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Abstract. Given an urban public transportation network and historic
delay information, we consider the problem of computing reliable jour-
neys. We propose new algorithms based on our recently presented solu-
tion concept (Böhmová et al., ATMOS 2013), and perform an experi-
mental evaluation using real-world delay data from Zürich, Switzerland.
We compare these methods to natural approaches as well as to our re-
cently proposed method which can also be used to measure typicality
of past observations. Moreover, we demonstrate how this measure re-
lates to the predictive quality of the individual methods. In particular,
if the past observations are typical, then the learning-based methods are
able to produce solutions that perform well on typical days, even in the
presence of strong delays.

1 Introduction

When using public transportation to travel from a stop s to a stop t, we may
want to arrive at t no later than at time tA. Determining the right moment to
leave s is nontrivial: We want to reach t at time tA at the latest, but we don’t
want to leave s much too early. In an ideal situation, every bus and every tram
is on time, and it is sufficient to compute a journey that is planned to leave s
as late as possible but still reaches t at the latest at tA. However, in reality,
traffic can be congested and we should expect delays. Thus, we are looking for
a robust journey from s to t that arrives before time tA, but still leaves s at a
“reasonable” time. Notice that one may have additional preferences, such as low
travel costs, which we don’t consider for the sake of simplicity.

Many approaches to find a fastest journey in a given public transportation
network were considered in the literature, see e.g., a recent survey by Bast et
al. [1]. However, it follows from an empirical study performed by Firmani et al. [9]
on the transportation network of Rome that the timetable information and real
movement of the vehicles (based on GPS data) are only mildly correlated. Thus,
routing based solely on a scheduled timetable without considering the occurrence
of delays may lead to solutions of quite an unsatisfactory quality.

One approach to account for delays is using stochastic methods—the de-
lays are typically modeled as random variables on the edges of the network [4,
10, 15], or on each vehicle [6, 7]. For a given fixed timetable, Disser et al. [8]



extended Dijkstra’s algorithm for computing pareto-optimal multi-criteria jour-
neys. Müller-Hannemann and Schnee [14] used a dependency graph to predict
secondary delays caused by some current primary delays and gave routing strat-
egy with respect to these delays. Bast et al. [2] studied the robustness of transfer
patterns in the presence of delays. They argue that even when delays occur, a
reasonably good path is still included in the pattern. Dibbelt et al. [7] modeled
the delays using stochasticity and computed a decision graph with all the pos-
sibly relevant nodes and vehicles instead of a single path. Goerigk et al. [12]
assumed that a set of delay scenarios is provided, and showed how to compute
a journey that arrives on time in every scenario (strict robustness) or a journey
with fewest number of unreliable transfers having an almost optimal travel time
(light robustness). Goerigk et al. [11] considered journeys, within the setting of
delay scenarios, that can be updated if delays occur (recoverable robustness).

In [3], we introduced a different approach for finding robust journeys that
uses recorded observations from the past as input—we look for journeys that
performed well in the given past observations. Since this approach requires jour-
neys to be comparable in different past days, classical solutions concepts, such
as a path in the time-expanded or the time-dependant graph, are not suitable.

In the present paper we shortly describe our solution concept and several
methods for finding robust journeys, and perform an extensive experimental
study to evaluate these methods and to study different aspects related to robust
routing.

2 Model

Network Design. Let S be a set of stops. A line is an ordered sequence 〈v1, . . . , vk〉
of stops from S, where vi is visited directly before vi+1. We explicitly distin-
guish two lines with the same stops but opposite directions. A sequence of
lines 〈l1, . . . , lβ〉 with li 6= li+1 is called an st-route if there exist β + 1 stops
v0 := s, v1, . . . , vβ−1, vβ := t where both vi−1 and vi are stops on the line li, and
the line li visits vi−1 (not necessarily directly) before vi. We say that a transfer
between the lines li and li+1 occurs at vi. Notice that there might be more than
one possible transfer between two lines. For two stops s, t ∈ S and an integer
β ∈ N, let Rβst denote the set of all st-routes with at most β − 1 transfers.

Trips and Timetables. While the only information associated with a line itself
are its consecutive stops, it usually is operated multiple times per day. Each of
these concrete realizations is called a trip. A timetable stores for every stop v ∈ S
the arrival and departure times of every trip over a day. We have

1. a planned timetable Tplan which we assume to be periodic, i.e., every line
realized by some trip τ will be realized by a later trip τ ′ again (not necessarily
on the same day).

