
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 049

Engineering a New Model for Dynamic
Timetable Information Systems

Alessio Cionini, Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni, Kalliopi
Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis

February 2014

Engineering a New Model for Dynamic
Timetable Information Systems ?

Alessio Cionini1, Gianlorenzo D’Angelo2, Mattia D’Emidio1, Daniele Frigioni1,
Kalliopi Giannakopoulou3, Andreas Paraskevopoulos3,4, and Christos

Zaroliagis3,4

1 Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Via G. Gronchi, 18, I–67100, L’Aquila, Italy.

alessio.cionini@gmail.com, {mattia.demidio, daniele.frigioni}@univaq.it.
2 Department of Mathematics and Informatics, University of Perugia, Via Vanvitelli,

1, 06123 Perugia, Italy. gianlorenzo.dangelo@dmi.unipg.it
3 Computer Technology Institute and Press “Diophantus”, Patras, Greece.

4 Department of Computer Engineering and Informatics, University of Patras, 26504
Patras, Greece. {gianakok,paraskevop,zaro}@ceid.upatras.gr

Abstract. Many efforts have been done in the last decade to model
public transport timetables in a graph theoretical framework. The aim is
to represent a timetable as a graph so that an optimal route or itinerary
is found by computing afterwards a shortest path in such a graph. One
of the most used models is the so called time-expanded graph model.
Its main drawback is that if the timetable changes (e.g., due to a delay
occurring in the network), the graph needs to be topologically updated.
In this paper we propose a new model to represent the timetable of a
public transportation system as a graph. Its main advantage is that it
can be efficiently updated after a change in the timetable. In fact, it is
based on a compact representation that allows us to update the graph
by changing only few arc weights and does not require any topological
modification. We also conduct a comparative experimental study on real-
world timetables to assess the efficiency and practical applicability of the
new model against the classical and the reduced time-expanded models.
The experiments show that the new model outperforms the other two
models in query and update times and also in space requirements.

1 Introduction

Computing the best route in a public transportation system is a problem faced
by everybody who ever traveled. Nowadays, public transportation companies
have on-line journey planners which are able to answer to queries like “What is
the best route from some station A to some other station B if I want to depart
at time t?”. Usually the best route is the one that minimizes either the traveling
? Partially supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities

& Sustainability), under grant agreements no. 288094 (project eCOMPASS) and
no. 609026 (project MOVESMART).

2 A. Cionini et al.

time (earliest arrival time problem) or the number of times that a passenger has
to move from one train to another one (minimum number of transfers problem).
In order to answer to such queries, the journey planners store the vehicle (trains,
buses, ferries, etc.) timetables as a graph and execute a shortest path algorithm
to compute the optimal route. In the literature (see e.g., [17]) there exist two
main approaches to model timetables: the time-expanded and the time-dependent
model. The former model explicitly represents each time event (departure or ar-
rival) in the timetable as a node. The arcs of the graph represent elementary
connections between two events (a train that connects the two events without
stops in between) or waiting within stations, and their weights usually represent
the time difference between the corresponding events. The latter model repre-
sents each station as a node and there is an arc between two nodes if there exists
at least one elementary connection between the two stations represented by such
nodes. The weight of an arc is time-dependent, i.e., it is a function that depends
on the time at which a particular arc is scanned during the shortest path search.
Both time-expanded and time-dependent models exist in two flavors: the basic
and the realistic model [17]. The latter introduces some additional constraints
to take into account the time required by a passenger for moving from one train
to another one within a station (transfer time). In this paper we focus only on
realistic models.

As it turns out, the time-expanded model yields a graph with a larger number
of nodes and arcs and thus larger query times. On the other hand, the time-
dependent model makes difficult to incorporate additional constraints such as,
e.g., the transfer times. A variant of the realistic time-expanded model, called
reduced time-expanded model has been proposed in [17], having a smaller number
of nodes and arcs. All the above models are not suitable to incorporate dynamic
changes in the timetables. In fact, if the time of some connections changes (due
to, e.g., the delay of a train), the graphs do not properly represent the modified
timetables and hence the computed route could be not optimal or even not
feasible. Updating the graphs according to the modification in the timetable is
time-consuming and in many cases it requires topological changes of the graph
(i.e., arc or node additions and deletions) [8, 16].

In the last years, a large number of speed-up techniques have been devised
to heuristically speed up Dijkstra’s algorithm (see [1] for an overview). Most of
them are based on the pre-computation of additional information that can be
effectively used to answer queries. However, these techniques are mainly focused
on finding optimal routes on road networks and adapting them to the case of
graphs representing timetable information does not yield the same query speed-
up [2, 9]. In particular, in [9] the authors propose a modification of the realistic
time-expanded model, and give an experimental evaluation of various speed-up
techniques on this new model, by showing that it harmonizes well with known
speed-up techniques. In any case, the above speed-up techniques are not able
to handle possible changes in the timetables. Since they are based on a pre-
processing of the graph, the timetable modification can cause the complete re-
computation from-scratch of the preprocessed information that usually requires

Engineering a New Model for Dynamic Timetable Information Systems 3

long computational time. On the other hand, some dynamic speed-up techniques
have been proposed for road networks which allow to handle the dynamic weight
updates [3, 6, 10, 11, 19, 20].

