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Abstract. Urban road networks are typically represented as directed graphs equipped with
some metric which assigns distance functions (rather than scalars) to the arcs, e.g., rep-
resenting the traversal times as functions of the departure time from their tails. Such a
metric is usually created by sampling the distance values of all the arcs at certain points
in time, and then considering the interpolants of these sampled values as the correspond-
ing (periodic, continuous, piecewise linear) distance functions of the arcs. Distance oracles
and speedup techniques aim to create appropriate traffic metadata (distance summaries or
search profiles) during a preprocessing phase, in order to be able to respond to shortest-
path queries significantly faster than a typical Dijkstra run. Distance oracles focus mainly
on provable worst/average case guarantees on preprocessing time/space complexities, query
time complexity and approximation ratio. Speedup techniques emphasize on the thorough
experimental evaluation of their performance on real large-scale road network instances.

In this work, we experimentally evaluate the only time-dependent distance oracles existing
so far on a truly real-world time-dependent data set (city of Berlin). In particular: (i) We
present a new time-dependent distance oracle whose preprocessing phase is based on a new
approximation technique for creating approximate distance summaries, that is a quite simple
and fast one-to-all approximation method. (ii) We conduct an extensive experimental study
with three query algorithms and six different landmark sets, achieving remarkable speedups
over the time-dependent variant of Dijkstra’a algorithm.

We describe here all the implementation details concerning the digestion of the raw traffic
data, along with several heuristic improvements of both the preprocessing phase and the
query algorithms, which are crucial for their experimental analysis. Our results are quite
encouraging, achieving speedups by two orders of magnitude versus a typical time-dependent
Dijkstra run, while in the vast majority of the queries the exact solution is discovered.

Date: September 24, 2014.
1991 Mathematics Subject Classification. 05C85: Graph algorithms; 05C12: Distance in graphs; 68W25:

Approximation algorithms; 68Q25: Analysis of algorithms and problem complexity.
Key words and phrases. Time-dependent shortest paths, FIFO property, distance oracles, route planning.
? Partially supported by EU FP7/2007-2013 under grant agreements no. 288094 (eCOMPASS) and

no. 609026 (MOVESMART), and partially done while S. Kontogiannis and C. Zaroliagis were visiting KIT.

† Computer Science & Engineering Dept., University of Ioannina, 45110 Ioannina, GREECE.
kontog@cs.uoi.gr, gioulycs@gmail.com.
‡ Computer Engineering & Informatics Dept., University of Patras, 26500 Rio, GREECE.

{michalog,paraskevop,zaro}@ceid.upatras.gr.
� Computer Technology Institute and Press “Diophantus”, 26504 Rio, GREECE.
G Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, GERMANY.

dorothea.wagner@kit.edu .



ANALYSIS & EXPERIMENTAL EVALUATION OF TIME-DEPENDENT DISTANCE ORACLES 1

1. Introduction

Distance oracles are succinct data structures encoding shortest path information among a
carefully selected subset of pairs of vertices in a graph. The encoding is done in such a way
that the oracle can efficiently answer shortest path queries for arbitrary origin-destination
pairs, exploiting the preprocessed data and/or local shortest path searches. A distance oracle
is exact (resp. approximate) if the returned distances by the accompanying query algorithm
are exact (resp. approximate). A bulk of important work (e.g., [26, 25, 21, 22, 27, 28, 3]) is
devoted to constructing distance oracles for static (i.e., time-independent), mostly undirected
networks in which the arc-costs are fixed, providing trade-offs between the oracle’s space and
query time and, in case of approximate oracles, also of the stretch. For an overview of distance
oracles for static networks, the reader is deferred to [24] and references therein.

Considerable experimental work on routing in large-scale road networks has also appeared
in recent years, with remarkable achievements that have been demonstrated on continental-
size road-network instances. The goal is again to preprocess the distance metric and then
propose query algorithms (known as speedup techniques) for responding to shortest path
queries in time that is several orders of magnitude faster than a conventional Dijkstra run.
An excellent overview of this line of research is provided in [4]. Again, the bulk of the literature
concerns static distance metrics, with only a few exceptions (e.g., [6, 12, 19]).

In many real-world applications, the arc costs may vary as functions of time (e.g., when
representing travel-times) giving rise to time-dependent network models. A striking example is
route planning in road networks where the travel-time for traversing an arc a = uv (modelling
a road segment) depends on the temporal traffic conditions while traversing uv, and thus
on the departure time from its tail u. The time-dependent model turns out to be more
appropriate for exploiting (the vast) historic traffic information in order to provide route
plans that will adapt to the departure-time from the origin [14, 17].

Computing a time-dependent shortest path for a triple (o, d, to) of an origin-destination
pair (o, d) ∈ V × V , and departure-time to from the origin, has been studied since a long
time ago (see e.g., [7, 13, 20]). The shape of arc-travel-time functions and the waiting policy
at vertices may considerably affect the tractability of the problem [20]. It is customary to
consider continuous, piecewise linear (pwl) interpolants of periodically sampled points as arc-
travel-time functions. Regarding the waiting policy, the customary assumption is that each
arc obeys the FIFO property (non-FIFO policies may lead to NP−hard cases [23]). If arc-
travel-time functions possess the FIFO property, then the problem can be solved in polynomial
time by a straightforward variant of Dijkstra’s algorithm (we call it TDD), which relaxes arcs
by computing the arc costs “on the fly”, when settling their tails [13].

1.1. Related work. Until recently, most of the previous work on the time-dependent shortest
path problem concentrated on computing an optimal origin-destination path providing the
earliest-arrival time at destination when departing at a given time from the origin, neglecting
the computational complexity of providing succinct representations of the entire earliest-
arrival-time functions, for all departure-times from the origin.