2. a set T of recorded timetables Ti that describe how various lines were op-
erated during a given time period (e.g., on a concrete day). These recorded
timetables are concrete executions of the planned timetable.



In the following, timetable refers both to the planned as well as to a recorded
timetable. We assume that timetables respect the FIFO property, i.e. two buses
or trams of the same line do not overtake each other.

Goal. Let s, t ∈ S be the departure and the target stop, and β ∈ N0 be the
maximum number of allowed transfers. A journey consists of a departure time
tD, a route 〈l1, . . . , lα〉 ∈ Rαst with α ≤ β − 1, and a sequence of transfer stops
〈v1, . . . , vα−1〉. Its intuitive interpretation is to leave stop s at time tD, take the
first arriving (trip of) line l1, and for every i ∈ {1, . . . , α− 1}, leave li at stop vi
and immediately take the next arriving trip of line li+1. Our goal is to compute
a recommendation in form of one or more (robust) journeys from s to t that will
likely arrive on time (i.e., at time tA or earlier) on a day for which the concrete
travel times are not known yet.

3 Robustness

Overview. In this section we present some approaches for computing robust
journeys. We note that, given a route r and a parameter γ ∈ N, we can use
the planned timetable Tplan to find a journey j along r that leaves s as late as
possible, but not later than time tA−γ. Thus, as soon as an algorithm identifies
both route r and a parameter γ, it can also reconstruct a corresponding journey.

Transfer Buffers. An näıve strategy to increase reliability of a journey is to
enforce an additional buffer time at each transfer or at the end of the trip. The
Buffer-ξ approach uses Tplan to compute a journey that is planned to leave s as
late as possible, arrives at t not later than time tA, and that has an additional
time of at least ξ at each transfer of the journey. This especially implies that if
a line li is planned to arrive at a transfer stop vi at time ti, then the next line
li+1 of the journey can only be taken at time ti + ξ or later.

A Similarity-Based Approach. In [3], we described how a general approach to
robust optimization designed by Buhmann et al. [5] can be applied for comput-
ing robust journeys. This section briefly recalls our method. Let T ∈ T be a
timetable and γ ∈ N0. An approximation set Aγ(T ) contains all routes r ∈ Rβst
for which T contains a journey along r that leaves s at time tA − γ or later,
and that arrives at t at time tA or earlier. We assume that Aγ(T ) is a mul-
tiset: a route r is contained as often as it is realized by a journey starting at
time tA − γ or later, and arriving at time tA or earlier (see Figure 1 for an
example). The parameter γ can be interpreted as the maximal time that we
depart before tA. If we consider approximation sets Aγ(T1), . . . , Aγ(Tk) for the
timetables T1, . . . , Tk ∈ T , every approximation set contains only routes that
are realized (by a journey) in the same time period [tA − γ, tA], and that are
therefore comparable among different approximation sets.

The approach in [3, 5] expects that exactly two timetables T1, T2 ∈ T are
given. To compute a robust route when only two timetables are available, we



Fig. 1. A timetable with five lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 (solid) and
r2 = 〈4, 5〉 (dotted). The x-axis denotes the stops {s, v1, v2, v3, t}, the y-axis the time.
If a trip leaves a stop vd at time td and arrives at a stop va at time ta, it is indicated
by a line segment from (vd, td) to (va, ta). Aγ(T ) contains r1 three times and r2 once.

consider Aγ(T1)∩Aγ(T2): the only chance to find a route that is likely to be good
in the future is a route that was good in the past for both recorded timetables.
The parameter γ determines the size of the intersection: if γ is too small, the
intersection will be empty. If γ is too large, the intersection contains many (and
maybe all) st-routes, and not all of them will be a good choice. Assuming that we
knew the “optimal” parameter γOPT , we could pick a route from AγOP T

(T1) ∩
AγOP T

(T2). Buhmann et al. [5] suggest to set γOPT to the value γ that maximizes

Sγ =
|Rβst||Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)| . (1)

The value SγOP T
measures how similar the timetables T1 and T2 are, so we

call it the similarity of T1 and T2. The Similarity-Rand approach selects a route r
from the intersection uniformly at random, while Similarity-MRR selects the most
frequent route r from the intersection. For both approaches we recommend to
depart at least γOPT units of time in advance. For more details, cf. [3, 5].

