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Abstract. Given a set of directed paths (called lines) L, a public trans-
portation network is a directed graph GL = (VL, AL) which contains
exactly the vertices and arcs of every line l ∈ L. An st-route is a pair
(π, γ) where γ = 〈l1, . . . , lh〉 is a line sequence and π is an st-path in GL

which is the concatenation of subpaths of the lines l1, . . . , lh, in this
order. We study three related problems concerning traveling from s to
t in GL. We present an optimal algorithm for computing an st-route
(π, γ) where |γ| (i.e., the number of line changes plus one) is minimum
among all st-routes. We show for the problem of finding an st-route
(π, γ) that minimizes the number of different lines in γ, even comput-
ing an o(log |V |)-approximation is NP-hard. Finally, given a constant
integer β, we present an algorithm for listing all st-paths π for which a
route (π, γ) with |γ| ≤ β exists, and show that the running time of this
algorithm is polynomial with respect to the input and the output size.

1 Introduction

Motivation. Given a public transportation network and two locations s and t,
a common goal is to find a fastest route from s to t, i.e. an st-route whose
travel time is minimum among all st-routes. A fundamental feature of any public
transportation information system is to provide, given s, t and a target arrival
time tA, a fastest st-route that reaches t no later than time tA. This task can
be solved by computing a shortest path in an auxiliary graph [13]. However, if
delays occur in the network (which often happens in reality), then the goal of
computing a robust st-route that likely reaches t on time, naturally arises.

The problem of finding robust routes received much attention in the litera-
ture (for a survey, see, e.g., [1]). Recently, Böhmova et al. [4] proposed a novel
approach for computing robust routes which requires to list all st-routes explic-
itly. Each different route provides an alternative, and exploring all alternatives
helps identifying the most robust routes. From a practical point of view it is
undesirable to list all st-routes for two reasons: (1) the number of listed routes
might be huge, leading to a non-satisfactory running time, and (2) many routes
might be inacceptable for the user, e.g., because they use many more transfers
than necessary. Having a huge number of transfers is not only uncomfortable,



Fig. 1. Consider a bus network with one-way streets induced by a line l1 = 〈v1, . . . , v12〉
(solid) and a line l2 = 〈v13, v2, v11, v14〉 (dotted). To travel from s = v1 to t = v12, it is
reasonable to travel to use l1 until v2, after that use l2 from v2 to v11 and from there
use l1 again.

but usually also has a negative impact on the robustness of routes, since each
transfer bears a risk of missing the next connection when vehicles are delayed.

Our Contribution. The main contribution of the present paper is an algorithm
that lists all st-routes for which the number of transfers does not exceed a given
constant. The running time of our algorithm is polynomial with respect to both
the input as well as the output size. As a subroutine of this algorithm we need to
compute a route with a minimum number of transfers. For this problem we also
provide an efficient algorithm which might be of independent interest. Moreover,
we show that finding a route with a minimum number of different lines cannot
be approximated within (1− ε) lnn unless NP ⊂ TIME(nO(log logn)).

We note that for simplicity, we write bus network instead of public transporta-
tion network. We also note that for buses it is reasonable to consider directed net-
works (instead of undirected ones), because real transportation networks might
contain one-way streets in which buses can only operate in a single direction.
Such a situation occurs in, e.g., the city of Barcelona.

Related Work. Listing combinatorial objects (such as paths, cycles, spanning
trees, etc.) in graphs is a widely studied field in computer science (see, e.g.,
[2]). The currently fastest algorithm for listing all st-paths in directed graphs
was presented by Johnson [10] in 1975 and runs in time O((n + m)(κ + 1))
where n and m are the number of vertices and arcs, respectively, and κ is the
number of all st-paths (i.e., the size of the output). For undirected graphs, an
optimal algorithm was presented by Birmelé et al. [3]. A related problem is the
K-shortest path problem, which asks, for a given constant K, to compute the
first K distinct shortest st-paths. Yen [16] and Lawler [12] studied this problem
for directed graphs. Their algorithm uses Dijkstra’s algorithm [6] and can be
implemented to run in time O(K(nm + n2 log n)) using Fibonacci heaps [9].
For undirected graphs, Katoh et al. [11] proposed an algorithm with running
time O(K(m+n log n)). Both algorithms use space O(Kn+m). Eppstein [7] gave
an O(K+m+n log n) algorithm for listing the first K distinct shortest st-walks,
i.e., paths where vertices are allowed to appear more than once. Recently, Rizzi
et al. [15] studied a different parameterization of the K shortest path problem



