426 2 075 13 524 3.45 602 12 509 3.13 663
wo-road-flight car-and-flight 36 582 904 33 862 4 200 1.07 31 551 1 647 0.67 50 540

almost comparable to UCCH (slightly faster by 45 %). The second partial hierarchy
stops with a core size of 6,750 which is equal to the number of transfer nodes in the
network (i. e., the smallest possible core size on this instance for UCCH). Here, CH is a
factor of 2 faster than UCCH. Recall that UCCH must not contract transfer nodes. In
road networks these are usually unimportant: Long-range queries do not pass many
railway stations or bus stops in general, which explains that UCCH’s hierarchy is less
pronounced. However, for multi-modal queries transfer nodes are indeed very impor-
tant, as they constitute the interchange points between different networks. To enable
arbitrary automata during query, we overestimate their importance by not contract-
ing them at all, which is reflected by the (relatively small) difference in performance
compared to CH.

4.2. Preprocessing
Table III shows preprocessing figures for UCCH on all our instances. Besides the aver-
age degree we evaluate the core in terms of total and fractional number of core nodes,
and the amount of added shortcuts. Added shortcuts are reported as percentage of all
road edges and in total MiB. We observe that the preprocessing effort correlates with
the graph size. On the small ny-road-rail instance it takes less than a minute and
produces 8 MiB of data. On our largest instance, wo-road-rail-flight, we need 1.5
hours and produce 558 MiB of data. Because the size of the core depends on the size
of the public transportation network, we obtain a much higher ratio of core nodes on
ny-road-rail (1 : 52) than we do, for example, on wo-road-rail-flight (1 : 1,298).

Comparing the preprocessing effort of UCCH to scaled figures of Access-Node Rout-
ing (ANR), we observe that UCCH is more than twice as fast and produces significantly
less amount of data: on de-road-rail(long) by a factor of 8.4, on wo-road-flight by
a factor of 26. Here, ANR requires 14 GiB of space, whereas UCCH only uses 542 MiB.
Concluding, UCCH outperforms ANR in terms of preprocessing space and time.

4.3. Query Performance
In this experiment we evaluate the query performance of UCCH and compare it to
Dijkstra and ANR (where figures are available). Results are presented in Table IV.
We observe that we achieve speedups of several orders of magnitude over Dijkstra,
depending on the instance. Generally, UCCH’s speedup over Dijkstra correlates with
the ratio of core nodes after preprocessing (thus, indirectly with the density of trans-
fer nodes): the sparser our networks are interconnected, the higher the speedups we
achieve. On our densest network, ny-road-rail, we have a speedup of 17, while on
wo-road-flight we achieve query times of less than a millisecond—a speedup of over

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Table V. Evaluating the impact of integrating modal sequence constraints on the paths.

Mode Used in % Paths # Modal Changes Stretch

Network Automaton Foot Car Rail Flight Avg. Max. Avg. Max. Ident. [%]

ny-road-rail everything 100 — 57 — 4.1 22 — — —
ny-road-rail foot-and-rail 100 — 57 — 1.1 2 1.07 2.83 64

de-road-rail everything 100 — 100 — 6.8 24 — — —
de-road-rail foot-and-rail 100 — 100 — 2.0 2 1.08 2.94 87

europe-road-rail everything — 100 41 — 1.2 10 — — —
europe-road-rail car-and-rail — 100 41 — 0.8 2 1.03 1.46 92

wo-road-rail-flight everything — 100 13 85 2.2 12 — — —
wo-road-rail-flight hierarchical — 100 9 85 1.8 4 1.08 2.25 89
wo-road-rail-flight car-and-flight — 100 — 85 1.7 2 1.06 2.34 84

50,540. To further highlight how the density of the network affects the speedup, Fig. 3
plots the speedup of UCCH on each instance subject to its density. Note that most of
the time is spent inside the core (particularly, in the public transit network), which
we do not accelerate. Section 4.6 contains a detailed query time distribution analysis.
Comparing UCCH to ANR, we observe that query times are in the same order of mag-
nitude, UCCH being slightly faster. Note that we achieve these running times with
significantly less preprocessing effort.

4.4. Detailed path properties

10−5 10−4 10−3 10−210
1

10
2

10
3

10
4

10
5

Density

Sp
ee

du
p

Fig. 3. Evaluating the speedup of UCCH from Ta-
ble IV subject to the density of the input from Table I.