The complexity of succinctly representing earliest-arrival-time functions was first ques-
tioned in [8, 10, 9], but was solved only recently by a seminal work [15] which, for FIFO-
abiding pwl arc-travel-time functions, showed that the problem of succinctly representing
such a function for a single origin-destination pair has space-complexity (1 + K) · nΘ(logn),
where n is the number of vertices and K is the total number of breakpoints (or legs) of all the
continuous, pwl arc-travel-time functions. Polynomial-time algorithms (or even PTAS) for
constructing point-to-point (1 + ε)-approximate distance functions are provided in [15, 11],
delivering point-to-point travel-time values at most 1 + ε times the true values. Such approx-
imate distance functions possess succinct representations, since they require only O(1 +K)
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breakpoints per origin-destination pair. It is also easy to verify that K could be substituted
by the number K∗ of concavity-spoiling breakpoints of the arc-travel-time functions (i.e.,
breakpoints at which the arc-travel-time slopes increase).

Due to the hardness of providing succinct representations of exact shortest-travel-time func-
tions, the only realistic alternative is to use approximations of these functions for computing
(in a preprocessing phase) distance summaries from central vertices to all other vertices,
which is a crucial ingredient for constructing distance oracles in time-dependent networks.

Providing distance oracles for time-dependent networks with provably good approximation
guarantees, small preprocessing-space complexity and sublinear query time complexity, has
only been recently investigated in [16, 17]. In particular, the first approximate distance
oracle for sparse directed graphs with time-dependent arc-travel-times was presented in [17],
which provides (1 +σ)−approximate distances in query-time that is sublinear in the network
size, and preprocessing time and space that are subquadratic in the network size, when the
total number of concavity-spoiling breakpoints in the instance is sufficiently small, e.g. when
K∗ ∈ O(polylog(n)). The oracle uses a new one-to-all method (called Bisection – BIS) to
produce (1+ε)−approximate landmark-to-vertex distance summaries, for a randomly selected
landmark set. It also guarantees either constant approximation ratio (a.k.a stretch) via the
FCA query algorithm, or stretch at most 1 + σ = 1 + ε (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
via the RQA query

algorithm, where ψ is a fixed constant depending on the characteristics of the arc-travel-time
functions but is independent of the network size. r ∈ O(1) is the recursion depth of RQA.

A few time-dependent variants of well-known speedup techniques for road networks have
also appeared in the literature (e.g., [6, 12, 19]). All of them were experimentally evaluated on
synthetic time-dependent instances of the European and German road networks, with impres-
sive performances. For example, in [6] methods are provided that respond to arbitrary queries
of the German road network (4.7 million vertices and 10.8 million arcs) in less than 1.5ms
and preprocessing space requirements of less than 1GB. A point-to-point distance summary
can also be constructed in less than 40ms, when the departure times interval is a single day.
For point-to-point approximate distance summaries, with experimentally observed stretch at
most 1%, the construction time is less than 3.2ms. Their approach is based on the so-called
time-dependent Contraction Hierarchies [5], along with several heuristic improvements both
on the preprocessing step and on the query method.

1.2. Our Contribution. Our goal in this work is to provide a thorough experimental eval-
uation of the time-dependent distance oracles that were proposed and analysed in [17]. The
main obstacle towards this direction is the dependence of the required preprocessing time and
space on the number K∗ of concavity-spoiling breakpoints in the raw traffic data.

Our first contribution is a new time-dependent distance oracle, whose preprocessing phase
for computing landmark-to-vertex approximate distance summaries is based on a new ap-
proximation technique [16], the trapezoidal (TRAP) method. This method is significantly
simpler than BIS and reduces dramatically the required space. In particular, TRAP avoids
any kind of dependence on the number K∗ of concavity-spoiling breakpoints, which are com-
pletely neglected during the preprocessing and need not be computed at all.

Our second contribution is an extensive experimental study with three query algorithms
and six different landmark sets, achieving remarkable speedups over TDD on truly real-world
time-dependent data sets. More specifically, we experimentally compare FCA, RQA, and a
new quite simple query algorithm, FCA+, whose approximation guarantee is similar to that
of FCA, but which in practice behaves very well, sometimes even better than RQA.

We conduct our experimental evaluation on the historic traffic data for the city of Berlin,
kindly provided to us by TomTom within [14]. The input instance is a directed graph with
478, 989 vertices and 1, 134, 489 arcs. We created six different landmark sets, with either 1000
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or 2000 landmarks, and which were chosen either randomly, or as the boundary vertices of
appropriate METIS [1] or KaHIP [2] partitions of the Berlin graph. The speedups that we
achieve over the average time of a TDD run, vary from 397 times (using 1000 randomly chosen
landmarks and FCA), to 723 times (using 2000 randomly chosen landmarks and FCA), for
10.3ms resolution in the approximate distance summaries. In both cases the average relative
error is less than 1.634%. Analogous speedups are observed if our quality measure is not
the computational time, but the (machine-independent) number of settled vertices (a.k.a.
Dijkstra rank) of the query algorithms. The best possible observed relative error is indeed
much better than the theoretical bounds provided by the analysis of the query algorithms.
In particular, it is as small as 0.382% for 1000 KaHIP landmarks, or 0.298% for 2000 KaHIP
landmarks, for 10.3ms resolution in the approximate distance summaries. The corresponding
speedups are more 38 times for the former, and 118 times for the latter.

If we focus on the absolute response times, we manage to provide responses (via FCA) to
arbitrary queries, in times less than 0.4ms for all landmark sets that we used, with relative
error no more than 2.201%. For relative error at most 0.701%, we can provide answers in no
more than 1.345ms using FCA+, for all the considered landmark sets.

As for the preprocessed data, we create all the 300K approximate distance summaries from
a given landmark in average sequential time less than 40sec. That is, the amortized time per
approximate distance summary is no more than 0.134ms.

1.3. Paper Organization. Section 2 provides some notation and preliminaries for time-
dependent network instances. Section 3 provides an overview of the TRAP approximation
methods for producing approximate distance summaries, the preprocessing phase for produc-
ing all landmark-to-vertex approximate distance summaries, and the query algorithms FCA,
FCA+ and RQA, to be experimentally tested. Section 4 presents the results of our exper-
imental experimental evaluation on the real instance of Berlin. Section ?? provides some
concluding remarks and directions for further research and experimentation.