Our main contribution in this work is a new time-expanded model for repre-
senting timetable information, called dynamic timetable model (dynTM), that re-
duces the number of changes needed in the graph as a consequence of a timetable
modification. dynTM does not require any topological change and updates only
few arc weights. At the same time, dynTM is not based on time-dependent arc-
weights, thus allowing to easily incorporate realistic constraints. Moreover, our
model yields a smaller number of nodes and arcs compared to the realistic and
the reduced time-expanded models [17], and therefore, a smaller query time.

Our second contribution is an experimental assessment of the effectiveness
of dynTM. Except for implementing dynTM and its algorithms, we provided
new implementations of the realistic and reduced time-expanded model along
with a simplified and optimized version of the update routine in [8] for handling
delays using the dynamic graph structure in [15]. We conducted a compara-
tive experimental study of all these implementations on several European public
transportation timetables. Our study shows that dynTM requires negligible up-
date time after the occurrence of a delay, which is always smaller than that
required by the other models. Moreover, the time required by dynTM to answer
to a timetable query is almost always smaller than that required by the realis-
tic and reduced time-expanded models and comparable to that required by the
time-dependent one. Finally the experiments confirm that the space required
by dynTM is smaller than that required by the other models. We believe that
the efficiency of the query phase along with the simplicity of the graph updates
make our model suitable for use in combination with several dynamic speed-up
techniques.

2 Preliminaries

A timetable consists of data concerning: stations, trains connecting stations, and
departure and arrival times of trains at stations. More formally, a timetable T is
defined by a triple T = (Z,B, C), where Z is a set of trains, B is a set of stations,
and C is a set of elementary connections whose elements are 5-tuples of the form
c = (Z, Sd, Sa, td, ta). Such a tuple is interpreted as train Z ∈ Z leaves station
Sd ∈ B at time td, and the immediately next stop of train Z is station Sa ∈ B at
time ta. If x denotes a tuple’s field, then the notation x(c) specifies the value of x
in the elementary connection c (e.g., td(c) denotes the departure time in c). The
departure and arrival times td(c) and ta(c) of an elementary connection c within
a day are integers in the interval {0, 1, . . . , 1439} representing time in minutes
after midnight. We assume that |C| ≥ max{|B|, |Z|}, as we do not consider trains
and stations that do not take part to any connection.

Given two time instants t1, t2, we denote by ∆(t1, t2) the time that passes
between them, assuming that t2 occurs after t1, i.e ∆(t1, t2) = t2 − t1(mod
1440). The length of an elementary connection c, denoted by ∆(c), is the time

4 A. Cionini et al.

that passes between the departure and the arrival times of c assuming that c
lasts for less than 24 hours, i.e ∆(c) = ∆(td(c), ta(c)).

Given an elementary connection c1 arriving at station S and an elementary
connection c2 departing from the same station S, if Z(c1) 6= Z(c2), it is possible
to transfer from Z(c1) to Z(c2) only if the time between the arrival and the
departure at station S is larger than or equal to a given, minimum transfer
time, denoted by transfer(S). We assume that transfer(S) < 1440, for each
S ∈ B. An itinerary in a timetable T is a sequence of elementary connections
P = (c1, c2, . . . , ck) such that, for each i = 2, 3, . . . , k, Sa(ci−1) = Sd(ci) and

∆(ta(ci−1), td(ci)) ≥
{

0 if Z(ci−1) = Z(ci)
transfer(Sa(ci−1)) otherwise.

We say that the itinerary starts from station Sd(c1) at time td(c1) and arrives
at station Sa(ck) at time ta(ck). The length ∆(P) of an itinerary P is given by
the sum of the lengths of its elementary connections, ∆(P) =

∑k
i=1∆(ci).

A timetable query is defined by a triple (S, T, tS) where S ∈ B is a departure
station, T ∈ B is an arrival station and tS is a minimum departure time. There
are two natural optimization criteria that are used to answer to a timetable
query. They consist in finding an itinerary from S to T which starts at a time
after tS with either the minimum arrival time or the minimum number or train
transfers. Such two criteria define the following two optimization problems ([17]):

– The Earliest Arrival Problem (EAP) is the problem of finding an itinerary
from S to T which starts at a time after tS and has the minimum length.
We assume that ∆(P) < 1440 for any minimum-length itinerary P .

– The Minimum Number of Transfers Problem (MNTP) is the problem of
finding an itinerary from S to T which starts at a time after tS and has as
few transfers from a train to another one as possible.

3 Realistic time-expanded model and delay handling

In the realistic time-expanded model [17] a timetable is modeled as a directed
graph, the realistic time-expanded graph, as follows: for each elementary con-
nection one departure and one arrival node are created and a connection arc
is inserted between them. For each departure event, one transfer node is cre-
ated which connects to the respective departure node by a transfer-departure
arc having weight 0. This is done to model transfers within stations. Given a
node u, t(u) denotes the time-stamp of u with respect to the original timetable.
To ensure a minimum transfer time at a station S, an arrival-transfer arc from
each arrival node u is inserted to the smallest (considering time) transfer node
v such that ∆(t(u), t(v)) ≥ transfer(S).

To ensure the possibility to stay in the same train when passing through
a station, an additional arrival-departure arc is created which connects the ar-
rival node with the appropriate departure node belonging to this same train.