where they ask to list all st-paths with length at most α for a given α. The
difference to the classical K shortest path problem is that the lengths (instead
of the overall number) of the paths output is bounded. Thus, depending on the
value of α, K might be exponential in the input size. The running time of the
proposed algorithm coincides with the running time of the algorithm of Yen and
Lawler for directed graphs, and with the running time of the algorithm of Katoh
et al. for undirected graphs. However, the algorithm of Rizzi et al. uses only
O(n + m) space which is linear in the input size. All these algorithms cannot
directly be used for our listing problem, since we have the additional constraint
to list only paths for which a route of length at most β exists.

2 Preliminaries

Mathematical Preliminaries. Given a directed graph G = (V,A) and a ver-
tex v ∈ V , the in- and out-neighborhoods of v are denoted by N+

G (v) and
N−G (v), respectively. A walk in G is a sequence of vertices 〈v0, . . . , vk〉 such
that (vi−1, vi) ∈ A for all i ∈ [1, k]. For a walk w = 〈v0, . . . , vk〉 and a vertex
v ∈ V , we write v ∈ w if and only if there exists an index i ∈ [0, k] such that
v = vi. Analogously, for a walk w = 〈v0, . . . , vk〉 and an edge a = (u, v) ∈ A, we
write a ∈ w if and only if there exists an index i ∈ [1, k] such that u = vi−1 and
v = vi. The length of a walk w = 〈v0, . . . , vk〉 is k, the number of arcs in the
walk, and is denoted by |w|. A walk w of length |w| = 0 is called degenerate, and
non-degenerate otherwise. For two walks w1 = 〈u0, . . . , uk〉 and w2 = 〈v0, . . . , vl〉
with uk = v0, w1 · w2 denotes the concatenation 〈u0, . . . , uk = v0, . . . , vl〉 of w1

and w2. A path is a walk π = 〈v0, . . . , vk〉 such that vi 6= vj for all i 6= j in
[0, k], i.e. a path is a walk without crossings. Given a path π = 〈v0, . . . , vk〉,
every contiguous subsequence π′ = 〈vi, . . . , vj〉 is called a subpath of π. A path
π = 〈s = v0, v1, . . . , vk−1, vk = t〉 is called an st-path. Given two integers i, j, we
define the function δij (Kronecker delta) as 1 if i = j and 0 if i 6= j.

Lines and Bus Networks. Given a set of non-degenerate paths (called lines) L,
the bus network induced by L is the graph GL = (VL, AL) where VL contains
exactly the vertices v for which L contains a line l with v ∈ l, and AL contains
exactly the arcs a for which L contains a line l with a ∈ l. In the following, let
ML =

∑
l∈L |l| denote the sum of the lengths of all lines. In the rest of this paper,

we omit the index L from VL, AL and ML to simplify the notation. We note
that our definition of a bus network does not include travel times or timetables,
since we are only interested in the structure of the network. Our modeling differs
from classical graph-based models like the time-expanded or the time-dependent
model which incorporate travel times explicitly by adding additional vertices or
functions in the edges, respectively (see, e.g., [13, 14] for more information on
these models). However, for finding robust routes with the approach in [4], the
above definition is sufficient since travel times can be integrated at a later stage.

Given a path π = 〈v0, . . . , vk〉 in GL and a sequence of lines γ = 〈l1, . . . , lh〉,
we say that the pair (π, γ) is a route if π is equal to the concatenation of non-
degenerate subpaths π1, . . . , πh of the lines l1, . . . , lh, in this order. Notice that a



Fig. 2. Let l = 〈a, b, c, d, e, f, g〉 be a line (solid) and π = 〈s, b, c, v, e, t〉 be a path
(dotted). Then, l − π = 〈a, d, f, g〉 is the disjoint union of the degenerate lines 〈a〉
and 〈d〉, and the non-generated line 〈f, g〉.