2. Preliminaries

We consider directed graphs G = (V,A) with |V | = n vertices and |A| = m arcs, where each
arc a ∈ A is accompanied with a continuous, periodic, piecewise linear (pwl) arc-travel-time
(or arc-delay) function defined as follows: ∀k ∈ N,∀t ∈ [0, T ), D[a](kT + t) = d[a](t), where
d[a] : [0, T ) → [1,Ma] such that limt↑T d[a](t) = d[a](0), for some fixed integer Ma denoting
the maximum possible travel time ever seen at arc a. Observe that the minimum arc travel
time value ever seen in the entire network is also normalized to 1. Since every arc-travel-time
function D[a] is periodic, continuous and pwl, it can be represented succinctly by a number
Ka of breakpoints defining d[a]. Let K =

∑
a∈AKa be the number of breakpoints to represent

all the arc-travel-time functions in G, let Kmax = maxa∈AKa, and let K∗ be the number of
concavity-spoiling breakpoints, i.e., those in which the arc-travel-time slopes increase. Clearly,
K∗ ≤ K, and K∗ = 0 for concave pwl arc-travel-time functions.

The arc-arrival-time functions are defined as Arr[a](t) = t + D[a](t), ∀t ∈ [0,∞). The
path-arrival-time function of a given path p = 〈a1, . . . , ak〉 in G (represented as a sequence of
arcs) is defined as the composition of the arc-arrival-time functions for the constituent arcs:
Arr[p](t) = Arr[ak](Arr[ak−1](· · · (Arr[a1](t)) · · · )) . The path-travel-time function is then
D[p](t) = Arr[p](t)−t. Finally, between any origin-destination pair of vertices, (o, d) ∈ V ×V ,
Po,d denotes the set of all od−paths in G, and the earliest-arrival-time / shortest-travel-
time functions are defined as follows: ∀to ≥ 0, Arr[o, d](to) = minp∈Po,d {Arr[p](to)} and
D[o, d](to) = minp∈Po,d {D[p](to)} = Arr[o, d](to)− to .

For any arc a = uv ∈ A and any departure-times subinterval [ts, tf ) ⊆ [0, T ), we consider
the free-flow and maximally-congested travel-times for this arc, defined as follows:
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• Free-flow arc-travel-time: D[uv](ts, tf ) := mintu∈[ts,tf )D[uv](tu).
• Maximally-congested arc-travel-time: D[uv](ts, tf ) := maxtu∈[ts,tf )D[uv](tu).

We also denote D[uv] := D[uv](0, T ) and D[uv] := D[uv](0, T ). When [ts, tf ) = [0, T ) then
we refer to the static free-flow and full-congestion distance metrics D and D, respectively.
These definitions also extend naturally to path-travel-times and shortest-travel-times between
arbitrary origin-destination pairs of vertices.

For a point (o, to) ∈ V × [0, T ) and β ∈ N, let B[o](to;β) be the set of the first β vertices
settled by TDD, when growing a ball from (o, to). Analogously, B[o](β) and B[o](β) are the
corresponding sets under the free-flow and fully-congested metrics D and D, respectively.

For an arbitrary pair (o, d) ∈ V × V of origin-destination vertices, a succinctly represented
(1 + ε)-upper-approximation of ∆[o, d], is a continuous pwl function, hopefully with a small
number of breakpoints, such that ∀to ≥ 0, D[o, d](to) ≤ ∆[o, d](to) ≤ (1 + ε) ·D[o, d](to) .

We adopt two assumptions from [17], and one additional assumption from [16], on the kind
of shortest-travel-time functions in the network. All of them are quite natural and justified
in urban-traffic road networks. Actually, we conducted an experimental analysis on the real-
world instance of Berlin that we had at our disposal, which indeed verified the validity of the
assumptions. Technically, they allow the smooth transition from static distance metrics on
undirected graphs towards time-dependent distance metrics on directed graphs. For a more
thorough justification, the reader is deferred to [17, 16].

The first assumption asserts that the partial derivatives of the shortest-travel-time functions
between any origin-destination pair are bounded in a fixed interval [Λmin,Λmax].

Assumption 2.1 (Bounded Travel-Time Slopes). There are constants Λmin ∈ [0, 1) and
Λmax ≥ 0 s.t.: ∀(o, d) ∈ V × V, ∀t1 < t2,

D[o,d](t1)−D[o,d](t2)
t1−t2 ∈ [−Λmin,Λmax] .

It is mentioned that the lower-bound of −1 in the shortest-travel-time function slopes
is indeed a direct consequence of the FIFO property, which is typically assumed to hold in
several time-dependent networks and allows for the use of time-dependent variants of classical
shortest-path computation techniques, such as Dijkstra’s and Bellman-Ford algorithms. Our
experimental analysis on the historic traffic data for the city of Berlin, in which the maximum
value of Λmax in a series of 10000 randomly chosen origin-destination pairs was always less
than 0.19.

The second assumption asserts that for any given departure time, the shortest-travel-time
from o to d is not more than a constant ζ ≥ 1 times the shortest-travel-time in the opposite
direction (but not necessarily along the reverse path). This is quite natural in road networks,
and it was indeed justified by our experimental analysis on the historic traffic data for the
city of Berlin, in which the maximum value of ζ in a series of 10000 randomly chosen origin-
destination pairs was always less than 1.5.

Assumption 2.2 (Bounded Opposite Trips). There is a constant ζ ≥ 1 such that: ∀(o, d) ∈
V × V, ∀t ∈ [0, T ), D[o, d](t) ≤ ζ ·D[d, o](t) .