Function-Based Approaches. Let Ti ∈ T be a (recorded historic) timetable,
r = 〈l1, . . . , lα〉 ∈ Rαst be a route, τ1, . . . , τk be the trips of line l1 in Ti and
D(τj , s) be the departure time of the trip τj at s. We define δri as

min
j∈[1,k]

{
tA −D(τj , s)

∣∣∣∣ τj can be extended to a journey along r that
arrives in Ti at stop t at time tA or earlier

}
, (2)

which intuitively can be interpreted as follows: to arrive on time using route r
on the day at which Ti is realized, one has to leave s at least δri units of time
before the latest allowed arrival time tA. For a given function f : (R+)|T | → R,
we search for a route r ∈ Rαst that minimizes f(δr1, . . . , δ

r
|T |). In the following, we

describe some possible choices for f , and we abbreviate f(δr1, . . . , δ
r
|T |) by f(r).

For a number p ∈ [1,∞], the Norm-p estimator has the objective function

fp‖·‖
(
r) =

∥∥∥(δr1, . . . , δr|T |)∥∥∥
p
. (3)



It is easy to see that f1
‖·‖ selects all routes which in average (w.r.t. the recorded

timetables in T ) depart as late as possible. Moreover, f∞‖·‖ selects all routes mini-
mizing the maximum time between the departure and the latest allowed arrival
time tA. Such routes can alternatively be seen as routes maximizing the earliest
departure time necessary to arrive on time in all timetables in T . Thus, the
Norm-∞ estimator is related to the similarity-based approach from the previous
paragraph in the following way. Let γFI = min

{
γ > 0 | ⋂|T |i=1Aγ(Ti) 6= ∅

}
be the

smallest value for γ such that the intersection of all γ-approximation sets is non-
empty. One can observe that every route r contained in

⋂|T |
i=1AγF I

(Ti) minimizes
f∞‖·‖ and vice versa. We note that these methods relate to strict robustness [12],
but are based on a different solution concept, and learn from past observations
given as daily recorded timetables (instead of specifying a set of possible delays).

Now, let p ∈ [1,∞] be arbitrary and let rpj be a route minimizing fp‖·‖. To
determine how much in advance one has to depart when using rpj , we use our
previous observations. For p = 1, it is reasonable to set γpj = f1(rpj )/|T | since
f1
‖·‖ corresponds to averaging the departure times. For p = ∞, it is reasonable

to set γpj = f∞(rpj ). For every other p ∈ (1,∞), we simply scale the time linearly
with respect to p = 1 and p =∞. More concretely, we set

γpj = f∞(rpj )−
(
fp(rpj )− f∞(rpj )
f1(rpj )− f∞(rpj )

)
·
(
f∞(rpj )− f1(rpj )/|T |

)
. (4)

A different function-based estimator comes from the mean-risk model which
was just recently used for finding robust routes in private transportation [13]. Let
c ∈ R+

0 be the risk-aversion coefficient, where c = 0 corresponds to the situation
where the risk is being completely ignored. The objective function associated
with the Mean-Risk-c estimator is

f cMR

(
r) = Mean

(
δr1, . . . , δ

r
|T |
)

+ c ·
√

Variance
(
δr1, . . . , δ

r
|T |
)
. (5)

For a route rj minimizing f cMR, we simply set γj = f cMR(rj) as the time one has
to depart in advance. Notice that Mean-Risk-0 is equivalent to Norm-1.

4 Experimental Results

Experimental Setup. For an experimental evaluation of the methods proposed in
Section 3 we used the tram and bus network of the city of Zürich, Switzerland,
which has 401 stops and 292 lines. The recorded timetables T = {T1, . . . , T7}
were realized on seven consecutive Thursdays in the period from 4 April to 23
May 2013, ignoring 9 May (which was a public holiday and therefore had different
traffic and a different planned timetable).

We observed that in reality many of the 292 lines have the same ID (such
as, e.g., tram 6, bus 31, etc.). This is consequence of our modeling: not only do
we distinguish lines travelling in opposite directions, but there are also special



lines coming from or going to the depot, lines whose corresponding vehicle turns
around in advance, and lines that do not visit certain stops in the evening. Since
these special lines operate only on a low frequency and mostly only early in the
morning or late in the evening, we ignored them and focused on the “standard”
realizations. Hence we effectively used only 118 of the 292 lines.