line might occur multiple times in γ (see Figure 1); however, we assume that any
two consecutive lines in γ are different. For every i ∈ {1, . . . , h− 1}, we say that
a line change between the lines li and li+1 occurs. The length of the route (π, γ)
is |γ|, i.e. the number of line changes plus one. Given two vertices u, v ∈ V , a uv-
route is a route (π, γ) such that π is a uv-path. A minimum uv-route has smallest
length among all uv-routes in GL, and we define the L-distance dL(u, v) from u
to v as the length of a minimum uv-route. For a path π and a line l ∈ L, let l−π
be the union of (possibly degenerate) paths that we obtain after removing every
vertex v ∈ π and its adjacent arcs from l (see Figure 2). For simplicity, we also
call each of these unions of paths a line, although they might be disconnected
and/or degenerated. However, we note that all algorithms in this paper also work
for disconnected and/or degenerate lines. Given a path π and a set L of lines, let
L− π = {l − π | l ∈ L} denote the set of all lines in which every vertex from π
has been removed. Analogously to our previous definitions, given a path π and
a graph G, we define G− π as the graph from which every vertex v ∈ π and its
adjacent arcs have been removed.

Problems. An algorithm that systematically lists all or a specified subset of
solutions of a combinatorial optimization problem is called a listing algorithm.
The delay of a listing algorithm is the maximum of the time elapsed until the first
solution is output and the times elapsed between any two consecutive solutions
are output.

Problem 1 (Finding a minimum st-route). Given a bus network GL = (V,A)
and two vertices s, t ∈ V , find a minimum route from s to t.

Problem 2 (Finding an st-route with a minimum number of different lines).
Given a bus network GL = (V,A) and two vertices s, t ∈ V , find a route from s
to t that uses a minimum number of different lines from L.

A natural listing problem is to list all possible st-routes. However, this for-
mulation has the disadvantage that the number of possible solutions is huge,
and that there might exist many redundant solutions since a path π can give
rise to multiple distinct routes (it is enough that some arc of π is shared by two
lines). Moreover, from a practical point of view, also routes that contain many
line changes are undesirable. Thus, we formulate the listing problem as follows.



Fig. 3. Consider a bus network induced by the lines l1 = 〈s, a〉, l2 = 〈a, b〉, l3 = 〈b, t〉,
l4 = 〈d, e, s, c〉 and l5 = 〈e, t, c, d〉. The route r1 = (〈s, a, b, t〉, 〈l1, l2, l3〉) is an optimal
solution for Problem 1. It uses three different lines and two transfers. However the
optimal solution for Problem 2 is the route r2 = (〈s, c, d, e, t〉, 〈l4, l5, l4, l5〉) which uses
only two different lines but three transfers.

Problem 3 (Listing β-bounded st-paths). Given a bus network GL = (V,A), two
vertices s, t ∈ V , and β ∈ N, output all st-paths π such that there exists at least
one route (π, γ) with length at most β.

3 Finding an optimal solution

As a preliminary result we show that for undirected lines (i.e., undirected con-
nected graphs where every vertex has degree 2 or smaller) and undirected bus
networks, Problems 1 and 2 are equivalent and can be solved in time Θ(M).
After that we show that for directed lines and directed bus networks (as defined
in Section 2), Problem 1 can easily be solved using Dial’s algorithm [5] on an
auxiliary graph while Problem 2 is NP-hard to approximate.

For undirected networks, Problems 1 and 2 essentially are easy because lines
can always be traveled in both directions. Of course, this does not hold in the
case of directed graphs. Figure 3 gives an example of a directed bus network
where the optimal solutions for the two problems differ.

3.1 Undirected lines and undirected bus networks

Theorem 1. If all lines in L were undirected and GL was the undirected induced
bus network, then Problems 1 and 2 coincide and can be solved in time Θ(M).

Proof. Let r = (π, γ) with π = (π1, . . . , πh) and γ = (l1, . . . , lh) be an optimal
solution to Problem 2. We first show that there always exists an optimal solution
r̄ = (π̄, γ̄) that uses every line in γ̄ exactly once. Suppose that some line l
occurred multiple times in γ. Let i be the smallest index such that li = l, and let
j be the largest index such that lj = l. Let v be the first vertex on πi (i.e., the first
vertex on the subpath served by the first occurrence of l), and let w be the last
vertex on πj (i.e., the last vertex on the subpath served by the last occurrence
of l). Let πsv be the subpath of π starting in s and ending in v, πvw be a subpath
of l from v to w, and πwt be the subpath of π starting in w and ending in t. The
route r′ = (π′, γ′) with π′ = πsv · πvw · πwt and γ′ = (l1, . . . , li−1, l, lj+1, . . . , lh)



is still an st-route, it uses the line l exactly once, and overall it does not use
any new line. Thus, repeating the above argument for every line l that occurs
multiple times, we obtain a route r̄ = (π̄, γ̄) which uses every line in γ̄ exactly
once and which is still an optimal solution to Problem 2.