An additional assumption, which will only be considred occasionally (and this will be
explicitly stated in such cases), concerns the relation of the Dijkstra ranks (i.e., number of
settled vertices, up to termination) of cocentric balls in the network, with respect to the
(static) free-flow metric that implied by our time-dependent instance:

Assumption 2.3 (Growth of Free-Flow Dijkstra Ranks). For any vertex ` ∈ V , and pos-
itive integer F ∈ N, assume growing a (static) Dijkstra ball B[`](F ) around `. Let R[`] =
max{D[`, v] : v ∈ B[`](F )} be the largest free-flow travel-time from ` to any other vertex in
B[`](F ). Also let R[`] = max{D[`, v] : v ∈ B[`](F )} be the largest full-congestion travel-time
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from ` to any other vertex in B[`]. Finally, let B′ = {v ∈ V : D[`, v](0, T ) ≤ R[`]} be the
free-flow ball around ` with radius R[`]. Then it holds that |B′[`]| ∈ O(F · polylog(F )).

This assumption has also been experimentally tested in the Berlin instance, for various
initial ball sizes. In all cases the scaling factor of the ball size was less than 2.

3. Time-Dependent Oracles

In [16] time-dependent distance oracles are proposed and theoretically analysed, which
preprocess distances using the novel TRAP method for approximating distance summaries
and use one of two query algorithms, FCA, or RQA. The novelty of these oracles is that
they assure subquadratic storage space and sublinear query complexity, irrespectively of the
degree of disconcavity of the distance metric, measured by the value of K∗. In this work we
experimentally evaluate all these oracles, and also experiment with another query algorithm,
called FCA+, that we propose.

All the oracles start by selecting a subset L ⊂ V of landmarks. This can be done either
randomly (e.g., by deciding for each vertex i.u.r with probability ρ ∈ (0, 1) whether it belongs
to L), or by selecting L from the vertices in the cut sets provided by some graph partitioning
algorithm. In this work we consider appropriate METIS and KaHIP partitions of the Berlin
graph. After L is determined, a preprocessing phase is performed in which, ∀` ∈ L and
∀v ∈ V , all `-to-v (1 + ε)−upper-approximating travel-time functions (approximate distance
summaries) are computed and stored, based on the TRAP method. Consequently, one of the
three different query algorithms, FCA, FCA+, or RQA is used for providing in sublinear
time guaranteed approximations of the actual shortest travel time values, for arbitrary queries
(o, d, to) ∈ V × V × [0, T ). In a final step, a path-construction step is run to provide an od-
path with actual path-travel-time that is at most the predicted one. In this section, we briefly
review the above mentioned ingredients of our oracles.

3.1. Approximate Distance via the Trapezoidal Method. TRAP splits the entire pe-
riod [0, T ) into small, consecutive subintervals of length τ > 0 each. It then provides a crude
approximation of the unknown distance functions in each interval, solely based on Assump-
tion 2.1 concerning the minimum slope −Λmin and maximum slope Λmax of shortest-travel-
time functions in the instance. After sampling the travel-time values of each destination v ∈ V ,
for a given origin u ∈ V , we consider each pair of consecutive sampling times ts < tf and the
semilines with slopes Λmax from ts and −Λmin from tf . The considered upper-approximating
function D[u, v] within [ts, tf ) is then (a refinement of) the lower-envelope of these two lines.
Analogously, an lower-approximating function D[u, v] is the upper-envelope of the semilines
that pass through ts with slope −Λmin, and from tf with slope Λmax. Depending on the value
of the absolute error and the minimum possible value of D[u, v] in this interval, we can decide
whether the D[u, v] is a (1 + ε)-upper-approximating function of D[u, v]. Any destination
vertex that has such an approximating function for each subinterval of [0, T ), clearly has
a (1 + ε)-upper-approximating functions for the entire period. The proof of correctness of
TRAP is provided in Section A, while a more detailed discussion can be found in [16].

The problem with the trapezoidal approximation is that, by construction, it is not possible
to provide approximate distance functions of a given approximation guarantee 1 + ε, for
“nearby” destination vertices which are too close to the origin. In [16] these “nearby” vertices
of each landmark are either handled by the BIS method [17], or are left to be handled on
the fly. Here we resolve this issue exclusively with TRAP, starting with a large subinterval
length, and recursively dividing by 2 the lengths of those subintervals containing vertices which
have not been sufficiently approximated yet, until all landmark-to-vertex (1 +ε)-approximate
distance summaries have been successfully created. This proved to be extremely space- and
time-efficient in practice.
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3.2. Query Algorithms. For computing arbitrary origin/destination/departure-time queries
(o, d, to), three approximation algorithms are considered. The first one, called FCA, is a sim-
ple sublinear -time constant-approximation algorithm, which works as follows. It grows an
outgrowing ball Bo ≡ B[o](to) = {x ∈ V : D[o, x](to) < D[o, `o](to)} from (o, to) by running
TDD until either d or the closest landmark `o ∈ arg min`∈L{D[o, `](to)} is settled. FCA
returns either the exact travel-time value, or the approximate travel-time value via `o with
an 1 + ε + ψ approximation guarantee, where ψ is a constant depending on ε, ζ, and Λmax,
but not on the size of the network.

The second query algorithm, called FCA+, is a variant of FCA which keeps growing a
TDD ball from (o, to) until either d or a given number N of landmarks is settled. FCA+

returns the smallest via-landmark approximate travel-time value, along all these settled land-
marks. The approximation guarantee is the same as that of FCA, but in practice it performs
quite well, in certain cases even better than RQA, as it will be demonstrated in the experi-
mental evaluation.

The third algorithm, called RQA, improves the approximation guarantee of the chosen
od−path to 1 + ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
, by exploiting carefully a number r ∈ N (called the recursion

budget) of recursive accesses to the preprocessed information, each of which produces (via
calls to FCA) additional candidate od−paths soli. RQA works as follows. As long as the
destination vertex within the explored area around the origin has not yet been discovered,
and there is still some remaining recursion budget, it “guesses” (by exhaustively searching for
it) the next vertex wk of the boundary set of touched vertices (in the priority queue) along the
unknown shortest od−path. Then, it grows a new outgrowing TDD ball from the new center
(wk, tk = to + D[o, wk](to)), until it reaches the closest landmark-vertex `k to it, at distance
Rk = D[wk, `k](tk). This new landmark offers an alternative od−path solk = Po,k • Qk • Πk

by a new application of FCA, where Po,k ∈ SP [o, wk](to), Qk ∈ SP [wk, `k](tk), and Πk ∈
ASP [`k, d](tk+Rk) is the approximate suffix subpath provided by the distance oracle (in case
of the TRAP scenario, it has to be computed “on-the-fly” by growing an additional TDD ball
from the corresponding landmark). Observe that solk uses a longer (optimal) prefix-subpath
Pk which is then completed with a shorter approximate suffix-subpath Qk •Πk. RQA finally
responds with a (1 + σ)−approximate travel-time to the query in sublinear time, for any
constant σ > ε.