For each of the following experiments, we generated 10,000 (30,000 for the
experiments on the number of transfers) departure/target pairs (s, t) ∈ S2 with
s 6= t uniformly at random. For each such pair (s, t), we computed the smallest
β ∈ N such that Rβst 6= ∅ and used this value for the maximum allowed number
of transfers. Notice that we have β = 1 even if there exists a direct st-route with
no transfers at all. In such a case, one might still prefer to take an alternative
route with only one transfer, probably leading to a shorter travel time. After
computing β and Rβst, we performed the corresponding experiment. We set the
target arrival time tA to 18:00 except for the experiments that study how the
behavior of the methods changes during the day. Unless otherwise stated, the
buffer methods used the planned timetable Tplan as input, the similarity-based
methods used T5 and T6 (recorded on 2 May and 16 May), and the function-based
methods used T1, . . . , T6 (recorded between 4 April on 16 May). Timetable T7

(recorded on 23 May) was used to assess the quality of the proposed journeys.
In our experiments we observed that the performance of Similarity-Rand and

Similarity-MRR is nearly identical, so our figures show only the behavior of the
latter variant, and for simplicity we refer to both variants by Similarity. Also,
Norm-2 performs similarly to Norm-Inf, so our figures mostly omit Norm-2. Fur-
thermore we observed that it rarely happened that a journey proposed by Buffer-
ξ, Similarity, Norm-Inf or Mean-Risk-1 arrived much too early or much too late
in the test instance. In all of these cases this was caused either because of a
highly non-typical situation in the input or the test instance (e.g., an accident),
or because a line was chosen that was not realized regularly (e.g., less than once
per hour). Hence we ignored all pairs (s, t) for which at least one of the methods
above computed a journey arriving more than one hour too early or too late.

The experiments were performed on one core of an Intel Core i5-3470 CPU
clocked at 3.2 GHz with 4 GB of RAM running Debian Linux 7.8. For enumer-
ating all st-routes in Rβst, we used the algorithm proposed in [3] which runs on
average 35ms. After computing Rβst, the buffer strategies have an average run-
ning time 1ms or less, the similarity-based methods 8ms, and the function-based
approaches 24ms. Notice that these running times are faster than the ones de-
scribed in [3], because we used a smaller network (without the agglomeration).

Arrival Rate, Departure Time and Standard Deviation on the Arrival Time.
Intuitively, an earlier departure time leads to a higher probability to arrive on
time (arrival rate), and achieving a higher arrival rate in a network with delays
entails a higher standard deviation on the arrival time. Figure 2 compares the
proposed methods with respect to these aspects. It shows that, independently
of the considered method, there is a clear trade-off between the departure time
and the arrival rate (a) as well as between the standard deviation of the arrival
time and the arrival rate (b).
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Fig. 2. Comparison of various methods: arrival rate vs. average departure time (a),
and arrival rate vs. standard deviation on the arrival time (b).

Both Buffer-ξ and Mean-Risk-c, methods that require a parameter, formed
Pareto optimal fronts in both (a) and (b). Clearly, Mean-Risk-c benefits from
the additional information from the input instances T1, . . . , T6 and it dominated
Buffer-ξ in both (a) and (b). The Similarity method needs no parameter tweaking,
it is based only on two past observations, and still proposed a solution which
departs not too early and gives a reasonable arrival rate. Notice that Norm-
Inf (the generalization of Similarity) also benefits from the knowledge of the six
past observations and with no parameter tweaking it produces a solution which
gives a very reasonable trade-off between departure time, arrival rate and the
standard deviation on the arrival time. Moreover, the solutions proposed by
Norm-Inf performed rather well compared to all the competitors (which require
parameter tweaking).

Influence of the Similarity between Input and Test Instances. We just saw that
journeys proposed by the similarity-based approaches performed rather poorly,
with respect to both arrival rate as well as standard deviation on the arrival
time. However, we have to take into account that these methods use only two
recorded timetables as input: if both differ substantially from the test instance,
then in general there is very little one can do. The generic approach by Buhmann
et al. [5] works well if both the input and the test instances are typical, i.e., if
their mutual similarity is high. Thus we investigate the impact of high and low
mutual similarities on the quality of the predictions.