The above argument can also be applied to show that every optimal solution
(π, γ) to Problem 1 uses every line in γ exactly once. Now it easy to see that
there exists a solution to Problem 1 with exactly k line changes if and only if
there exists a solution to Problem 2 with exactly k+ 1 different lines. Therefore,
Problems 1 and 2 are equivalent. They can efficiently be solved as follows. For
a given bus network GL = (V,A), consider the vertex-line incidence graph G′ =
(V ·∪ L,A′) where

A′ = {{v, l} | v ∈ V ∧ l ∈ L ∧ line l contains vertex v}. (1)

Using a breadth-first search we can find a shortest st-path 〈s, l1, v1, . . . , vk−1, lk, t〉
in G′. Let γ = (l1, . . . , lk) be the sequence of lines in this path. Now we use a
simple greedy strategy to find a path π in the bus network GL such that π is the
concatenation of subpaths of l1, . . . , lk: we start in s, follow l1 in an arbitrary
direction until we find the vertex v1; if v1 is not found, we traverse l1 in the
opposite direction until we find v1. From v1 we search v2 on line l2, and continue
in the same fashion until we reach vertex t on line lk. Now the pair (π, γ) is a
route with a minimum number of transfers (and, with a minimum number of
different lines).

We have |V ·∪ L| ∈ O(M) and |A′| ∈ Θ(M), thus the breadth-first search
runs in time Θ(M). Furthermore, G′ can be constructed from GL in time Θ(M).
Thus, for undirected lines and undirected bus networks, Problems 1 and 2 can
be solved in time Θ(M). ut

3.2 Directed lines and directed bus networks

To solve Problem 1 for a directed bus network GL = (V,A), we first construct a
weighted auxiliary graph Γ [GL] = (V [Γ ], A[Γ ]) such that V ⊆ V [Γ ], and for any
two vertices s, t ∈ V the cost of a shortest st-path in Γ [GL] is exactly dL(s, t).
For a given vertex v ∈ V , let Lv ⊆ L be the set of all lines that contain v. We
add every vertex v ∈ V to V [Γ ]. Additionally, for every vertex v ∈ V and every
line l ∈ Lv, we create a new vertex vl and add it to V [Γ ]. The set A[Γ ] contains
three different types of arcs:

1) For every arc a = (u, v) in a line l, we create a traveling arc (ul, vl) with
cost 0. These arcs are used for traveling along a line l.

2) For every vertex v and every line l ∈ Lv, we create a boarding arc (v, vl) with
cost 1. These arcs are used to board the line l at vertex v.

3) For every vertex v and every line l ∈ Lv, we create a leaving arc (vl, v) with
cost 0. These arcs are used to leave the line l at vertex v.

Figure 4 shows an example of the graph construction.

Theorem 2. Problem 1 is solvable in time Θ(M).



Fig. 4. Consider a bus network GL with the vertices V = {a, . . . , g} induced by the
lines l1 = 〈a, d, e〉, l2 = 〈b, e, g〉 and l3 = 〈c, d, e, f〉. The figure shows the graph Γ [GL]
for this bus network. Dotted lines represent arcs of cost 0, solid lines represent arcs of
cost 1. The dotted circles represent meta-vertices of the corresponding stations.

Proof. Let GL = (V,A) be a bus network and s, t ∈ V be arbitrary. We compute
the graph Γ [GL] and run Dial’s algorithm [5] on the vertex s. Let πst be a shortest
st-path in Γ [GL]. It is easy to see that the cost of πst is exactly dL(s, t). Fur-
thermore, πst induces an st-path in GL by replacing every traveling arc (vl, wl)
by (v, w), and ignoring the arcs of the other two types. Analogously the line
sequence can be extracted from πst by considering the lines l of all boarding arcs
(v, vl) in πst (or, alternatively, by considering the lines l of all leaving arcs (vl, v)
in πst).