A more detailed presentation of FCA and RQA, along with the proofs of correctness and
their time complexities, are provided in [17]. As for the approximation guarantee of FCA+,
it is straightforward to observe that, at least theoretically, it is as small as that of FCA,
whereas its time complexity is comparable to that of RQA.

3.3. Heuristic Improvements. The TRAP approximation method introduces at least one
intermediate (possibly two) breakpoint per interval that does not yet meet the required ap-
proxmation guarantee. This is certainly unnecessary for intervals in which the actual shortest-
travel-time functions are almost constant. To avoid the blow-up of the preprocessing space
required, we heuristically make an arbitrary “guess” that we have to deal with an “almost
constant” shortest-travel-time function D[`, v] within a given interval [ts, tf ), if the following

holds: D[`, v](ts) = D[`, v](tf ) = D[`, v]
(
ts+tf

2

)
. This is justified by the fact that D[`, v] is

a continuous pwl function, along with the fact that already tf = ts + τ for some small value
τ > 0. Of course, one could easily construct artificial examples for which this criterion is
clearly violated, e.g., by providing a properly chosen periodic function with period τ . On the
other hand, one can easily tackle this by considering a randomly perturbed sampling period
τ + δ, for some arbitrarily small but positive random variable δ.
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Another improvement that we adopt is that, rather than splitting the entire period [0, T )
in a flat manner, i.e., into equal-size intervals , we start with a coarse partitioning based
on a large length and then in each inteval and for each destination vertex we check for the
provided approximation guarantee by TRAP. All the vertices which are already satisfied
by this guarantee with respect to the current interval, become inactive for this and all its
subsequent subintervals. We then proceed by splitting in the middle each subinterval that
contains at least one still active destination vertex, and repeating the check for all active
vertices within the new subintervals.

4. Experimental Evaluation

4.1. Preprocessing The Road Instance. The Berlin instance, kindly provided by Tom-
Tom, consists of a directed graph with 478, 989 vertices and 1, 134, 489 arcs; 924, 254 of the
arcs have constant arc-travel-times. For the remaining 202, 214 arcs, continuous pwl arc-
travel-time functions are provided, concerning an entire weekday (Tuesday). The maximum
arc-travel-time slope is 0.0166667, whereas the minimum slope is −0.0133333. The suc-
cinct representation of these functions requires a total number of 3, 234, 213 breakpoints. We
substituted each maximal path in the network consisting of intermediate vertices with no
intersections (i.e., would have degree 2 in the simple, undirected version of the graph), with
a single shortcut arc of arc-travel-time function equal to the corresponding path-travel-time
function. This results in a reduced graph consisting of 299, 693 vertices and 950, 504 arcs.

We generated two data formats suitable as input for our query algorithms. The first
concerns the arc-travel-time functions and the second the preprocessed approximate distance
summaries (i.e., landmark-to-vertex approximate travel-time functions).

4.1.1. Arc-Travel-Time Functions. The raw-traffic data set is provided as arrays with average
speed estimations. Each row of such an array corresponds to a particular arc indicating a
road segment. The columns provide a partition of the entire one-day period into 288 5-
min timeslots. The arc-travel-time value of an arc a = uv for a timestlot i is computed as
length/[S(a,i)×(free flow speed)a], where free flow speed denotes the top speed that can be
achieved with zero congestion along a, while S(a,i) denotes a scale factor dependent on the road
traffic status of timeslot i. Therefore, for arc a a sequence of (departure time, arc travel time)
breakpoints is created, where the departure time is the starting point of the corresponding
timeslot.

The corresponding arc-travel-time function D[a](t) was created by running the following
preprocessing, for each arc and arc-travel-time values per timeslot. In order to avoid wasting
space, consecutive timeslots having the same arc-travel-time value were merged. Optionally,
one could perform a broader merging of consecutive timeslots having absolute difference in
arc-travel-time values less than a small constant (e.g. < 1min resolution bound). However, in
our experiments we chose to preserve the maximum possible resolution of the raw-traffic data.
This proved to be extremely efficient by means of approximation guarantees, for different levels
of resolution for the approximate distance summaries. The arc-travel-time function D[a] for a
particular arc a is the continuous, pwl interpolant of all the (departure time, arc travel time)
breakpoints in its previously constructed succinct representation. The breakpoints are stored
in binary and double-precision floating-point format. The eventual space required for all the
raw-traffic data to be provided as input, is roughly 225MB.

4.1.2. Preprocessed Landmark Information. In order to create all the landmark-to-vertex ap-
proximate distance summaries, we call TRAP, which is a one-to-all approximation method,
once per landmark. Upon completion of this preprocessing phase, we collect the approximate
distance summaries for all the landmark-vertex pairs in the Berlin graph. For each such pair
(`, v) ∈ L × V , we store a sequence of breakpoints (Dep[`], Arr[`, v]), where Dep[`] denotes
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the departure-time from landmark ` and Arr[`, v] denotes the corresponding arrival-time
at v. The interpolation of all these breakpoints produces the overall approximate distance
summary (continuous, pwl function) D[`, v](t). With |L| landmarks and p breakpoints (on
average) per approximate distance summary, the preprocessing space required for storing all
the landmark-to-vertex approximate distance summaries is O(|L|pn).

Our approach is focused on achieving a cost effective storage of the approximate distance
summaries, while keeping a sufficient precision. The key is that some specific features can be
exploited in order to reduce the required space. The main observation is that, for a one-day
time period, departure-times and arrival-times have a bounded value range. In particular,
when the considered precision of the traffic data is within seconds we handle time-values as
integers in the range [0, 86399], for milliseconds as integers in [0, 86399999], etc.