First we note that the similarity SγOP T
does not only depend on the two

input instances but also on the origin s and the destination t, and on the target
arrival time tA. Thus, in the following experiments, we do not always use the
same timetables T5, T6 as input and T7 for testing, but select for every (s, t)
the timetables whose mutual similarities are as high or as low as possible. Let Υ
be the set of all triples of recorded timetables (Ti, Tj , Tk) ∈ T 3 where i, j, k are
mutually different. For a given pair (s, t) and two timetables Ti, Tj ∈ T , let Sstij
be the similarity of Ti and Tj with respect to s and t. We selected triples whose
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Fig. 3. Influence of low/high similarity on the arrival rate: comparing various meth-
ods (a). Influence of the target arrival time on the similarity of the planned timetable
and the test instance T7, and on the average similarity between the planned timetable
and each of the input instances T1, . . . , T6 (b).

minimum (or maximum, resp.) pairwise similarity is as high or or low as possible,

(Th1 , T
h
2 , T

h
3 ) = arg max

(Ti,Tj ,Tk)∈Υ
min

{
Sstij , S

st
ik, S

st
jk

}
(6)

(T l1, T
l
2, T

l
3) = arg min

(Ti,Tj ,Tk)∈Υ
max

{
Sstij , S

st
ik, S

st
jk

}
(7)

and used Th1 and Th2 as input and Th3 for testing, and for comparison, used T l1
and T l2 as input and T l3 for testing. Even though Mean-Risk-c and Norm-p could
handle more instances, they were given just the two mentioned instances.

Figure 3(a) shows that all methods benefit when the similarity of the three
instances is high. The arrival rates of both Norm-p and especially Similarity in-
crease significantly. We observed that Similarity outperforms Norm-p when the
similarity is low, which is reasonable: for a low similarity, the routes in the first
intersection of the approximation sets as well as the route that maximizes the
average departure time are too much influenced by the noise in the input in-
stances. However, Similarity can still let the approximation sets grow beyond the
first intersection so that more stable solutions are contained (which Norm-p can
not). On the other hand, if the similarity is high, then there is so few noise in
the data that Sγ is maximized already at the first γ for which the intersection
is non-empty, thus Similarity and Norm-p are nearly identical.

Of course these results cannot directly be used for designing an algorithm,
since the test instance is unknown. Nevertheless we believe that the results are in-
teresting because they demonstrate the power of the similarity-based approach.

Influence of the Target Arrival Time. Figure 4 shows how the behavior of the
methods, in terms of the arrival rate (a) and travel time (b), changes over the
day. In particular, we can observe a clear influence of the morning and evening
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Fig. 4. Comparison of various methods: Arrival rate vs. target arrival time (a), and
travel time vs. target arrival time (b).

rush hours. Interestingly, Figure 4(a) shows that the probability to arrive on
time of different methods is affected differently by the morning and evening rush
hour. Specifically, Buffer-ξ, which is based solely on the planned timetable Tplan,
seems to be greatly affected by both morning and afternoon rush hour. On the
other hand, the methods that use recorded timetables for suggesting a journey
are less affected by the afternoon rush hour than by the morning rush hour.

To understand this behavior, let us first look at Figure 3(b). The red curve
shows how the value of similarity of Tplan and the test instance T7 changes
during the day. In particular, we see a significant drop of similarity during rush
hours. Notably, the two peaks corresponding to morning and evening rush hour
are of the same height. This suggests that on the day corresponding to T7,
during the morning rush hour, there was a similar amount of irregularities, with
respect to Tplan, as during the evening one. On the other hand, the blue curve in
Figure 3(b) shows the changes during the day of the averaged value of similarity
of Tplan and each of the training instances T1−T6. Also there the similarity drops
during rush hours, but we clearly see that the morning peak is significantly lower
than the evening one. This suggests that in the six recorded timetables T1 − T6

used as training instances for the algorithms, the amount of irregularities (with
respect to Tplan) during morning rush hour was significantly lower than during
evening rush hour. Thus, when comparing the two curves, we see a significant
gap between them during the morning rush hour, but a relative match during the
rest of the day. This suggests that the test instance T7 contained during the day
a similar amount of irregularities as it is expected on a typical day (represented
by T1 − T6), with the only exception of the morning rush hour, where it was
much more irregular than on a typical day.

Let us now relate what we observed in Figures 3(b) and 4(a). Since Buffer-ξ
strategies are based solely on Tplan, any irregularities with respect to Tplan oc-
curring in T7 (captured by the red curve in Figure 3(b)) affect its arrival rate.
This explains why the arrival rate of Buffer-ξ (in Figure 4(a)) drops both in
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Fig. 5. Necessary parameter to achieve a specified arrival rate in T7 depending on the
target arrival time.

the morning and evening rush hour and exhibits two peaks of nearly the same
height. On the other hand, the methods that use the information from the past
observations (e.g., Mean-Risk-c) are trained to account for a certain amount of
irregularities (blue curve in Figure 3(b)). Since the situation in T7 in the evening
is typical, the solutions proposed by these methods are prepared for it and their
arrival rate (in Figure 4(a)) is almost not affected by the evening rush hour. In
contrast, morning rush hour causes their arrival rate to drop significantly and
this maps to the discrepancy of the red and blue curve in Figure 3(b).

In Figure 4(b) we observe that during peak hours, the travel time increases.
Interestingly, the required travel time does not depend on the method nor
whether it is on time or not. Thus, to achieve higher probability to arrive on
time, one has to depart earlier (as seen in Figure 2(a)), but does not need to
increase the time spent traveling.

Choice of the Parameters for Buffer-ξ and Mean-Risk-c. Figure 5(a) displays
the minimum value of the parameter ξ of Buffer-ξ that would be necessary to
achieve arrival rates of 80%, and 90% of the cases in T7, and how this value
changes in the course of a day. We see that, affected by the daily rush hours, this
parameter varies significantly, suggesting that the Buffer-ξ strategy needs a non-
trivial amount of parameter tweaking. We observe that the peaks corresponding
to morning and evening rush hours are of the same height. Again, we can directly
relate this behavior with the observed similarity of Tplan and T7 (captured by
the red curve in Figure 3(b)).

Similarly, Figure 5(b) displays the value of the coefficient c of Mean-Risk-c
that would be necessary to achieve arrival rates of 78.5%, 90%, and 92.5% in T7,
and its development during the day. We observe that this value is greatly affected
by the morning rush hour. On the other hand, the peak corresponding to the
evening rush hour is visible, but not too significant. Again, we link this behavior
of the value to the observed similarity of the training/test instances with the
planned timetable—the two curves captured by Figure 3(b). Recall that in the
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Fig. 6. Influence of the number of transfers on the arrival rate.

morning rush hour there is a gap between the two curves in Figure 3(b) indicating
that the situation in T7 was not typical with respect to previous observations.
As we see in Figure 5(b), quite large value of the coefficient c would be necessary
to compensate for the unexpected irregularities. In contrast, in a situation that
is typical (i.e., when the two curves in 3(b) approximately match), the Mean-
Risk-c method performs well and fine-tuning of the parameters is not crucial.
For instance, a coefficient c set to 1 leads to reasonably robust solutions.

Influence of the Number of Transfers. Figure 6(a) shows that the arrival rate
of Buffer-ξ is quite sensitive to the number of transfers. This suggests that the
number of transfers is another aspect (of possibly many aspects) which has to
be taken into account when searching for the best parameter for Buffer-ξ. In
contrast, Figure 6(b) shows that the influence of the number of transfers on the
arrival rate of the Mean-Risk-c method is almost negligible. Thus, there is no
need to fine-tune the coefficient c to compensate for this aspect. We remark that
we generally observed that the arrival rate of the methods based on the past
observations is not very sensitive to the number of transfers.

5 Conclusion

We observed a clear trade-off: to achieve higher probability to arrive on time in
a network full of delays, one has to depart earlier and expect higher standard
deviation on the arrival time. On the other hand, the average travel time itself
does not change with robustness or the choice of a routing method. The methods
based solely on the planned timetable, where the robustness is achieved by adding
buffer times, need a non-trivial parameter tweaking for which many aspects
need to be considered (time of the day, number of transfers, etc.). The methods
that learn from past benefit from the additional knowledge: If the test instance
is typical with respect to the past observations, these strategies perform well,
Mean-Risk-c does not need much fine-tuning, and Norm-Inf with no parameter



tweaking proposes a highly competitive solution with a reasonable trade-offs. We
have seen that similarity gives a good measure of the amount of irregularities
in the network and can help to detect typical situations. Notably, it considers
complex solutions (journeys), and thus it has a potential to capture behavior
that cannot be observed only locally. We believe that this measure is worth
further exploring, and by considering various aspects (e.g., how would different
approaches benefit if we use similarity to preselect typical instances for training?)
it can bring us even closer to the goal of robust routing.
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a recipient of a Google Europe Fellowship in Optimization Algorithms, and this
research is supported in part by this Google Fellowship. We wish to thank the
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erable robust timetable information. In: ATMOS. pp. 1–14 (2013)

12. Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., Schöbel, A.: The
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