Engineering a New Model for Dynamic Timetable Information Systems 5

Further, to allow transfers to an arbitrary train, transfer nodes are ordered non-
decreasing. Two adjacent nodes (w.r.t. the order) are connected by an arc from
the smaller to the bigger node. To allow transfers over midnight, an overnight-
arc from the biggest to the smallest node is created. For each arc e = (u, v)
in the time-expanded graph the weight w(e) is defined as the time difference
∆(t(u), t(v)). Hence, for each path from a node u to another node v in the
graph, the sum of the arc weights along the path is equal to the time difference
∆(t(u), t(v)). Storing this graph requires O(|C|) space, as it has n = 3|C| nodes
and 4|C| ≤ m ≤ 5|C| arcs.

Given a realistic time-expanded graph G = (V,E) and a timetable query
(S, T, tS), the earliest arrival problem can be solved in the realistic time-expanded
graph by finding a shortest path from s to t, where s is the transfer node with
the smallest time-stamp within S such that t(s) ≥ tS (or, if no such node exists,
s is the node among the transfer nodes of S such that t(s) is minimum), and t
is an arrival node within T with minimum distance to s (i.e. the first node of T
extracted from the Dijkstra’s queue).

The realistic time-expanded graph can be used to solve also MNTP. In fact,
it is enough to modify the weight function of the graph by setting a weight of
1 to any arc that models a transfer in a station and a weight of 0 to any other
arc. In particular, the weights of all the incoming arcs of transfer nodes which
come from an arrival node are set to 1. In Appendix A we give an example of a
timetable and the corresponding realistic time-expanded graph.

Handling delays and the reduced time-expanded model. A simple ap-
proach for handling delays in the realistic time-expanded model was proposed in
[8]. When a a train is delayed, the arcs of the time-expanded model within the af-
fected stations have to be updated. The update routine consists of three steps: (i)
Update the weight of the connection arc corresponding to the incoming delayed
train. (ii) Update the weights of arrival-transfer and transfer-departure arcs at
all subsequent stations through which the delayed train passes. (iii) Check for
every updated arrival-transfer arc whether the update still yields valid transfer
times, i.e., the arc weight is still bigger than the transfer time for this station;
if not, then the arc has to be re-wired. More details on the update routine are
provided in Appendix A.

In this work, we have further engineered, simplified and optimized the realis-
tic time-expanded model as well as the aforementioned update routine. In partic-
ular, we adopted a heuristic approach introduced in [17] called reduced (realistic)
time-expanded model and removed the transfer nodes and the transfer-departure
arcs. The arrival nodes are connected directly to the departure nodes, and the
transfer arcs connect now successive (in departure time) departure nodes. This
results in a reduction in the graph size by |C| nodes and |C| arcs, and therefore
in a shorter traversal time within the graph.

The update routine in case of delays is engineered, simplified, and optimized
as follows (see Appendix A for an illustration). When an update is performed, we
reorder the departure nodes, in ascending order of (departure) time. Depending
on the magnitude of the delay, there can be at least one arrival node that should

6 A. Cionini et al.

be linked with a new earliest departure node. This requires a modification on
the topology of the realistic time-expended graph, in order to remain valid. The
affected arcs are those having tail the delayed arrival node, head the delayed
departure node (if the train continues its travel to another station) and head
the new successor departure node of the delayed departure node. To maintain
the invariant of keeping the departure nodes ordered according to time, we have
to move the delayed departure node in its proper position (in a way similar to
moving a node from one location to another in a linked list), and then we only
need to link the arrival tail nodes with the proper earlier departure nodes so that
transfer times within the station are respected. Alongside we update the arcs
with the new correct weights. This operation requires only changing the node
pointers of the arcs and the weights, which minimizes the update cost, and in
contrast to the original approach it keeps the number of the arcs constant. The
only disadvantage is that the departure nodes may now be not optimally sorted
within the memory blocks and hence deteriorate the locality of references. In
order to reduce the consequent impact on the performance of the query time,
we initially group and pack together in memory all the departure nodes for each
station.

4 The dynamic timetable model

In this section, we describe our new approach, called dynamic timetable model
(dynTM for short), to solve the EAP and the MNTP problems. In Appendix B
we show our approach by means of the same example used in the previous section.

Timetable model. Given T = (Z,B, C), we define a directed graph G = (V,E)
called dynamic timetable graph and a weight function w : E → N as follows.

– For each station S in B, a node sS , called switch node of S, is added to V ;
– For each elementary connection c = (Z, Sd, Sa, td, ta) ∈ C a node dc, called

departure node of c, is added to V and an arc (dc, sSa) of c, called connection
arc, connecting dc to the switch node sSa

of Sa is added to E;
– For each elementary connection c = (Z, Sd, Sa, td, ta) ∈ C an arc (sSd

, dc),
called switch arc, connecting the switch node sSd

of the departure station
Sd to the departure node dc of c is added to E;

– For each train Z ∈ Z which travels through the itinerary (c1, c2, . . . , ck),
an arc, called train arc, connecting the departure node dci

of ci with the
departure node dci+1 of ci+1 is added to E, for each i = 1, 2, . . . , k − 1.

For each connection arc (dc, sSa), w(dc, sSa) = ∆(ta(c), td(c)). For each train arc
(dci

, dci+1), w(dci
, dci+1) = ∆(td(ci), td(ci+1)). The weight of each switch arc is

set to infinity. Moreover, for each switch node sS , we maintain the station S it
is associated with and for each departure node dc, we maintain the departure
time td(c) and the train Z(c) of connection c which dc is associated with.

The graph is stored by using a forward-star representation where, for each
switch node sS , the switch arcs (sS , dc) outgoing from sS are sorted according

Engineering a New Model for Dynamic Timetable Information Systems 7

to the arrival time ta(c) of the elementary connection c associated with node dc,
in non-decreasing order.

The above data structure requires O(|C|) space as it needs to store a graph
with n = |B|+ |C| nodes and m ≤ 3|C| arcs. The additional information requires
O(|B|) space for the station stored at each switch node and O(|C|) space for the
information stored at each departure node. We recall that |C| ≥ max{|B|, |Z|}.
Timetable queries. An EAP query (S, T, tS) is answered by executing a mod-
ified Dijkstra’s algorithm in G starting from the switch node sS of S.

We use of a vector of flags DS for each switch node sS . The size of DS is given
by the number of stations S′ such that there exists an elementary connection
departing from S and arriving at S′. We denote the element of DS associated
to S′ as DS [S′]. Initially, all the flags of DS are set to false, for each S ∈ B.

When a switch node sA is inserted or decreased in the Dijkstra’s queue during
a relaxation step, the algorithm maintains, along with the distance to sA, also
the connection c′ such that the arc (dc′ , sA) is the one that has been relaxed.
We assume that the switch node sS of the departure station S is inserted in
the queue at the initialization step with distance 0 and connection c′ such that
td(c′) + w(dc′ , sS) = tS . Moreover we set transfer(S) = 0.

Let us consider the time when a switch node sA, associated with station A ∈
B, is extracted from the Dijkstra’s queue. Let dist(sS , sA) be the distance from sS
to sA extracted from the queue and let c′ be the elementary connection associated
with dist(sS , sA). The value of dist(sS , sA) corresponds to the minimum time
required to reach station A from station S, departing at time tS . The algorithm,
first computes the value x = td(c′) +w(dc′ , sA)(mod 1440) which represents the
arrival time of connection c′. Then, for each switch arc (sA, dc) (i.e. for each
elementary connection c such that Sd(c) = A), it compares x with td(c) and
enables the arc (sA, dc) if DS [Sa(c)] = false and

∆(x, td(c)) = td(c)− x(mod 1440) ≥
{

0 if Z(c) = Z(c′)
transfer(A) otherwise. (1)

The arc (sA, dc) is enabled by setting w(sA, dc) to ∆(x, td(c)).
The switch arcs (sA, dc) are scanned according to their ordering in the for-

ward star representation (that is according to the arrival time ta(c)), starting
from the first arc such that td(c) ≥ x. If (sA, dc) is the first arc to be enabled
w.r.t. some station S′ = Sa(c) (i.e. the one with the smallest arrival time),
then the value of DA[S′] is set to true when the first arc (sA, dc′) such that
Sa(c′) = S′ and ∆(ta(c), ta(c′))(mod 1440) > transfer(S′) is scanned. The time
instants ta(c) and ta(c′) can be computed by using the value of x, td(c) and td(c′)
and the arc weights. The scanning of switch arcs of a station A is stopped when
the vector DA has only true elements and the Dijkstra’s search is then pruned.

Therefore, if two switch arcs (sA, dc1) and (sA, dc2) (corresponding to two el-
ementary connections c1 and c2) lead to the same station B, fulfill Inequality 1,
and have two arrival times that differ for a value greater than transfer(B),
then only the one with smallest arrival time is enabled. In other words, if
x ≤ min{td(c1), td(c2)} and ta(c1) < ta(c2) + transfer(B)(mod 1440), then

8 A. Cionini et al.

w(sA, dc1) = td(c1) − x and w(sA, dc2) = ∞ ties are broken arbitrarily. If we
assume that ta(c2) is the smallest arrival time that fulfills the above condition,
then the value of DA[B] is set to true when arc (sA, dc2) is scanned.

Note that, the above behavior is performed also for the switch node sS of the
departure station S, given the initialization values of the queue. The Dijkstra’s
search is stopped as soon as the switch node sT associated to the arrival station
T is extracted from the queue and the arrival time tT is given by dist(sS , sT).

Theorem 1. The modified Dijkstra’s algorithm solves EAP in O(|C| log |C|) time.

Proof. By the construction of the graph, the path found by the above algorithm
is an itinerary in T starting from S at time t ≥ tS and arriving at T at time tT .

We now prove that such an itinerary has minimum length. The proof mimics
the correctness proof of the Dijkstra’s algorithm. In particular we prove that,
when a switch node sA is extracted from the Dijkstra’s queue, the value of
dist(sS , sA) is minimum, this induces a minimum-length itinerary from S to A.

Let us assume by contradiction that A is the station such that sA is the
first node which is extracted from the queue whose value of dist(sS , sA) is not
minimum. When sA has been inserted or decreased from the queue for the last
time, it was due to the relaxation of a connection arc (td(c′), sA) and a switch
arc (sB , td(c′)), for some station B and connection c′. The switch arc (sB , td(c′))
is enabled only if the connection c′ is the one that leads from station B to station
A with minimum arrival time and that satisfy Inequality 1. Moreover, as sA has
been decreased for the last time due to the relaxation of (td(c′), sA), then all the
other connection arcs leading to sA correspond to longest paths. Therefore, it
must be the case that when the switch node sB of station B is extracted from
the queue, dist(sS , sB) is not minimum, a contradiction to the fact that sA was
the first extracted node with non-minimum distance.

The computational complexity is that of the Dijkstra’s algorithm in a graph
with n = |B|+ |C| nodes and m ≤ 3|C| arcs. However, the enabling step slightly
increases the computational complexity. In fact, it must be done for each out-
going arc of an extracted node sA, like the relaxation in the classical Dijkstra’s
algorithm, and it requires to look for an element of array DA. Therefore, the
relaxation of an arc requires O(log |DA|) time, differently from Dijkstra which
requires constant time. As DA has at most |B| elements, this requires at most
O(log |B|) time for each arc in the graph. Overall, the overhead is O(m log |B|)
and the time complexity is O(nlogn+m log |B|) = O(|C| log |C|), as |B| ≤ |C|. ut

An MNTP query (S, T, tS) can be solved similarly to an EAP one. The only
differences are: (i) We do not use vectorD and then all the switch arcs that satisfy
transfer time constraints (Inequality 1) are enabled and (ii) when a switch node
sA is extracted from the queue with associated connection c′, the weight of each
switch arc (sA, dc) is set to 0, if Z(c) = Z(c′), and to 1 otherwise.

Handling delays. Let us assume that we are given a timetable T represented
as above and a delay occurs on a connection c. The delay is modelled as an
increase of d minutes on the arrival time, that is, the new arrival time is t′a(c) =

Engineering a New Model for Dynamic Timetable Information Systems 9

ta(c) + d(mod 1440). The timetable is then updated according to some specific
policy which depends on the network infrastructure. The obtained timetable is
called disposition timetable T ′ and it differs from T for the arrival and departure
times of the trains that depend on Z(c) in T (see e.g. [4, 5, 7, 12, 14, 18] for
examples of policies used to update a timetable).

In our model, it is enough to update the time associated to the departure
node dc′ , the weight of the connection arc (dc′ , Sa(c′)), and the weight of the
train arc (dc′ , dc′′), for each connection c′ that changed from T to T ′. This can
be done in linear time by performing a graph search on G starting from the
departure node dc associated with c. In the case that G is used to answer to
EAP queries some further computation is needed as the array representing the
arcs must be sorted according to the new values of the arrival times. This can be
done in O(|C| log |C|) time as, if mi denotes the number of nodes outgoing from
each switch node si, then

∑
i∈Bmi ≤ m and hence the overall time is given by

O(
∑
i∈Bmi log(mi)) = O(logm

∑
i∈Bmi) = O(m logm) = O(|C| log |C|). Hence,

the overall time needed to update the timetable is O(|C|) in the case that the
model is exploited to answer to MNTP queries, and O(|C| log |C|) in the case that
it is exploited for EAP queries. We remark that this is an upper bound which is
far from be realistic as the stations that change some time references are much
less than |B|, especially thanks to robust design of timetables [4, 5, 7, 12, 14, 18].

In the experimental section, we assume that the policy adopted is that no
train waits for a delayed one. Therefore, the only time references which are
updated are those regarding the departure times of Z(c). Moreover, we assume
that the policy does not take into account any possible slack times and hence
the time references are updated by adding d(mod 1440).

Comparison with the time-expanded models. In this section, we compare
dynTM against the realistic and the reduced time-expanded models, showing
that the dynTM outperforms both the other models from two points of view.

First, in case of delays, the time-expanded models require, after a reordering
of the arrival, departure, and transit nodes, also an update (insertion/deletion) of
arcs of the graph (see e.g. [8]). This behavior could imply a large computational
time which depends on the way the graph is stored. On the contrary, dynTM is
able to keep updated its data structure in case of delays in almost linear time
and without any change in the graph topology. In fact, a delay in the timetable
induces few arc weight changes and the update of the time associated to the
corresponding departure nodes. Note that, this last operation can require, in
some cases, a reordering step in the departure nodes of the stations involved by
the change with respect to new arrival times.

Second, although dynTM and the two time-expanded models asymptotically
require the same space complexity, the graph in the new model has a smaller
number of nodes and arcs. In fact, the realistic time-expanded model requires
3|C| nodes and at least 4|C| arcs, the reduced time-expanded model requires 2|C|
nodes and at least 3|C| arcs, while dynTM requires |B|+|C| nodes and at most 3|C|
arcs (we recall that |C| ≥ |B|). On the other hand, Dijkstra’s algorithm executed
in dynTM must perform the additional step of enabling arcs and computing the

10 A. Cionini et al.

type T |B| |C| TE (orig) TE (red) DynTM
|V| |E| |V| |E| |V| |E|

Train

i0i 6 443 1 329 1 931 886 1488 449 1 045
a0i 18 573 1 719 2 477 1 146 1 904 591 1 335
f0i 24 729 2 187 2 978 1 458 2 249 753 1 536
b0i 27 3 349 10 047 15 242 6 698 11 892 3 376 8 548
efz 2 931 41 613 124 839 201 523 83 226 159 290 44 544 119 114
d0i 6 602 428 982 1 286 946 2 097 169 857 964 1 668 171 435 584 1 239 329

Bus

wez 54 861 2 583 4 221 1 722 3 368 915 2 556
meg 369 3 295 9 885 16 088 6 590 12 762 3 664 9 732
vib 177 5 983 17 949 29 546 11 966 23 586 6 160 17 633
bts 726 12 689 38 067 62 425 25 378 49 862 13 415 37 707
ks 1879 44 744 134 232 220 074 89 488 175 536 46 623 131 655

bvb 2 874 292 542 877 626 1 446 935 585 084 1 154 792 295 416 865 559

Table 1: Tested timetables and sizes of the corresponding graphs; orig = original,
red = reduced.

weights of the switch arcs. However, we will experimentally show that this time
overhead is small with respect to the improvement in performance due to the
reduced graph size.

5 Experimental analysis

In this section we report the results of our experimental study. Our experiments
have been performed on a workstation equipped with an Intel Quad-core i5-
2500K 3.30GHz CPU and 8GB of main memory, and our implementations were
done in C++ (gcc compiler v4.6.3 with optimization level O4).

Input data and parameters. As input data to our experiments we used six
train timetables and six bus timetables from a large data set provided by Ha-
Con [13] for scientific use. We built, for each timetable, a realistic time-expanded,
a reduced time-expanded, and a dynamic timetable graph. For representing the
graphs, we used a packed memory graph [15] for the time-expanded graphs, and
a forward-star representation for the dynamic timetable graph. We used a binary
heap when a priority queue was needed.

In Table 1 detailed information about the timetables and the corresponding
graphs are reported. In particular, we report, for each timetable, the number of
stations and the number of elementary connections between stations, the number
of nodes and arcs of the corresponding graph for each model. Table 1 confirms
the analysis reported in Sections 3 and 4, regarding the sizes of the models. In
fact, for each timetable T = (Z,B, C), we notice that the number of nodes is
exactly 3|C|, 2|C|, and |B|+ |C| while the number of arcs is always smaller than
5|C|, 4|C|, and 3|C| for the realistic, the reduced time-expanded, and dynTM
models, respectively.

Timetable queries. In order to test the performance of the three models, we
carried out, for each timetable, EAP queries and evaluated the time required
for answering them. For each timetable, we generated 1, 000 EAP queries be-
tween pairs of stations, randomly chosen with uniform probability distribution,

Engineering a New Model for Dynamic Timetable Information Systems 11

and measured the time for executing, on each type of graph, the corresponding
modified Dijkstra’s algorithm.

The results of our experiments are summarized in Table 2a. Since in [17] it
has been shown that the reduced model is always better than the realistic model,
in this table we report only the results on the reduced time-expanded model and
dynTM. In particular, in this table we report the average computational time
per query for train and bus instances, respectively. We omit results concerning
MNTP queries as they lead to similar analysis.

Our experiments clearly show that dynTM outperforms the reduced time-
expanded model w.r.t. the query time. This implies that the time overhead
induced by the additional steps performed by the modified Dijkstra’s algorithm
in the new model is small w.r.t. the improvement in performance due to the
reduced graph size. Note that in [17] the authors show that queries on time-
dependent graphs are faster than those on time-expanded graphs by a small
constant factor in the realistic setting. Therefore, the query time of our model
is comparable to that of the time-dependent model.

Timetable updates. As described in Section 4, our new model is able to
efficiently handle dynamic updates to the timetable. Hence, in order to evaluate
the performance of the updating algorithm, we performed a set of experiments as
follows: for each timetable, we randomly selected 1,000 elementary connections
and, for each elementary connection, we randomly generated a delay affecting the
corresponding train or bus, chosen with uniform probability distribution between
1 and 360 minutes. For each change in the timetable, we ran the algorithm for
updating the dynamic timetable graph and measured the average computational
time and the number of arcs affected by the change, that is the number of arcs
associated to the same train or bus which has experienced the delay. For the
reduced time-expanded model we used the engineered, simplified and optimized
version of the update algorithm in [8], presented in Section 3.

The experimental results are shown in Table 2b. Also in this case dynTM
outperforms the reduced time-expanded model w.r.t. the update time. The re-
sults confirm that the upper bound given in Section 4 for the computational time
of the updating algorithm is really far from being realistic, thus making dynTM
suitable to be used in practice. In fact, even in the biggest network (d0i), the
updating algorithm requires 5.7 µs. Moreover, only few arc weights need to be
changed in the original graph to keep the EAP queries correct, on average 8.8
in train timetables and 14.2 in bus timetables. This is due to the fact that the
number of stations where something changes, as a consequence of a delay, is
small with respect to the size of the whole set |B|.

References

1. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wag-
ner. Combining hierarchical and goal-directed speed-up techniques for dijkstra’s
algorithm. ACM J. Exp. Alg., 15:Article 2.3, 2010.

12 A. Cionini et al.

type T avg query time (ms)
TE (red) dynTM

Train

i0i 0.004 0.008
a0i 0.013 0.015
f0i 0.015 0.022
b0i 0.026 0.036
efz 1.886 1.231
d0i 10.414 8.009

Bus

wez 0.029 0.031
meg 0.121 0.102
vib 0.078 0.092
bts 0.446 0.382
ks 2.178 1.241

bvb 4.224 3.276

(a)

type T avg update time (µs) avg updated arcs
TE (red) dynTM TE (red) dynTM

Train

i0i 0.8 0.6 3.9 1.5
a0i 1.7 0.7 4.7 1.6
f0i 2.1 1.0 5.3 1.7
b0i 4.8 1.6 9.0 2.2
efz 7.4 1.9 26.9 7.6
d0i 19.4 5.7 32.9 8.8

Bus

wez 2.3 0.8 26.5 6.2
meg 3.4 1.5 29.7 6.5
vib 6.4 1.3 37.9 7.6
bts 6.9 2.0 40.0 8.9
ks 12.6 2.3 53.7 11.5

bvb 50.1 11.1 69.4 14.2

(b)

Table 2: Comparison between reduced time-expanded graphs and dynamic
timetable graphs with respect to average query time (a), average update time
and affected arcs (b), respectively.

2. R. Bauer, D. Delling, and D. Wagner. Experimental study of speed up techniques
for timetable information systems. Networks, 57(1):38–52, 2011.

3. F. Bruera, S. Cicerone, G. D’Angelo, G. D. Stefano, and D. Frigioni. Dynamic
multi-level overlay graphs for shortest paths. Math. Comp. Sc., 1(4):709–736, 2008.

4. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Recoverable
robust timetabling for single delay: Complexity and polynomial algorithms for
special cases. Journal of Combinatorial Optimization, 18(3):229–257, 2009.

5. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, A. Navarra, M. Schachtebeck,
and A. Schöbel. Recoverable robustness in shunting and timetabling. In Robust
and Online Large-Scale Opt., volume 5868 of LNCS, pages 28–60. Springer, 2009.

6. G. D’Angelo, M. D’Emidio, D. Frigioni, and C. Vitale. Fully dynamic maintenance
of arc-flags in road networks. In Proc. 11th Int. Symp. on Exp. Alg. (SEA), volume
7276 of LNCS, pages 135–147. Springer, 2012.

7. G. D’Angelo, G. Di Stefano, A. Navarra, and C. M. Pinotti. Recoverable robust
timetables: an algorithmic approach on trees. IEEE Tr Comp, 60(3):433–446, 2011.

8. D. Delling, K. Giannakopoulou, D. Wagner, and C. Zaroliagis. Timetable Informa-
tion Updating in Case of Delays: Modeling Issues. Technical Report ARRIVAL-
TR-0133, ARRIVAL Project, 2008.

9. D. Delling, T. Pajor, and D. Wagner. Engineering time-expanded graphs for faster
timetable information. In Robust and Online Large-Scale Optimization, volume
5868 of LNCS, pages 182–206. Springer, 2009.

10. D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In Proc.
6th Work. on Experimental Algorithms, LNCS, pages 52–65. Springer, 2007.

11. D. Delling and R. F. Werneck. Faster customization of road networks. In Proc.
12th Symp. Exp. Alg. (SEA), volume 7933 of LNCS, pages 30–42. Springer, 2013.

12. M. Fischetti, D. Salvagnin, and A. Zanette. Fast approaches to improve the ro-
bustness of a railway timetable. Transportation Science, 43(3):321–335, 2009.

13. HaCon - Ingenieurgesellschaft mbH. http://www.hacon.de, 2008.
14. C. Liebchen, M. Schachtebeck, A. Schöbel, S. Stiller, and A. Prigge. Computing

delay resistant railway timetables. Computers & OR, 37(5):857–868, 2010.
15. G. Mali, P. Michail, A. Paraskevopoulos, and C. Zaroliagis. A new dynamic graph

structure for large-scale transportation networks. In 8th Int. Conf. on Algorithms
and Complexity (CIAC), volume 7878 of LNCS, pages 312–323. Springer, 2013.

Engineering a New Model for Dynamic Timetable Information Systems 13

16. M. Müller-Hannemann and M. Schnee. Efficient timetable information in the pres-
ence of delays. In Robust and Online Large-Scale Optimization, volume 5868 of
LNCS, pages 249–272. Springer Berlin Heidelberg, 2009.

17. E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models for timetable
information in public transportation systems. ACM J Exp Alg, 12(2.4):1–39, 2008.

18. M. Schachtebeck and A. Schöbel. To wait or not to wait - and who goes first? delay
management with priority decisions. Transportation Sc., 44(3):307–321, 2010.

19. D. Schultes and P. Sanders. Dynamic highway-node routing. In Proc. 6th Workshop
on Experimental Algorithms (WEA), LNCS, pages 66–79. Springer, 2007.

20. D. Wagner, T. Willhalm, and C. D. Zaroliagis. Geometric containers for efficient
shortest-path computation. ACM J. Exp. Alg., 10(1.3):1–30, 2005.

14 A. Cionini et al.

Appendix

A The realistic time-expanded model and delay handling

In Table 3 we show a part of a timetable with 7 elementary connections, involv-
ing three stations and five trains. We report, for each elementary connection,
departure and arrival stations and times, respectively. We also report the trans-
fer time associated with the arrival station of each train. We omit part of the
timetable for the sake of simplicity.

Dep. Station Arr. Station Dep. Time Arr. Time TrainID Transfer Time
A B 00:00 00:20 α 3
A B 00:00 00:45 β 3
B C 00:22 00:57 α 5
C · 00:58 01:10 α ·
C · 01:28 01:43 γ ·
B · 00:47 00:59 θ ·
B · 00:55 01:10 φ ·

Table 3: An example of train timetable.

The time-expanded model explicitly represents each event occurring at a
station. Each event represents the departure or the arrival of a station. In order to
incorporate transfer times, transfer nodes are introduced as well. In Figure 1 the
time-expanded graph modeling the timetable of Table 3 is given. As a result, 4
types of arcs exist in the realistic model: connection, transfer–departure, arrival–
departure, and arrival–transfer arcs.

– The connection arcs are inserted between departure and arrival events and
correspond to a real connection between the stations. The weight of these
arcs is the real travel time of this connection.

– For each departure event, a transfer event is inserted to the graph. The
according transfer–departure arcs have a weight of 0.

– As long as a train does not end at the specific station, an arrival–departure
arc is inserted between the arrival of this train in this station and its depar-
ture. Due to the fact that passengers may stay in the train, this departure
event is the only one that can be reached without entering the station.

– In order to change trains at a station the train has to be left. Thus, from
each arrival node an arrival–transfer arc to the next reachable transfer node
(i.e., to a node corresponding to the first departure that a passenger can
reach) is inserted.

We now show how the time-expanded graph has to be updated when a train
is delayed by presenting the approach in [8]. When a train is delayed, it is not
sufficient to simply increase the travel time of the delayed train in the time-
expanded model. Instead, we have to update arcs within stations as well. As a
consequence, the update routine consists of three steps.

Engineering a New Model for Dynamic Timetable Information Systems 15

20

45

5

5

8

5

2

2

7

10

350

0

0

1

0

0

31 30

12

15

5

5

arrival nodes departure nodes

transfer nodes

α

β

γ

station B station Cstation A

Fig. 1: The realistic time-expanded graph modelling the timetable of Table 3: at
each station three types of nodes exist. The train represented by the connections
α and γ stays for 2 minutes in station B. The transfer time TB at station B is
set to 3 minutes.

Step 1 (Increase Connection Weight). We identify the delayed connection
and increase the weight of only this particular connection arc. Any other
connection arc stays untouched.

Step 2 (Update Station Arcs). For all subsequent stations the delayed train
stops we have to update both transfer–departure and arrival–transfer arcs.
For the former we simply increase its weight from 0 to the delay ∆, while
for the latter we decrease each arrival–transfer arc by ∆.

Step 3 (Validate Station Arcs). Our final step checks for every altered arrival–
transfer arc, whether these arcs are still valid, i.e., the arc weight is still bigger
than the transfer time for this station. In case an arc is valid, we are done for
this arc, but in case not, we have to re-wire the arc. The target node has to
be changed to the next reachable transfer node, i.e., the first node resulting
in a valid arrival–transfer arc.

Figure 2 gives an example for the result of this update routine in case of a delay
∆ = 8 minutes.

Figures 3 and 4 illustrate the execution of the simplified and optimized
update algorithm (presented in Section 3) on the reduced time-expanded graph
when a delay of 20 minutes occurs.

16 A. Cionini et al.

20

45

5

5

8

5

2

2

7

10

350

0

0

1

0

0

31 30

12

15

5

5

28

8

823

7

α

β

γ

station A station B station C

Fig. 2: Modeling delays in the time-expanded model. The graph shows the same
example from Fig. 1 but train α is delayed by 8 minutes. The equivalent arc is
increased by 8 minutes and the according arrival–transfer and transfer–departure
arcs are altered at all following stations. For station B, we have to remove the
original arrival–transfer arc and add a new one, while for station C, it is sufficient
to decrease the arc weight to 23.

10

15

26

30

10

15

25

20

33

37

26

40

50

5

8

5

10

5

8

5

6

7

13

7

1405

1416

5

3

32

13

15
45

7

13

10

5

14

10

6

4

Fig. 3: Arrival nodes are drawn in blue while departure nodes, ordered by de-
parture time, are drawn in yellow. Two stations are projected. The departure
and arrival nodes of a station are enclosed within an oval outline. The minimum
transfer time is 5mins.

B The dynamic timetable model and delay handling

In Figure 5, the dynamic timetable graph modeling the timetable of Table 3 is
shown. Figure 6 shows how dynTM handles a delay in the timetable as described
in Section 4.

Engineering a New Model for Dynamic Timetable Information Systems 17

10

26

30

25

32

33

37

40

5

7

13

10

27

1405

5

13

3

10

7

15

14

6

4 23

35

15

10

5

5

5

8

10

45

15

26

40

50

5

10

1416

Fig. 4: The arcs, departure and arrival nodes of the delayed train, which need to
be updated, are drawn in red. The delay is 20 mins.

sB

22

47

55

sC

58

88

22

20

45

∞
∞
∞

35

12

15

∞

∞

12

15

36

station A station B station C

Fig. 5: The dynamic timetable graph modelling the timetable of Table 3: switch
nodes are drawn in blue while departure nodes, ordered by arrival time, are
drawn in yellow. Inside each departure node the departure time of the corre-
sponding elementary connection is drawn. Connection arcs are drawn in black,
while switch arcs are drawn in blue.

sB

40

47

55 sC

76

88

��20 38

��2240

45

∞

∞
∞

35

12

15

∞

∞

12

15

36

station A station B station C

Fig. 6: Handling delays in a dynamic timetable graph: a delay of 18 minutes
of train α in the timetable of Table 3 induces two arc weight changes and the
update of the time associated to the corresponding departure nodes (red nodes).