Any (real) time value within a single-day period, as a floating-point number tf , can be
converted to an integer ti with fewer bytes and a unit of measure. For a unit measure (or
scale factor) s, the resulting integer is ti = dtf/se. In this manner, ti needs size dlog2(tf/s)/8e
bytes. The division tf/s has quotient π and remainder υ. Thus, tf = s · π + υ and ti =
d(s · π + υ)/se = dπ + υ/se, with υ < s. Therefore, converting tf to ti results to an absolute
error of at most 2s. In the reverse process, for extracting the stored value, the conversion is
t
′
f = ti ·s. In our experiments, for storing the time-values of approximate distance summaries,

we have considered two different resolutions:
(a) 2.64sec resolution, corresponding to a scale factor s = 1.32 (when counting time in

seconds), requiring 2 bytes per time-value, and
(b) 10.3ms resolution, corresponding to a scale factor s = 5.15 (when counting time in

milliseconds), requiring 3 bytes per time-value.

4.2. Experimental Setup. All algorithms were implemented using C++ (gcc, version 4.6.3).
To support all graph-operations we used the PGL library [18]. All experiments were executed
by a CPU of 3.40GHz×8, using 16GB of RAM, on Ubuntu 12.04 LTS. All our algorithms
are executed sequentially. Exploitation of parallelism is left for future implementations, and
is anticipated to reduce dramatically the execution times, particularly for the preprocessing
phase and the query algorithm RQA for which parallelism would apply quite naturally.

4.3. Measurements and Evaluation.

4.3.1. Preprocessing Phase: Creation of Approximate Distance Summaries. Our preprocess-
ing phase took as input six different landmark sets for the Berlin graph: R1000 and R2000

correspond to 1000 and 2000 landmarks chosen uniformly at random from the entire vertex
set. M1000 and M2000 correspond to 1021 and 2072 landmarks chosen as the boundary vertices
of appropriate METIS partitions. K1000 and K2000 correspond to 1016 and 2024 landmarks
chosen as the boundary vertices of appropriate KaHIP partitions.

For the production of the approximate distance summaries for each of the landmark sets,
a total amount of less than 13 hours (for small sets) and 26 hours (for large sets) of sequen-
tial computational time was consumed. In particular, the average time per landmark, for
producing its approximate distance summaries towards all the possible destinations is less
than 43sec, and the amortized time for constructing a single landmark-to-vertex approximate
distance summary is less than 0.1435ms.

The required storage space is less than 35MB per landmark for 2.64sec resolution, and
55MB per landmark for the 10.3ms resolution.

4.3.2. Query Phase: Responding to Arbitrary Shortest-Path Queries. The query execution
times and relative errors of the produced solutions, for all possible landmark sets and the two
different resolutions that we consider for the approximate distance summaries, are presented in
Tables 1 and 2. Moreover, Table 3 presents the speedups of the query algorithms, measured
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by the machine-independent criterion of Dijkstra-rank, i.e., the number of settled vertices
during execution. All reported values are averages over 1000 randomly chosen queries from
the Berlin instance. We note that for RQA the recursion budget was set to 1. For fairness of
comparison, the parameter N (number of landmarks) in FCA+ was set equal to the number
of landmarks settled by RQA.

It should be noted that for the query algorithms we only count the required computational
time for providing an upper bound on the earliest-arrival-time at the destination. In partic-
ular, we exclude the time required for the construction time of a path with the discovered
guarantee (which is anyway negligible) and the time required for accessing from the hard disk
the approximate distance summaries of the involved landmarks. The latter is done for two
reasons: First, we wish our comparison to be as independent as possible of the characteristics
of the machine, and in particular of the size of the main memory. For example, the reported
times would be as they appear in Tables 1 and 2 in exactly the same machine but with
sufficiently large main memory. Second, our main quality measure is the achieved speedup
versus the average performance of TDD. Clearly, TDD produces no disc-IO accesses when
being executed, and the comparison would be misleading for the query algorithms, simply
due to poor hardware characteristics. We wish to have a clear comparison of the algorithms
themselves, which is irrelevant of the hardware platform.

Apart from query-times, we also report the observed relative errors of the produced solu-
tions. The relative error for a given od−path p is the percentage of surplus from the exact
distance (as computed by TDD), i.e.:

100 · (travel time of p− exact distance from o to d)/(exact distance from o to d)

With respect to the observed query times, in all cases FCA is the fastest query method, but
with the highest relative error, compared to the other two methods. For example, it returns
answers with relative error 1.634% in 0.195ms (i.e., a speedup more than 397 over the runtime
of TDD), forR1000 and 10.3ms-resolution. The response time forR2000 and 10.3ms-resolution
is 0.107ms (i.e., speedup more than 723) with relative error 1.065%. Similar performance is
observed also for the cases of preprocessing with 2.64sec-resolution. For the other two query
algorithms, FCA+ is always faster than RQA, the latter being at most two times slower
than the former. This can be justified by the fact that FCA+ grows a unique Dijkstra ball
from the origin, and thus acts like a label-setting algorithm. On the other hand, RQA may
visit and update the labels of the same vertices more than once, since at the second level of
the recursion the labels of the settled nodes are not always shortest path distances from the
origin, but shortest path distances via particular parents. On the other hand, it should be
noted that RQA is amenable to parallelization due to its recursive flavor. This is anticipated
to speedup significantly its query time.

With respect to the relative error, we observe that for all the random landmark sets FCA+

provides smaller values, of 0.449% for 1000 random landmarks and 0.389% for 2000 random
landmarks. For the rest of the landmark sets, RQA is the best option with respect to the
relative error, achieving values 0.314% for 1000 KaHIP landmarks and 0.298% for 2000 KaHIP
landmarks.

As for the machine-independent performance of Dijkstra-ranks, we observe that the re-
ported average speedups compared to a typical TDD run, are even better. For example,
using FCA on R1000 and R2000 produce speedups larger than 429 and 889 times respectively.