For every vertex v served by a line l, Γ [GL] contains at most two vertices
(namely, vl and v), thus we have |V [Γ ]| ∈ O(M). Furthermore, A[Γ ] contains
every arc a of every line, and exactly two additional arcs for every vertex vl.
Thus we obtain |A[Γ ]| ∈ O(M). Since the largest edge weight is C = 1 and
Dial’s algorithm runs in time O(|V [Γ ]|C+ |A[Γ ]|), Problem 1 is solvable in time
O(M) which is optimal since the input has size Θ(M). ut

In contrast to the previous Theorem, we will show now that finding a route
with a minimum number of different lines is NP-hard to approximate.

Theorem 3. Problem 2 cannot be approximated within (1−ε) lnn unless NP ⊂
TIME(nO(log logn)).



s = v0 v1 v2 v3 v4 t = v5

X = {x1, x2, x3, x4, x5}
S1 = {x2, x4, x5}

x1 x2 x3 x4 x5

l1

Fig. 5. The correspondence between a set S1 ⊆ X and a line li of the bus network.

Proof. We construct an approximation preserving reduction from SetCover.
The reduction is similar to the one presented in [17] for the minimum-color path
problem. Given an instance I = (X,S) of SetCover, where X = {x1, . . . , xn}
is the ground set, and S = {S1, . . . , Sm} is a family of subsets of X, the goal is
to find a minimum cardinality subset S ′ ⊆ S such that the union of the sets in
S ′ contains all elements from X.

We construct from I a set of lines L that induces a bus network GL = (V,A)
as follows. The set L consists of m lines and induces n+ 1 vertices. The vertex
set V = {v0, v1, . . . , vn} contains one vertex vi for each element xi of the ground
set X, plus one additional vertex v0. Let V O = 〈v0, v1, . . . , vn〉 be the order
naturally defined by V . The set of lines L = {l1, . . . , lm} contains one line for
each set in S. For a set Si ∈ S, consider the set of vertices that correspond to
the elements in Si and order them according to V O to obtain 〈vi1 , vi2 , . . . , vir 〉.
Now we define the line li as 〈vir−1, vir , vi(r−1)−1, vi(r−1) , . . . , vi1−1, vi1〉. Observe
that the set of arcs A induced by L contains two types of arcs. There are arcs
of the form (vi−1, vi) for some i ∈ [1, n]. These are the only arcs in A whose
direction agrees with the order V O, and we refer to them as forward arcs. For
all the other arcs (u, v) ∈ A we have u > v with respect to the order V O, and we
refer to these arcs as backward arcs. We note that every line li is constructed so
that the forward arcs of li correspond to those elements of X that are contained
in Si, and the backward arcs connect the forward arcs, in the order opposite
to V O (see Figure 5), thus making the lines connected.

Now, for s = v0 and t = vn, we show that an st-route with a minimum number
of different lines in the given bus network GL provides a minimum SetCover
for I, and vice versa. Since t is after s in the order V O, and the only forward arcs
in GL are of the form (vi−1, vi) for some i, it follows that any route from s to t in
GL goes via all the vertices, in the order V O. Thus, for each st-route r = (π, γ),
there exists an st-route r′ = (π′, γ′) which does not use any additional lines to
those used in r, but contains no backward arc. That is, γ′ is a subsequence of γ,
and π′ = 〈v0, v1, . . . , vn〉. In particular, there exists an st-route that minimizes
the number of different lines, and its path is 〈v0, v1, . . . , vn〉. Clearly, if a line li
is used in the st-route r, all the forward arcs in li correspond to the arcs of the
path in r and in this way the line li “covers” these arcs. Since there is a one to
one mapping between the lines and the sets in S, by finding an st-route with k
different lines, one finds a solution of the same size to the original SetCover.
Similarly each solution of size k to the original SetCover can be mapped to an
st-route with k lines. Thus the above reduction is approximation preserving, and
based on the inapproximability of SetCover [8] this concludes the proof. ut



4 Listing all solutions

Motivation. A näıve approach for solving Problem 3 is to use the algorithm in [4]
to generate all feasible line sequences γ, i.e., all line sequences γ with |γ| ≤ β
for which GL contains an st-path π such that (π, γ) is a route. After that, we
could compute the corresponding paths (there might be more than one) for each
feasible γ. However, this approach has two main drawbacks. First, the running
time of the algorithm is exponential in β, independently of K, the number of
listed paths. Second, for every path π there might be many line sequences γ such
that (π, γ) is route in GL. Since we want to output every path π at most once, we
need to store Ω(K) many paths. In the following, we present a polynomial delay
algorithm that uses only O(m) space where m is the number of edges in GL. It
is important to stress that the order in which the solutions are output by the
algorithm is fixed, but arbitrary.

Improved Idea. Let Pβst(L) denote the set of all st-paths π such that there exists
a route (π, γ) with length at most β in the bus network GL. Our algorithm works
similar to a depth first search and recursively partitions the solution space (i.e.,
Pβst(L)) at every call until the considered subspace is a singleton (i.e., contains
exactly one solution) and in that case outputs the corresponding path. At a
generic recursive step (u, πsu, G), let u be some vertex (initially, u = s), let πsu
be the su-path discovered so far (initially, πsu = 〈s〉), and let G be the graph
that we obtain after removing all vertices in πsu except u from GL (initially,
G = GL). By Pβ(πsu) we denote the set of all st-paths to be listed by the
current recursive call on (u, πsu, G), i.e. the subset of paths in Pβst(L) that have
prefix πsu. To bound the overall running time of the algorithm, we maintain the
invariant that the current partition (i.e., Pβ(πsu)) contains at least one solution.
Invariant: (I) There exists at least one ut-path πut in G that extends πsu so that
it belongs to Pβst(L), i.e. πsu · πut ∈ Pβst(L).
Base case: When u = t, output the st-path πsu.
Recursive rule: We observe that the set Pβ(πsu) is the union of the disjoint sets
Pβ(πsu · a) for each arc a = (u, v) ∈ G outgoing from u. Thus we perform a
recursive call on (v, πsu · a,G− 〈u〉) for every arc a ∈ G for which Pβ(πsu · a) is
not empty. This additional condition is required to maintain the invariant (I).

Checking whether to recurse or not. We recurse on (v, πsu · a,G − 〈u〉) only if
the invariant (I) is satisfied, i.e., if Pβ(πsu · a) is non-empty. For checking this
condition, we first set L′ = L−πsu and G′ = GL−πsu = GL′ . Let dGL

(πsu, a, li)
be the length of a minimum route (πsu · a, γ) in GL such that li is the last line
of γ. Let dL

′
G′(v, t, lj) be the L′-distance from v to t in G′ such that lj is the first

line used. For a vertex v ∈ V , let Lv ⊆ L be the set of all lines that contain an
outgoing arc from v. Analogously, for an arc a ∈ A, let La be the set of all lines
that contain a. Now, the set Pβ(πsu · a) is not empty if and only if

min
{
dGL

(πsu, a, li)− δij + dL
′

G′(v, t, lj) | li ∈ La and lj ∈ Lv
} ≤ β. (2)



Basically, min{dGL
(πsu, a, li) − δij + dL

′
G′(v, t, lj) | li ∈ La and lj ∈ Lv} is the

length of the minimum route that has prefix πsu · a.

Computing dGL
(πsu, a, li) and dL

′
G′(v, t, lj). We can use the solution for Problem 1

to compute the values dGL
(πsu, a, li) and dL

′
G′(v, t, lj). The values dGL

(πsu, a, li)
need to be computed only for arcs a = (u, v) ∈ A with v /∈ πsu (i.e., only for
arcs from u to a vertex v ∈ N−GL

(u) ∩ G′), and only for lines li ∈ La. Consider
the graph G′′ that contains every arc from πsu and every arc (u, v) ∈ A with
v /∈ πsu, and that contains exactly the vertices incident to these arcs. Now
we compute H = Γ [G′′] and run Dial’s algorithm on the vertex s. For every
v ∈ N−GL

(u) ∩ G′ and every line li ∈ L(u,v), the length of a shortest path in H

from s to vli is exactly dGL
(πsu, (u, v), li). For computing dL

′
G′(v, t, lj), we can

consider the L′-distances from t in the reverse graph G′R (with all the arcs and
lines in L′ reversed). Considering G′ instead of GL ensures that lines do not use
vertices that have been deleted in previous resursive calls of the algorithm. Thus
we compute Γ [G′R] and run Dial’s algorithm on the vertex t. Then, the length
of a shortest path in Γ [G′R] from t to vlj is exactly dL

′
G′(v, t, lj).

Algorithm. Algorithm 1 implements the recursive partition strategy. To limit the
space consumption of the algorithm, we do not pass the graph G′ as a parameter
to the recursive calls, but compute it at the beginning of each recursive call from
the current prefix πsu. For the same reason, we do not perform the recursive calls
immediately in step 8, but first create a list VR ⊆ V of vertices for which the
invariant (I) is satisfied, and only then recurse on (v, πsu · v) for every v ∈ VR.

Algorithm 1: ListPaths(u, πsu)

1 if u = t then Output(πsu); return
2 L′ ← L− πsu; G′ ← GL − πsu
3 Compute dGL

(πsu, (u, v), li) for each v ∈ N−GL
(u) ∩G′ and li ∈ L(u,v)

4 Compute dL
′

G′(v, t, lj) for each v ∈ N−GL
(u) ∩G′ and lj ∈ Lv

5 VR ← ∅
6 for v ∈ N−GL

(u) ∩G′ do
7 d← min{dGL

(πsu, (u, v), li) + dL
′

G′(v, t, lj)− δij | i ∈ L(u,v) and lj ∈ Lv}
8 if d ≤ β then VR ← VR ∪ {v}
9 for v ∈ VR do

10 ListPaths(v, πsu · (u, v))

Theorem 4. Algorithm 1 has delay O(nM logM), where n is the number of
vertices in GL. The total time complexity is O(nM logM ·K), where is K the
number of returned solutions. Moreover, the space complexity is O(m) where m
is the number of arcs in GL.



Proof. We first analyze the cost of a given call to the algorithm without including
the cost of the recursive calls performed inside. Theorem 2 states that steps 3
and 4 can be performed in time O(M). We will now show that steps 6–8 can
be implemented in time O(M logM). Notice that for a fixed prefix πsu and
a fixed vertex v ∈ N−GL

(u) ∩ G′, for computing the minimum in step 7, we
need to consider only the values dGL

(πsu, (u, v), li) that are minimum among all
dGL

(πsu, (u, v), ·), and only the values dL
′

G′(v, t, lj) that are minimum among all
dL
′

G′(v, t, ·). Let Λv ⊆ L(u,v) be the list of all lines li for which dGL
(πsu, (u, v), li)

is minimum among all dGL
(πsu, (u, v), ·). Analogously, let Λ′v ⊆ Lv be the list of

all lines lj for which dL
′

G′(v, t, lj) is minimum among all dL
′

G′(v, t, ·). Let

µv = min
{
dGL

(πsu, (u, v), li) | li ∈ Λv
}

(3)

µ′v = min
{
dL
′

G′(v, t, lj) | lj ∈ Λ′v
}

(4)

be the minimum values of dGL
(πsu, (u, v), ·) and dL

′
G′(v, t, ·), respectively. Both

values as well as the lists Λv and Λ′v can be computed in steps 3 and 4, and
their computation only takes overall time O(M). Now the expression in step 7
evaluates to µv +µ′v if Λv ∩Λ′v = ∅, and to µv +µ′v−1 otherwise. Assuming that
Λv and Λ′v are ordered in increasing order by the index of the contained lines li, it
can easily be checked with |Λv|+ |Λ′v| ≤ |L(u,v)|+ |Lv| many comparisons if their
intersection is empty or not. Using this method, each of the values dGL

(πsu, ·, ·)
and dL

′
G′(·, t, ·) is accessed exactly once (when computing Λv and Λ′v), and since

each of these values has a unique corresponding vertex in the graphs H and
Γ [G′R], there exist at most O(M) many such values. Thus, the running time of
the steps 6–8 is bounded by O(M logM) which is also an upper bound on the
running time of Algorithm 1 (ignoring the the recursive calls). Notice that we
only obtain the upper bound O(M logM) instead of O(M) because the lists Λv
and Λ′v have to be sorted.

We now look at the structure of the recursion tree. The height of the recursion
tree is bounded by n, since at every level of the recursion tree a new vertex is
added to the current solution and any solution has at most n vertices. In that
way, the path between any two leaves in the recursion tree has at most 2n
nodes. Since each recursive call outputs a solution, the time elapsed between
two solutions being output is O(nM logM).

For analyzing the space complexity, observe that L′, G′ and the values
dGL

(πsu, (u, v), li) and dL
′

G′(v, t, lj) can be removed from the memory after step 8
since they are not needed any more. Thus, we only need to store the lists VR
between the recursive calls. Consider a path in the recursion tree, and for each
recursive call i, let ui be the vertex u and V iR be the list VR of the i-th recur-
sive call. Since V iR contains only vertices adjacent to ui and ui is never being
considered again in any succeeding recursive call j > i, we have∑

i

|V iR| ≤ m, (5)

which proves the space complexity of O(m). ut
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