Table V reports the impact of integrat-
ing modal sequence constraints on the
paths output by the algorithm. It does
so by evaluating three main figures:
The percentage of the total number of
paths that utilize a certain transporta-
tion mode (foot, car, rail with transfers,
and flight with transfers), the average
and maximum number of interchanges
between transportation modes along the
journeys, and the average and maxi-
mum factor by which the travel time
increases when mode sequence con-
straints are enabled. Note that for the
latter, we only count paths that actually
differ from the unconstrained one, addi-
tionally reporting the amount of paths
where mode sequence constraints have

no impact (Ident.). Each instance in Table V is evaluated on both an appropriate con-
strained automaton as well as the everything automaton, which essentially corre-
sponds to running unrestricted queries.

We observe that on ny-road-rail 57 % of the paths utilize the rail network, regard-
less whether we constrain paths by the foot-and-rail automaton. However, 36 % of
the paths are indeed different, and enabling constraints reduces the average number
of modal interchanges by a factor of almost four with only a 7 % increase in travel time.
Figures for de-road-rail are similar: All paths use the rail network, and enabling con-
straints reduces the number of modal interchanges by a factor of almost 3.5 with only
little increase in travel time. On our sparser long-distance networks the effects are
less pronounced. For example, on wo-road-rail-flight, we see that 89 % of the paths

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Table VI. Detailed analysis of the impact on query performance by our improve-
ments (cf. Section 3.3). We show figures for reordering nodes (rn), reordering edges (re),
improved bidirectional search (bi), only forward search on the core (fo), state-independent
search on component (si), and state-pruning (sp)

Settled Time Speed-
Network Automaton Improvement Nodes [ms] Up

europe-road-rail car

none 48 488 69.93 —
rn 48 488 35.11 2.00
rn,re 48 488 29.38 2.38
rn,re,bi 31 628 20.02 3.49
rn,re,fo 24 297 14.57 4.80

wo-road-rail-flight car

none 35 539 54.42 —
rn 35 539 27.93 1.95
rn,re 35 539 23.18 2.35
rn,re,bi 29 695 19.84 2.74
rn,re,fo 17 862 11.50 4.73

europe-road-rail car-and-rail

rn,re,fo 95 095 57.23 —
rn,re,fo,si 95 024 60.12 0.95
rn,re,fo,sp 89 770 51.72 1.11
rn,re,fo,si,sp 89 699 54.45 1.05

wo-road-rail-flight car-and-rail

rn,re,fo 72 997 46.73 —
rn,re,fo,si 72 895 49.09 0.95
rn,re,fo,sp 69 627 42.35 1.10
rn,re,fo,si,sp 69 525 44.51 1.05

already follow a hierarchical use of transportation modes, and the difference in the
number of modal interchanges decreases only by 0.4. However, while this difference
may seem small, we argue that model constraints are nevertheless important, since
our experiment shows that in 11 % of the cases the (unconstrained) path violates the
modal constraints, which may render it completely infeasible to the user.

4.5. Improvements
In Table VI we report figures for the improvements to UCCH described in Section 3.3.
The table is divided into two parts. The upper part addresses unimodal improvements
that are also applicable to (partial) CH. Therefore, we evaluate them using the car
automaton. For our two biggest networks, we provide the number of settled nodes
and the query time for several combinations of improvements. The first row (none)
reports results for the basic version of UCCH. The other rows use: Reordered nodes
(rn), reordered edges (re), improved bi-directional search on the core (bi), and uni-
directional search on the core (fo), that is, no backward search is performed on the
core. Combining these techniques, we obtain a speedup of up to a factor of 4.8.

The lower part of Table VI is dedicated to improvements for UCCH which we eval-
uate using the car-and-rail automaton. We provide numbers for state-independent
search on the component (si) and state-pruning (sp). Note that these figures already
include the previous improvements. Interestingly, using state-independent search re-
sults in slightly worse query times of about 5 %. However, we reduce the memory foot-
print of the algorithm by a significant amount since we store distance values only once
per component node. Maintaining distance labels on the implicit product graph re-
quires between 6.9 MiB and 1341.2 MiB on our instances. When (si) is enabled, these
numbers are reduced to 2.4 MiB and 192.1 MiB, respectively. This is an improvement
of up to factor 7.

Note that from the number of settled nodes we can deduce which of the improve-
ments impact cache efficiency and which impact the search space.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Table VII. In-depth analysis of UCCH’s query time. We report the distribution of query time among the particular
subnetworks and compare it to Dijkstra.

Dijkstra UCCH

Settled Time Settled Time Speed-
Network Automaton Subgraph Nodes [ms] Nodes [ms] Up

ny-road-rail foot-and-rail
road-comp. — — 203 ≈ 0.0 —
road-core 389 578 215.5 9 944 4.8 45
rail 15 238 10.5 15 238 8.8 1.2

de-road-rail foot-and-rail
road-comp. — — 188 ≈ 0.0 —
road-core 2 599 251 1 988.4 6 314 5.0 397
rail 11 803 16.6 11 803 7.8 2.1

europe-road-rail car-and-rail
road-comp. — — 213 ≈ 0.0 —
road-core 29 973 817 23 933.3 43 017 24.4 982
rail 47 750 59.7 47 750 29.4 2.0

wo-road-rail-flight hierarchical
road-comp. — — 301 ≈ 0.0 —
road-core 36 047 522 35 169.3 49 944 30.6 1 149
rail 75 682 89.9 75 682 39.2 2.3
flight 902 1.8 902 0.7 2.6

4.6. In-Depth Analysis of Query Performance
Table VII reports in-depth figures for the UCCH query including all (reasonable) im-
provements from the previous section. We see that a large fraction of the query is spent
on the public transportation part of the multi-modal network: Up to 65 % of the settled
nodes and also up to 65 % of query time. Recall that we do not further accelerate the
search on the core. Interestingly, UCCH is slightly faster (up to a factor of 2.6) on the
timetable subnetworks when compared to Dijkstra. UCCH settles fewer nodes in to-
tal, which helps cache performance on the public transit part. When we compare the
time spent on the road network (component and core) of de-road-rail with the figures
of Table II (where we use the same instance but with the smaller foot automaton), we
observe that the foot-and-rail automaton yields a factor 1.8 slowdown. The reason is
that the foot-and-rail automaton actually has two “foot-states” (cf. Fig. 1) and, thus,
has to do twice the work on the road subnetwork. Note that the number 1.8 (instead of
exactly 2) stems from the fact that we apply state pruning.

5. CONCLUSION
In this work we introduced UCCH: The first, fast multi-modal speedup technique that
handles arbitrary modal sequence constraints at query time—a problem considered
challenging before. Besides not determining the modal constraints during preprocess-
ing, its advantages are small space overhead, fast preprocessing time and the ability
to implicitly handle local queries without the need for a separate algorithm. Its pre-
processing can handle huge networks of intercontinental size with many more stations
and airports than those of previous multi-modal techniques. For future work we are
interested in augmenting our approach to more general scenarios. For example, the
computation of multi-modal profile queries would produce journeys whose departure
time follows the timetable more closely. Moreover, we are interested in constraining
the amount of total walking time or optimizing it in a multi-criteria setting. We would
also like to further accelerate search on the uncontracted core—especially on the rail
networks. Finally, we are interested to improve the contraction order. In particular, we
would like to use ideas from [Delling et al. 2009b] to enable contraction of some trans-
fer nodes in order to achieve better results, especially on more densely interlinked
networks.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

ACKNOWLEDGMENTS

We thank Daniel Delling for interesting discussions on multi-modal route planning, and Geisberger et al. for
providing us their CH code.

REFERENCES
ABRAHAM, I., DELLING, D., GOLDBERG, A. V., AND WERNECK, R. F. 2011. A Hub-Based Labeling Al-

gorithm for Shortest Paths on Road Networks. In Proceedings of the 10th International Symposium
on Experimental Algorithms (SEA’11). Lecture Notes in Computer Science Series, vol. 6630. Springer,
230–241.

ABRAHAM, I., FIAT, A., GOLDBERG, A. V., AND WERNECK, R. F. 2010. Highway Dimension, Shortest Paths,
and Provably Efficient Algorithms. In Proceedings of the 21st Annual ACM–SIAM Symposium on Dis-
crete Algorithms (SODA’10). SIAM, 782–793.

BARRETT, C., BISSET, K., HOLZER, M., KONJEVOD, G., MARATHE, M. V., AND WAGNER, D. 2009. Engi-
neering Label-Constrained Shortest-Path Algorithms. In The Shortest Path Problem: Ninth DIMACS
Implementation Challenge. DIMACS Book Series, vol. 74. American Mathematical Society, 309–319.

BARRETT, C., JACOB, R., AND MARATHE, M. V. 2000. Formal-Language-Constrained Path Problems. SIAM
Journal on Computing 30, 3, 809–837.

BAST, H. 2009. Car or Public Transport – Two Worlds. In Efficient Algorithms. Lecture Notes in Computer
Science Series, vol. 5760. Springer, 355–367.

BAST, H., CARLSSON, E., EIGENWILLIG, A., GEISBERGER, R., HARRELSON, C., RAYCHEV, V., AND VIGER,
F. 2010. Fast Routing in Very Large Public Transportation Networks using Transfer Patterns. In Pro-
ceedings of the 18th Annual European Symposium on Algorithms (ESA’10). Lecture Notes in Computer
Science Series, vol. 6346. Springer, 290–301.

BAST, H., FUNKE, S., MATIJEVIC, D., SANDERS, P., AND SCHULTES, D. 2007. In Transit to Constant
Shortest-Path Queries in Road Networks. In Proceedings of the 9th Workshop on Algorithm Engineering
and Experiments (ALENEX’07). SIAM, 46–59.

BATZ, G. V., GEISBERGER, R., NEUBAUER, S., AND SANDERS, P. 2010. Time-Dependent Contraction Hier-
archies and Approximation. In Proceedings of the 9th International Symposium on Experimental Algo-
rithms (SEA’10). Lecture Notes in Computer Science Series, vol. 6049. Springer, 166–177.

BAUER, R., DELLING, D., SANDERS, P., SCHIEFERDECKER, D., SCHULTES, D., AND WAGNER, D. 2010.
Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Jour-
nal of Experimental Algorithmics 15, 2.3, 1–31. Special Section devoted to WEA’08.

BERGER, A., DELLING, D., GEBHARDT, A., AND MÜLLER–HANNEMANN, M. 2009. Accelerating Time-
Dependent Multi-Criteria Timetable Information is Harder Than Expected. In Proceedings of the 9th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’09). OpenAccess Series in Informatics (OASIcs).

DELLING, D. 2009. Engineering and Augmenting Route Planning Algorithms. Ph.D. thesis, Universität
Karlsruhe (TH), Fakultät für Informatik.

DELLING, D., GOLDBERG, A. V., NOWATZYK, A., AND WERNECK, R. F. 2011a. PHAST: Hardware-
Accelerated Shortest Path Trees. In 25th International Parallel and Distributed Processing Symposium
(IPDPS’11). IEEE Computer Society, 921–931. Best Paper Award - Algorithms Track.

DELLING, D., GOLDBERG, A. V., PAJOR, T., AND WERNECK, R. F. 2011b. Customizable Route Planning. In
Proceedings of the 10th International Symposium on Experimental Algorithms (SEA’11). Lecture Notes
in Computer Science Series, vol. 6630. Springer, 376–387.

DELLING, D., HOLZER, M., MÜLLER, K., SCHULZ, F., AND WAGNER, D. 2009a. High-Performance Multi-
Level Routing. In The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Book
Series, vol. 74. American Mathematical Society, 73–92.

DELLING, D., KATZ, B., AND PAJOR, T. 2012. Parallel Computation of Best Connections in Public Trans-
portation Networks. ACM Journal of Experimental Algorithmics 17, 4, 4.1–4.26.

DELLING, D. AND NANNICINI, G. 2008. Bidirectional Core-Based Routing in Dynamic Time-Dependent
Road Networks. In Proceedings of the 19th International Symposium on Algorithms and Computation
(ISAAC’08). Lecture Notes in Computer Science Series, vol. 5369. Springer, 813–824.

DELLING, D., PAJOR, T., AND WAGNER, D. 2009b. Accelerating Multi-Modal Route Planning by Access-
Nodes. In Proceedings of the 17th Annual European Symposium on Algorithms (ESA’09). Lecture Notes
in Computer Science Series, vol. 5757. Springer, 587–598.

DELLING, D., PAJOR, T., WAGNER, D., AND ZAROLIAGIS, C. 2009c. Efficient Route Planning in Flight
Networks. In Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’09). OpenAccess Series in Informatics (OASIcs).

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

DELLING, D., SANDERS, P., SCHULTES, D., AND WAGNER, D. 2009d. Engineering Route Planning Algo-
rithms. In Algorithmics of Large and Complex Networks. Lecture Notes in Computer Science Series,
vol. 5515. Springer, 117–139.

GEISBERGER, R. 2010. Contraction of Timetable Networks with Realistic Transfers. In Proceedings of the
9th International Symposium on Experimental Algorithms (SEA’10). Lecture Notes in Computer Science
Series, vol. 6049. Springer, 71–82.

GEISBERGER, R., KOBITZSCH, M., AND SANDERS, P. 2010. Route Planning with Flexible Objective Func-
tions. In Proceedings of the 12th Workshop on Algorithm Engineering and Experiments (ALENEX’10).
SIAM, 124–137.

GEISBERGER, R., SANDERS, P., SCHULTES, D., AND DELLING, D. 2008. Contraction Hierarchies: Faster and
Simpler Hierarchical Routing in Road Networks. In Proceedings of the 7th Workshop on Experimental
Algorithms (WEA’08). Lecture Notes in Computer Science Series, vol. 5038. Springer, 319–333.

GENERAL TRANSIT FEED. 2010. https://developers.google.com/transit/gtfs/.
GOLDBERG, A. V. 2008. A Practical Shortest Path Algorithm with Linear Expected Time. SIAM Journal on

Computing 37, 1637–1655.
GOLDBERG, A. V. AND HARRELSON, C. 2005. Computing the Shortest Path: A* Search Meets Graph Theory.

In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05). SIAM,
156–165.

GUTMAN, R. J. 2004. Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized
for Road Networks. In Proceedings of the 6th Workshop on Algorithm Engineering and Experiments
(ALENEX’04). SIAM, 100–111.

HACON - INGENIEURGESELLSCHAFT MBH. 1984. http://www.hacon.de.
HART, P. E., NILSSON, N., AND RAPHAEL, B. 1968. A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107.
HOLZER, M., SCHULZ, F., AND WAGNER, D. 2008. Engineering Multilevel Overlay Graphs for Shortest-Path

Queries. ACM Journal of Experimental Algorithmics 13, 2.5, 1–26.
KIRCHLER, D., LIBERTI, L., AND CALVO, R. W. 2012. A Label Correcting Algorithm for the Shortest Path

Problem on a Multi-Modal Route Network. In Proceedings of the 11th International Symposium on
Experimental Algorithms (SEA’12). Lecture Notes in Computer Science Series, vol. 7276. Springer.

KIRCHLER, D., LIBERTI, L., PAJOR, T., AND CALVO, R. W. 2011. UniALT for Regular Language Constraint
Shortest Paths on a Multi-Modal Transportation Network. In Proceedings of the 11th Workshop on Algo-
rithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’11). OpenAccess
Series in Informatics (OASIcs) Series, vol. 20. 64–75.

LAUTHER, U. 2004. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks
with Geographical Background. In Geoinformation und Mobilität - von der Forschung zur praktischen
Anwendung. Vol. 22. IfGI prints, 219–230.

MENDELZON, A. O. AND WOOD, P. T. 1995. Finding Regular Simple Paths in Graph Databases. SIAM
Journal on Computing 24, 6, 1235–1258.

METROPOLITAN TRANSPORTATION AUTHORITY OF THE STATE OF NEW YORK. 1966. http://www.mta.
info/.

PAJOR, T. 2009. Multi-Modal Route Planning. M.S. thesis, Universität Karlsruhe (TH).
PTV AG – PLANUNG TRANSPORT VERKEHR. 1979. http://www.ptv.de.
PYRGA, E., SCHULZ, F., WAGNER, D., AND ZAROLIAGIS, C. 2008. Efficient Models for Timetable Informa-

tion in Public Transportation Systems. ACM Journal of Experimental Algorithmics 12, 2.4, 1–39.
RICE, M. AND TSOTRAS, V. 2011. Graph Indexing of Road Networks for Shortest Path Queries with Label

Restrictions. In Proceedings of the 37th International Conference on Very Large Databases (VLDB 2011).
69–80.

SANDERS, P. AND SCHULTES, D. 2005. Highway Hierarchies Hasten Exact Shortest Path Queries. In Pro-
ceedings of the 13th Annual European Symposium on Algorithms (ESA’05). Lecture Notes in Computer
Science Series, vol. 3669. Springer, 568–579.

SCHULZ, F., WAGNER, D., AND WEIHE, K. 2000. Dijkstra’s Algorithm On-Line: An Empirical Case Study
from Public Railroad Transport. ACM Journal of Experimental Algorithmics 5, 12, 1–23.

WAGNER, D., WILLHALM, T., AND ZAROLIAGIS, C. 2005. Geometric Containers for Efficient Shortest-Path
Computation. ACM Journal of Experimental Algorithmics 10, 1.3, 1–30.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.