A final remark remark is the sensitivity of our algorithms to the choice of resolution for
the values of the approximate distance summaries that are created during the preprocessing
phase. Observe that if the performance measure is the Dijkstra-rank, then the choice of
resolution, which only affects the approximate values of the landmark-to-destination distances,
is irrelevant of the rank measure, because the Dijkstra balls grow over the raw traffic data
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for which we have preserved the maximum possible accuracy. Even when we account for
computational times of the query algorithms, we observe that the difference in the relative
errors is rather negligible, and in a few cases the coarser resolution of 2.64sec results in smaller
relative-error values. This is due to the path reconstruction method that we use, which also
takes into account the values of the approximate landmark-to-vertex distance values. The
main reason for this insensitivity in the chosen resolution is that it is only the last part
of the chosen path that is indeed affected, by only a small additive term of few seconds /
milliseconds.

TDD FCA FCA+ RQA
Time Rel.Error Time Rel.Error Time Rel.Error Time Rel.Error
(ms) (%) (ms) (%) (ms) (%) (ms) (%)

R1000 77.424 0 0.195 1.634 1.345 0.449 1.692 0.575
M1000 0.381 2.201 1.313 0.698 2.349 0.483
K1000 0.362 2.165 1.223 0.506 2.015 0.382
R2000 0.107 1.065 0.71 0.389 0.771 0.445
M2000 0.152 1.115 0.582 0.336 0.7 0.314
K2000 0.148 1.405 0.599 0.367 0.655 0.298

Table 1. Query performances for 10.3ms-resolution of approximate distance summaries.

TDD FCA FCA+ RQA
Time Rel.Error Time Rel.Error Time Rel.Error Time Rel.Error
(ms) (%) (ms) (%) (ms) (%) (ms) (%)

R1000 77.424 0 0.198 1.634 1.345 0.449 1.712 0.574
M1000 0.381 2.199 1.287 0.7 2.09 0.487
K1000 0.348 2.171 1.197 0.512 1.834 0.381
R2000 0.108 1.065 0.694 0.382 0.769 0.442
M2000 0.156 1.116 0.589 0.346 0.767 0.314
K2000 0.148 1.401 0.591 0.366 0.721 0.295

Table 2. Query performances for 2.64sec-resolution of approximate distance summaries.

TDD FCA FCA+ RQA
Rank Speedup Rank Speedup Rank Speedup Rank Speedup

R1000 149397 1 348 429.302 2628 56.848 4261 35.061
M1000 713 209.533 2517 59.355.7 5304 28.167
K1000 657 227.393 2353 63.492 4660 32.059
R2000 168 889.268 1251 119.422 1820.769 82.086
M2000 252 592.845 1039 143.789 1646 90.764
K2000 247 604.846 1002 149.099 1522 98.158
Table 3. Query performances with respect to the numbers of settled vertices.
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Appendix A. Trapezoidal Approximation of Distance Summaries

Assume having a landmark vertex ` ∈ L and a departure-times subinterval [ts, tf = ts+τ) ⊆
[0, T ), for some small departure-time difference value, compared to the entire period T of
departure times. We provide a crude approximation, which we call TRAP (the trapezoidal
method), for creating distance functions from any landmark ` ∈ L towards each posible
destination v ∈ V . It is mentioned that, contrary to the approximation method BIS proposed
in [17], no assumption is made on the shapes of the unknown distance functions to approximate
within [ts, tf ). In particular, no assumption is made on them being concave. TRAP will only
exploit the fact that τ is indeed small, along with the Bounded Travel-Time Slopes Assumption
(cf. Assumption 2.1). The approximation guarantee for each of these approximate distance
functions actually varies, depending on the minimum (free-flow) travel-time from ` to each of
the destinations. In particular, by Assumption 2.1, for any departure-time from `, t ∈ [ts, tf )
and any destination vertex v ∈ V , the following inequalities hold:

−Λmin ≤ D[`, v](t)−D[`, v](ts)
t− ts ≤ Λmax

⇒ −Λmin · (t− ts) +D[`, v](ts) ≤ D[`, v](t) ≤ D[`, v](ts) + Λmax · (t− ts)
/∗ τ≥t−ts ∗/⇒ −Λmin · τ +D[`, v](ts) ≤ D[`, v](t) ≤ D[`, v](ts) + Λmax · τ

−Λmin ≤ D[`, v](tf )−D[`, v](t)
tf − t ≤ Λmax

⇒ −Λmin · (tf − t) ≤ D[`, v](tf )−D[`, v](t) ≤ Λmax · (tf − t)
/∗ τ≥tf−t ∗/⇒ Λmin · τ +D[`, v](tf ) ≥ D[`, v](t) ≥ D[`, v](tf )− Λmax · τ

Combining the two inequalities we get the following bounds: ∀v ∈ V,∀t ∈ [ts, tf ),

(1) min
{
D[`, v](ts) + Λmaxτ,
D[`, v](tf ) + Λminτ

}
≥ D[`, v](t) ≥ max

{
D[`, v](ts)− Λminτ,
D[`, v](tf )− Λmaxτ

}
Exploiting the fact that each shortest-travel-time function from ` to any destination v ∈ V
and departure time from [ts, tf ) respects the above mentioned upper and lower bounds, one
could use a simple continuous, pwl approximation of D[`, v] within this interval, which is the
minimum of four linear functions:

(2) ∀t ∈ [ts, tf ), D[`, v](t) = min


D[`, v](ts) + Λmaxτ,
D[`, v](tf ) + Λminτ

Λmaxt+D[`, v](ts)− Λmaxts,
−Λmint+D[`, v](tf ) + Λmintf


I.e., we consider the lines passing via the point (ts, D[`, v](ts)) with the maximum slope Λmax,
until the upper bound in inequality 1 is reached, then follow a constant leg up to the point at
which the line passing via (ts, D[`, v](ts)) with the minimum possible slope of −Λmin is met.
Analogously, we construct a lower-bounding approximation of D[`, v] within [ts, tf ).

(3) ∀t ∈ [ts, tf ), D[`, v](t) = max


D[`, v](ts)− Λminτ,
D[`, v](tf )− Λmax · τ

Λmaxt+D[`, v](tf )− Λmax · tf ,
−Λmint+D[`, v](ts) + Λmints


Figure 1 shows the (upper and lower) approximate distance summaries with respect to D[`, v]
within [ts, tf ).
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D[l,v](tf)–Λmax(tf–ts)

D[l,v](ts)

D[l,v](tf)

tm tm

Dm[l,v](ts,tf)
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Figure 1. The upper-approximating function D[`, v] (thic orange, upper pwl
line), and lower-approximating function D[`, v] (thic yellow, lower pwl line),
of the unknown distance function D[`, v] within the interval [ts, tf ).

Let (tm, Dm) be the intersection point of the two non-constant legs involved in the definition
of D[`, v]. Then it is easy to observe that:

tm =
D[`, v](ts)−D[`, v](tf )

Λmin + Λmax
+

Λmints + Λmaxtf
Λmin + Λmax

Dm =
ΛmaxD[`, v](ts) + ΛminD[`, v](tf )

Λmin + Λmax
− Λmin · Λmax

Λmin + Λmax
· (tf − ts)

Similarly, let (tm, Dm) be the intersection point of the two non-constant legs involved in
the definition of D[`, v]. Then:

tm =
D[`, v](tf )−D[`, v](ts)

Λmin + Λmax
+

Λmintf + Λmaxts
Λmin + Λmax

Dm =
ΛmaxD[`, v](tf ) + ΛminD[`, v](ts)

Λmin + Λmax
+

ΛminΛmax

Λmin + Λmax
(tf − ts)

The worst-case maximum (additive) error guaranteed for D[`, v] within [ts, tf ] is given by
the following closed form:

MAE(ts, tf ) = max
t∈[ts,tf )

{
D[`, v](t)−D[`, v](t)

}
= max

t∈{tm,tm}

{
D[`, v](t)−D[`, v](t)

}
(4)

The following lemma correlates the value of the maximum absolute error with the minimum
possible distance from `, within [ts, tf ).
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Lemma A.1. For a given landmark vertex ` ∈ L, any destination vertex v ∈ V and a given
departure-time subinterval [ts, tf ) ⊆ [0, T ), the following hold:

(1) MAE[`, v](ts, tf ) ≤ Λmax · (tf − ts).
(2) If at least one of the following conditions hold, then the trapezoidal method guarantees

that D[`, v] is a (1 + ε)−approximation of D[`, v] within [ts, tf ).
(i) D[`, v](ts) ≥

(
Λmin + Λmax

ε

)
(tf − ts).

(ii) D[`, v](tf ) ≥ (Λmax + Λmax
ε

)
(tf − ts).

Proof. We start with the upper bound on the maximum absolute error:

MAE[`, v](ts, tf ) ≤ Dm[`, v](ts, tf )−Dm[`, v](ts, tf )

=
ΛmaxD[`, v](tf ) + ΛminD[`, v](ts)

Λmin + Λmax
+

ΛminΛmax

Λmin + Λmax
(tf − ts)

− ΛmaxD[`, v](ts) + ΛminD[`, v](tf )
Λmin + Λmax

+
Λmin · Λmax

Λmin + Λmax
· (tf − ts)

=
(Λmax − Λmin) · (D[`, v](tf )−D[`, v](ts)) + 2ΛminΛmax(tf − ts)

Λmin + Λmax

=
(Λmax − Λmin) · (D[`, v](tf )−D[`, v](ts))/(tf − ts) + 2ΛminΛmax

Λmin + Λmax
· (tf − ts)

/∗ As.2.1 ∗/
≤ (Λmax − Λmin) · Λmax + 2ΛminΛmax

Λmin + Λmax
· (tf − ts) = Λmax · (tf − ts)

Recall now about the upper-approximating function D[`, v] provided by the trapezoidal
approximation within [ts, tf ) that, ∀t ∈ [ts, tf ),

D[`, v](t) ≤ D[`, v](t) ≤ D[`, v](t) +MAE[`, v](ts, tf )
≤ D[`, v](t) + Λmax · (tf − ts)
≤ D[`, v](t) ·

(
1 +

Λmax · (tf − ts)
D[`, v](t)

)
Our goal is to assure that this last upper bound of D[`, v](t) is in turn upper bounded by
(1+ε) ·D[`, v](t). Based on the expression of D[`, v](t), a sufficient condition for this to hold,
is the following:

D[`, v](ts) ≥
(
Λmin + Λmax

ε

)
(tf − ts)

∨
D[`, v](tf ) ≥ (Λmax + Λmax

ε

)
(tf − ts)

This sufficient condition is independent of the actual departure time t ∈ [ts, tf ), and only
depends on the travel-time values at the endpoints and also on the length of the departure-
times interval. �

The following theorem distinguishes the “nearby” (for which there is no approximation
guarantee) from the “faraway” destinations (for which D[`, v] is a (1+ε)-approximate distance
summary) around `, as a function of the chosen interval length τ = tf − ts.
Theorem A.1. For a given departure-times subinterval length τ > 0 given as input to
TRAP, any landmark ` ∈ L and any destination v ∈ V , if it holds that:

(5) min
k∈N:kτ∈[0,T )

{ D[`, v](kτ) } ≥
(

1 +
1
ε

)
· Λmax · τ

then D[`, v] is a (1 + ε)-approximation of D[`, v] within [0, T ).
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Proof. The entire period [0, T ) is split into T
τ consecutive intervals of length τ > 0 each. We

can easily deduce a sufficient condition for the trapezoidal approximation providing a (1 + ε)-
upper-approximating distance function for the entire period [0, T ). In particular, it suffices
to assure that the claimed condition holds with respect to the travel times at its sampled
values. Then, Lemma A.1 guarantees that the produced approximating functions within each
consecutive interval is indeed a (1 + ε)-approximation. �


