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Abstract

In this paper we study the Arc Orienteering Problem in directed and undirected graphs.
To the best of our knowledge, we give the fist approximation algorithms for both the undi-
rected and the directed versions of the problem. Our main results are the following: (i) We

give an O( log2(m)
log log(m)

)−approximation algorithm for the AOP in directed graphs, where m is

the number of arcs of the graph of the problem, using the O( log2(n)
log log(n)

)−approximation for

the OP in directed graphs found in [13]. (ii) Using the (2 + ε)−approximation algorithm for
the unweighted version of the OP in [6], we obtain a (6+ε+o(1))−approximation algorithm
for the AOP in undirected graphs and a (4+ε)−approximation algorithm for the unweighted
version of the AOP in undirected graphs. Moreover, we prove that the Mixed Orienteering
Problem (MOP) can be reduced to AOP and that any approximation algorithm for the AOP
yields an approximation algorithm for the MOP.

Keywords: Arc Orienteering Problem, Orienteering Problem, Mixed Orienteering Problem,
Approximation Algorithms, NP-completeness.

1 Introduction

The Arc Orienteering Problem (AOP) is a single route arc routing problem with profits intro-
duced by Souffriau et al. in [15]. Given a directed graph G = (V,A) whose arcs are associated
with profits and travel times, two nodes s, l ∈ V , and a time budget B, the problem entails
finding an s − l walk of total length at most B so as to maximize the sum of the profits of the
arcs visited by the walk. Note that the profit of each arc in the walk is collected only at the
first time it is traversed. The AOP is the arc routing version of the Orienteering Problem (OP),

∗This work was supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities and Sustainability),
under grant agreement no. 288094 (project eCOMPASS)
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an NP-hard problem, named after a sport game called orienteering [9, 16]. In the OP the nodes
(instead of the arcs) are associated with profits and the goal is to find a walk from s to l with
length at most B such that the total profit of the visited nodes is maximized. The OP as well as
its extension to multiple routes, the Team Orienteering Problem (TOP), and many other exten-
sions and variants have been extensively studied in the literature. In the past decade a significant
number of studies have been conducted wherein approximation approaches, metaheuristics and
exact methods have been employed to tackle these problems (see [8] and [17]for a survey). One
of the most common application of the OP and its extensions is to model different versions of the
Tourist Trip Design Problem (TTDP) [18], a route-planning problem which deals with deriving
near optimal routes for tourists visiting a destination with several points of interest (POIs) each
associated with a profit.

The AOP is applicable to TTDP variants whose modeling requires profits to be associated
with the arcs of the network as some links may be more beneficial to be traversed than others.
As an example we may consider the derivation of personalized bicycle trips. Based on the biker’s
personal interests, starting and ending point and the available time budget, a personalized trip
can be composed using arcs that better match the cyclist’s profile. Similarly, AOP solvers may
favor detours via riverside or pedestrian roads against shorter routes via high-traffic or unsafe
zones for tourists moving among POIs. The extension of the AOP to multiple routes, introduced
by Archetti et al. in [3] and named as Team Orienteering Arc Routing Problem (TOARP), may
also find applications to TTDP variants. For example, consider the selection of paths of higher
scenic value (among the many available between pairs of POIs) as well as the exclusion of paths
including environmentally burdened road segments in favor of longer detours through pedestrian
zones.

Although numerous research works concern the OP as well as many extensions and variants
of the OP, there is very limited body of literature concerning AOP and TOARP. To the best of
our knowledge, this literature includes the work of Souffriau et al. [15] which uses the AOP to
model and provide a heuristic solution to the problem of planning cycle trips in the province of
East Flanders, the work of Archetti et al. in [3] that proposes a formulation of the problem and a
branch-and-cut algorithm and the work of Archetti et al. in [1] which introduces a matheuristic
approach to TOARP.

The combination of the OP and the AOP is proposed in [17] under the name Mixed Orien-
teering Problem (MOP). In the MOP, profits are associated with the nodes as well as with the
arcs of the graph. The problem is very interesting in the context of tourist trip planning as it can
be used to formulate TTDP variants where certain routes may be of tourist interest, in addition
to attractions. The only relevant research works concern the one-period Bus Touring Problem
(BTP) [7], and the Outdoor Activity Tour Suggestion Problem (OATSP) [12].

In this paper we study the AOP in directed and undirected graphs. We prove that the AOP
is NP-hard and, to the best of our knowledge, we propose the first approximation algorithms for
both the undirected and the directed version of the problem. Specifically, our main contributions
are the following:

• Using the O( log2(n)
log log(n) )−approximation for the OP in directed graphs by Nagarajan and

Navi [13], we obtain a O( log2(m)
log log(m) )−approximation for the AOP, where m is the number

of arcs of the graph of the problem.

• Using the (2+ε)−approximation algorithm for the unweighted version of the OP by Chekuri
et al. [6], we obtain

– a (6 + ε+ o(1))−approximation algorithm for the AOP in undirected graphs.

– a (4 + ε)−approximation algorithm for the unweighted version of the AOP in undi-
rected graphs.
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Also, we prove that the MOP can be reduced to AOP, and that any approximation algorithm
for the AOP yields an approximation algorithm for the MOP. The paper is organized as follows:
In Section 2 we present related work. In Section 3 we prove that the AOP is NP-hard and
give an approximation algorithm for the AOP in directed graphs. In Section 4 we present
approximation algorithms for the AOP in undirected graphs and the unweighted version of the
AOP in undirected graphs. Finally, in Section 5 we give approximation algorithms for the MOP.

2 Related work

Souffriau et al. in [15] use the AOP to model and solve the problem of planning cycle trips in the
province of East Flanders. Their solution approach is based on a Greedy Randomized Adaptive
Search Procedure (GRASP), while experimental results are based on instances generated from
the East Flanders network.

Archetti et al. in [3] propose a formulation for the AOP and study a relaxation of its associated
polyhedron. Also, they develop a branch-and-cut algorithm for solving the problem. Archetti
et al. in [1] propose a matheuristic approach for the AOP. Experimental results show that the
algorithm gives an average percentage error with respect to the optimal solution which is lower
than 1%.

The Undirected Capacitated Arc Routing Problem with Profits (UCARPP), the arc routing
counterpart of the capacitated TOP, is considered in [2]. In this problem a profit and a non-
negative demand is associated with each arc and the objective is to determine a path for each
available vehicle in order to maximize the total collected profit, without violating the capacity
and time limit constraints of each vehicle. The authors consider an application where carriers
can select potential customers for transporting their goods. Another potential application is
the creation of personalized bicycle trips. An exact approach for solving the UCARPP along
with several heuristics were proposed in [2]. The problem was also studied by Zachariadis and
Kiranoudis in [19] where a local search procedure was given.

To the best of our knowledge, the only research works relevant to the MOP, concern the
one-period Bus Touring Problem (BTP) [7], and the Outdoor Activity Tour Suggestion Problem
(OATSP) [12]. In the BTP the objective is to maximize the total profit of the tour by selecting
a subset of nodes to be visited and arcs to be traveled both having associated profits, given a
constraint on the total touring time. The profit of recurrently visited nodes and arcs is only
counted once. In [7] a heuristic approach is employed to solve the BTP. The OATSP, introduced
recently by Maervoet et al. [12], involves finding attractive closed paths in a transportation
network, tailored for a specific outdoor activity mode such as hiking and mountain biking. Total
path attractiveness is evaluated as the sum of the average arc attractiveness and the profits of
the nodes along the path. The problem involves finding a closed path of maximal attractiveness
given a target path length and tolerance. That is, the OATSP requires a target path length
instead of a maximal travel time required by the BTP. This gives rise to a path length window
constraint. In [12] an efficient heuristic solution to the OATSP is presented.

To the best of our knowledge, no approximation algorithms for the AOP or the MOP have
been presented in the literature. On the other hand, there is a significant number of research
works on the approximability of the OP. As mentioned in the introduction, OP is NP-hard ([9],
[11]) and it also known to be APX-hard [4]. The basic idea for approximating the OP was
presented by Blum et al. in [4], [5] where the min-excess s− t path problem (given two nodes s, t
and an integer k, find an s− t path of minimum-excess 1 that visits at least k nodes) was defined.
It was shown that an approximation for the min-excess path problem implies an approximation
for the OP. Then, the min-excess path problem can be approximated using algorithms for the
k-stroll problem (find a minimum length s − t walk that visits at least k nodes). Blum et

1The excess of an s− t path is the difference of the path length from the length of the shortest s− t path.
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al. obtained a 4-approximation algorithm for the OP in undirected graphs by using a (2 + ε)-
approximation for the k-stroll path problem. In fact, most subsequent approximation algorithms
for OP follow the framework of [4], [5] which reduces the OP to the k-stroll problem via the min-
excess path problem. The best known approximation algorithm for the OP in undirected graphs
is due to Chekuri et al. [6] who obtained a (2 + ε)-approximation algorithm with running time
nO(1/ε2) by giving a bi-criteria approximation for k-stroll problem with respect to the path length
and the number of nodes visited. Using the same approach, they also obtained an O(log2OPT )
approximation algorithm for the OP in directed graphs, where OPT denotes the number of nodes
in an optimal solution. The best known approximation algorithm for the OP in directed graphs
is due to Nagarajan and Ravi [13]. They gave an O( log2 n

log logn )-approximation algorithm for the
OP in directed graphs employing a bi-criteria approximation solution for k-stroll based on an
LP approach.

3 The Arc Orienteering Problem

The AOP is defined as follows [15]: Given a quadruple (G = (V,A), t, p, B) where G = (V,A)
is a directed graph with V = {s = u1, u2, . . . , un = l} its set of nodes and A its set of arcs,
t : A → R+ i.e., each arc a ∈ A is associated with a travel time ta, p : A → R+ i.e., each arc is
associated with a profit pa, and a non-negative time budget B, the goal is to find an s− l walk
with length at most B so as to maximize the sum of the profits of the arcs traversed by the walk.
Note that an arc may be traversed multiple times by the walk. While the travel cost associated
with an arc is paid each time the arc is traversed by the walk, its profit is collected only once,
independently of the number of times it is traversed.

We first prove that the AOP is NP-hard and then we give an approximation algorithm for
the problem by reducing it to the OP for directed graphs.

Theorem 1. The AOP is NP-hard

Proof. We shall reduce the NP-complete decision knapsack problem [14] to the AOP. In the
former we are given a set of objects O = {o1, o2, . . . , on} such that each oi has a weight wi and
a profit pi, a limit W in the total weight of objects we can pick, and a target profit P , and
the question is whether there is a subset of the objects with total weight at most W and total
profit at least P . We reduce the Knapsack problem to the AOP as follows: Given an instance
of the Knapsack, we consider a directed star graph G with a central (start and terminal) node
s connected to each node oi representing an object, and vice versa. Also we consider each arc
having a travel time and a profit equal to half of the oi’s weight and profit, respectively, the
time budget equal to W and the total profit that should be collected by a walk greater than or
equal to P . Formally, the graph G is defined as follows: G = (V,A) where V = {s} ∪ O,A =
{(s, oi), (oi, s) : i = 1, 2, . . . , n} and for each oi ∈ V the arcs (s, oi) and (oi, s) have travel time
equal to wi

2 and profit equal to pi
2 . It is easy to notice that a subset S = {ok1 , ok2 , . . . , okl} of O

has total weight at most W and total profit greater than or equal to P if and only if the closed
walk (s, ok1 , s, ok2 , s, . . . , s, okl , s) is of length at most W and has total profit at least P .

Theorem 2. An f(n)−approximation algorithm for the OP in directed asymmetric metric
graphs, where n is the number of nodes of the graph of the OP instance, yields a f(m +
2)−approximation algorithm for the AOP, where m is the number of arcs of the graph of the
AOP instance.

Proof. Given an instance of the AOP (N = (V,A), t, p, B), |A| = m we construct an instance of
the OP in the directed asymmetric metric network Nm in two phases as follows: we first define
N ′ = (V ′, A′) such that V ′ = {s, l} ∪ {(u, v) : (u, v) ∈ A} (|V ′| = n′ = m + 2) i.e., the set of
nodes of N ′ consist of the starting node s, the terminal node l and a node a for each arc a in A
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representing that traversing the arc a in AOP corresponds to visiting the node a in the OP. The
set of arcs A′ is defined as follows: s is connected only to the nodes representing the outgoing
arcs from s, i.e. of the form (s, u) with the outgoing arc (s, (s, u)) and l is connected only to
the nodes representing the ingoing arcs to l, i.e. (u, l) with the ingoing arc ((u, l), l) and all the
other connections will be of the form ((u, v), (v, w)) where (u, v) and (v, w) are arcs of N . Thus,
A′ = {(s, (s, u)), ((u, l), l) : (s, u) and (u, l) ∈ A}∪{((u, v), (v, w)) : (u, v), (v, w) ∈ A}. The travel
time of an arc ((u, v), (v, w)) equals to half of the sum of the travel times of (u, v) and (v, w)
in the AOP instance, hence t′((u,v),(v,w)) = t(u,v)+t(v,w)

2 and t′(s,(s,u)) = t(s,u)

2 and t′((u,l),l) = t(u,l)
2 .

The profits of the nodes of the OP instance represent the profits of the arcs of the AOP instance,
so p′(u,v) = p(u,v) and the allowed time budget is the same in both instances, hence B′ = B.
Then, we obtain the network Nm, the metric closure of the network N ′. Note, that each arc
in N ′ will retain the same travel time in network Nm, i.e. for the arc ((u, v), (v, w)) ∈ Nm,
t′((u,v),(v,w)) = t(u,v)+t(v,w)

2 , since any other path connecting (u, v) with (v, w) will be of the form
((u, v), (v, x1), (x1, x2), . . . , (xk, v), (v, w)) and hence have travel time greater than or equal to
t′((u,v),(v,x1)) + t′((xk,v),(v,w)) =

t(u,v)+t(v,x1)+t(xk,v)+t(v,w)

2 ≥ t(u,v)+t(v,w)

2 .
Now, we will prove that a solution to the AOP instance yields a solution to the OP instance

with the same total profit and length and hence

OPTAOP ≤ OPTOP (1)

For this, consider that a solution to the AOP P = (s = w0, w1, w2, . . . , wk−1, wk = l), is trans-
formed into a solution to the OP as follows: P ′ = (s, (s, w1), (w1, w2), . . . , (wk−1, l), l) with total
length

t′(s,(s,w1))+
k−2∑
i=0

t′((wi,wi+1),(wi+1,wi+2))+t
′
((wk−1,l),l)

=
t(s,w1)

2
+
k−2∑
i=0

t(wi,wi+1) + t(wi+1,wi+2)

2
+
t(wk−1,l)

2

which is equal to the length of P and collects the same profit with P .
On the other hand, given a feasible solution Wm of the OP instance in Nm (i.e. a s− l walk of

total travel time at most B) we first decompose each edge in the walk into its corresponding short-
est path in N ′ obtaining the walk W ′. Namely, if the node (u, v) is followed by the node (w, x)
in the walk and its shortest path in N ′ is the sequence ((u, v), (v, z1), (z1, z2), . . . , (zk, w), (w, x)),
then since Nm is the metric closure of N ′, the travel time of the edge ((u, v), (w, x)) will be
equal to the travel time of the segment ((u, v), (v, z1), (z1, z2), . . . , (zk, w), (w, x)). Also, the
profit collected by visiting the nodes of the segment will be greater than or equal to the profit
obtained by just visiting (w, x) after (u, v) in Nm. Hence, we obtain a walk W ′ of the same to-
tal travel time and profit greater than or equal to the profit Wm. Then, W ′ will be of the
form W ′ = (s, (s, w1), (w1, w2), . . . , (wk−1, l), l). The latter is re-transformed into the walk
W = (s, w1, w2, w3, . . . , wk−1, l) in the AOP instance with the same travel time and profit as
with W ′ in the OP instance. Under the previous result, getting a solution Wm of the Nm using
an f(n′)−approximation algorithm for the OP in directed asymmetric metric graphs, we obtain
that profit(Wm) ≥ OPTOP

f(n′) . Then, retransforming Wm, first into W ′, a walk in N ′, and then into
W , a walk in the AOP instance, we get a solution with profit

profit(W ) ≥ profit(Wm) ≥ OPTOP

f(n′)

Using (1), we get that

profit(W ) ≥ OPTAOP

f(n′)
=

OPTAOP

f(m+ 2)
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Corollary 3. Using the O( log2(n)
log log(n) )−approximation for the OP in directed asymmetric metric

networks by Nagarajan and Navi [13], we obtain a O( log2(m)
log log(m) )−approximation for the AOP,

where m is the number of arcs of the graph of the problem.

4 Approximation Algorithms for the AOP in Undirected
Graphs

In this section we study the AOP in undirected graphs i.e. the graph in the definition of the
problem (G = (V,E), t, p, B) consists of edges instead of arcs. Notice that a similar reduction
to the one for the AOP given in Theorem 1 (i.e., define the set of edges of the graph G of the
AOP instance as the set {{s, o1}, {s, o2}, · · · , {s, on}} and assign profit pi to each edge {s, oi}
equal to the profit of the object oi, i = 1, 2, · · · , n), shows that the AOP in undirected graphs is
NP-hard. Therefore, we have the following Lemma.

Lemma 4. The AOP in undirected graphs is NP-hard.

In the sequel, we prove that there exists a constant factor approximation algorithm for the
AOP in undirected graphs by reducing it to the Unweighted OP (UOP) in undirected graphs.
The UOP is the restriction of the OP where all the nodes of the graph G have profit equal to 1.
The problem can be also stated as follows: Given a graph G with travel times associated with
its edges, two nodes s and l, and a time budget B, the goal is to find an s − l walk of total
length at most B so as to maximize the number of distinct nodes visited by the walk. First,
using scaling and rounding techniques in a similar way with the work of [10, 6] for the OP, the
AOP with general profits over the edges can be reduced to the AOP with profits over the edges
integers polynomially bounded by the size of the instance.

Lemma 5. A ρ−approximation algorithm for the AOP in undirected graphs with profits over
the edges integers polynomially bounded by the size of instance i.e. there is an integer k such
that for each edge e = {u, v}, the profit pe is 1 ≤ pe ≤ nk, yields a (ρ + o(1))−approximation
algorithm for the AOP in undirected graphs.

Proof. Given an instance (N = (V,E), t, p, B) of the AOP with general profits over its edges,
we shall construct an instance (N ′ = (V ′, E′), t, p′, B) with polynomially bounded integer profits
over its edges. First, we guess the edge of highest profit in the optimal walk of the initial instance.
Let this profit be equal to pmax. Then, we remove from E all the edges with profit greater than
pmax. Notice that if N ′ = (V ′, E′) is the new graph, the optimal solution in N ′ is the same with
the optimal solution in N . Then, we apply a scaling technique for each edge e ∈ A′ by setting
its new profit as

p′e = bn
3pe
pmax

c+ 1

Consider a feasible walk W , consisting of the distinct edges e1, e2, . . . , ek. Then, in the initial

instance (in N) W will have profit equal to profit(W ) =
k∑
j=1

pej while in the latter instance (in

N ′), W will have profit profit′(W ) =
k∑
j=1

p′ej >
k∑
j=1

n3pej
pmax

= n3profit(W)
pmax

. Hence, if OPT is the

value of an optimal solution in N and OPT ′ its value in N ′, then

OPT′ >
n3

pmax
OPT (2)
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On the other hand, profit′(W ) =
k∑
j=1

p′ej ≤
k∑
j=1

(
n3pej
pmax

+1) =⇒ n3

pmax
profit(W ) ≥ profit′(W )−k ≥

profit′(W )−m ≥ profit′(W )−mOPT
pmax

, so

profit(W ) ≥ pmax

n3
profit′(W )− m

n3
OPT (3)

Using a ρ−approximation algorithm for the latter instance we obtain a walk W with profit
profit′(W ) ≥ OPT′

ρ and from (3), the profit of walk W in the initial instance will be

profit(W ) ≥ 1
ρ

pmax

n3
OPT′ − m

n3
OPT

Finally, using (2) we get that

profit(W ) > (
1
ρ
− m

n3
)OPT

Lemma 6. A ρ−approximation algorithm for the UOP in undirected graphs yields a 3ρ−approximation
algorithm for the AOP in undirected graphs when the profits of the edges are integers polynomi-
ally bounded by the size of instance, i.e. there is an integer k such that for each edge e = {u, v},
the profit pe is 1 ≤ pe ≤ nk.

Proof. Given an instance of the AOP, first we consider that for each edge e = {u, v} of the AOP
instance the shortest path from s to l passing through e has length at most B (this can be tested
in polynomial time by checking whether min{l(s, u)+ t{u,v}+ l(v, t), l(s, v)+ t{u,v}+ l(u, t)} ≤ B,
where l(x, y) is the length of the shortest path from node x to node y), otherwise e cannot
be part of the solution and it is removed from the graph. Then we construct an instance of
UOP by splitting each edge {u, v} of the AOP into puv + 1 edges (subsegments) as follows: For
each edge {u, v} of the AOP instance we create the nodes u, {u, v}1, {u, v}2, . . . , {u, v}puv , v and
the edges {u, {u, v}1}, {{u, v}1, {u, v}2}, · · · , {{u, v}puv−1, {u, v}puv}, {{u, v}puv , v} (see Figure
1). We set the travel times of the edges {u, {u, v}1} and {{u, v}puv , v} equal to half of the
travel time of the initial edge {u, v} i.e. equal to t{u,v}

2 . We also set the travel times of the
edges {{u, v}i, {u, v}i+1}, i = 1, 2, . . . , puv−1 equal to zero. Now, a solution WAOP to the AOP
instance is easily transformed into a solution WUOP to the UOP instance by just replacing any
edge {u, v} of the WAOP with the sequence of nodes u, {u, v}1, {u, v}2, . . . , {u, v}puv , v. It is easy
to verify that the number of the distinct nodes in WUOP is greater than or equal to the total
profit of the WAOP , and the total travel time of WUOP is equal to the travel time of the WAOP

and hence OPTAOP ≤OPTUOP.
Now, we shall prove that any solution of the UOP instance can be re-transformed into a

solution to the AOP with at least one third of the profit of the former solution. We shall
consider a sequence of nodes of the form u, {u, v}1, {u, v}2, . . . , {u, v}puv , v as an appropriate
segment, i.e. a segment that represents an edge of the original instance. Likewise, a se-
quence of the form u, {u, v}1, {u, v}2, . . . , {u, v}i−1, {u, v}i, {u, v}i−1 . . . , {u, v}2, {u, v}1, u is con-
sidered as an inappropriate segment i.e. a segment that does not represent an edge of the
AOP instance. For example in Figure 1, the segment v1, {v1, v2}1, {v1, v2}2, v2 is an appro-
priate segment, while the segment v5, {v5, v6}1, {v5, v6}2, {v5, v6}3, {v5, v6}2, {v5, v6}1, v5 is an
inappropriate one. Then, a solution to the UOP instance consists of a sequence of segments,
where each segment is either appropriate or inappropriate. Notice that for each inappropriate
segment u, {u, v}1, {u, v}2, . . . , {u, v}i−1, {u, v}i, {u, v}i−1 . . . , {u, v}2, {u, v}1, u we may consider
that i = puv, because otherwise, it can be replaced by the equal length and higher profit segment
with i = puv.
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Figure 1: Illustration of representing the profit of an edge with nodes

In a UOP solution, if pAS is the profit gained by the appropriate segments and pIS is the
profit gained by the inappropriate segments then the total profit of the solution pTOT is equal to
pAS + pIS. In the case that all segments participating in a UOP solution WUOP are appropriate,
the re-transformation of the WUOP to an AOP solution WAOP is obviously done by adding to
the WAOP the edges of the AOP instance represented by the segments of the UOP instance.
This yields a feasible AOP solution with profit equal to the number of distinct nodes of the form
{u, v}i in the walk WUOP . Notice that the profit of WAOP will be at least half of the WUOP ’s
profit, since each new appropriate segment in the UOP instance will contribute to the solution’s
profit at most the profit of the represented edge plus 1, counting the endpoint of the edge, hence
at most twice the profit of the edge.

If however, the set of inappropriate segments is not the empty set, then the re-transformation
of an UOP solution to a AOP one is not that easy. Given a UOP solution WUOP , we say that we
extend an inappropriate segment u, {u, v}1, . . . , {u, v}puv−1, {u, v}puv , {u, v}puv−1, . . . , {u, v}1, u
in WUOP when replacing it with the appropriate segments u, {u, v}1, . . . , {u, v}puv , v and
v, {u, v}puv , . . . , {u, v}1, u. Then the idea is to construct an AOP solution as follows: first add
all the edges corresponding to the appropriate segments and then add a number of edges corre-
sponding to inappropriate segments (i.e. extend these segments to make them appropriate) and
ignore a number of inappropriate segments (in order not to violate the time budget). This can
be done as long as the total profit of the constructed AOP solution is at least a constant factor
of the WUOP profit.

Let IS= {s1, s2, . . . , sk} be the set of inappropriate segments participating in WUOP . Let
also t1, t2, . . . , tk be the travel times spent on these segments and p1, p2, . . . , pk be the profits

collected by traversing them (
k∑
i=1

pi = pIS). A subset of IS, FS= {sa1 , sa2 , . . . , sam},m ≤ k, is a

feasible subset of segments in the case that
m∑
j=1

2taj ≤
k∑
i=1

ti. Then FS is a maximal subset for the

given time constraint, if the insertion of another segment (am+1) would violate the time budget

i.e.
m+1∑
j=1

2taj >
k∑
i=1

ti. Now, we consider a maximal feasible subset MFS of segments (this can be

found in polynomial time) and distinguish between the following cases:

• If MFS has total profit greater than or equal to one third of the total profit of the IS

8



(pMFS ≥ pIS
3 ), then we append the segments of MFS (called the appended segments) and

remove all the other segments of IS. This creates a walk of only appropriate segments with
total profit at least pMFS + pAS

2 ≥ pIS+pAS
3 = pTOT

3 , a third of the profit of the initial
solution, since from the appended segments we add their represented edges of AOP getting
a third of their total profit and adding the edges represented from the previous appropriate
segments (not the appended ones) we get at least half of the profit of each segment.

• If MFS has total profit less than a third of the total profit of the IS, then the relative
complement of MFS in IS, IS\MFS = MFSc, has profit at least two thirds of the total
profit of the IS. Then we distinguish between the following two cases:

– if MFSc has at least two elements then we remove the segment with the lowest profit
call it sb and this creates a feasible subset since MFS was maximal for the time
constraint and MFSc\{sb} has profit at least half the profit of MFSc, hence at least
a third of IS and with the same procedure as previous we get a solution to the AOP
with at least a third of the solution of the UOP by extending the segments in MFSc.

– if MFSc has exactly one segment consider it to be s1, then if p1 ≥ pTOT
3 considering the

shortest path from s to l passing through the edge representing the extended segment
s1, we obtain a walk with total profit of at least pTOT

3 . Otherwise, if p1 <
pTOT

3 (i.e.
pAS + pMFS ≥ 2pTOT

3 ) it is enough to extend the segments in MFS and remove s1,
obtaining in this way, a walk with profit at least pAS

2 + pMFS ≥ pAS+pMFS
2 ≥ pTOT

3 .

So, any solution of the UOP instance is re-transformed into a solution of the AOP instance
with total profit at least a third of the former. Hence, obtaining a ρ−approximation solution to
the UOP it is re-transformed into a solution to AOP with total profit at least OPTUOP

3ρ and since
as proven OPTAOP ≤OPTUOP, this yields a 3ρ−approximation algorithm for the AOP.

Theorem 7. There exists a (6 + ε+ o(1))−approximation algorithm for the AOP in undirected
graphs with execution time nO( 1

ε2
).

Proof. We first apply Lemma 5 to creat a graph with polynomially bounded profits over the
edges. Then, the Lemma 6 combined with the (2 + ε)−approximation algorithm for the UOP by
Chekuri et al. [6] produces the required solution.

The unweighted version of AOP (UAOP) in undirected graphs is the restriction of the
problem where all edges have profit equal to 1. Thus, it can be alternatively defined as follows:
Given a graph G with travel times associated with its edges, two nodes s and l, and a time
budget B, the goal is to find an s − l walk of total length at most B so as to maximize the
number of distinct edges traversed by the walk.

Lemma 8. A ρ−approximation algorithm for the UOP in undirected graphs yields a solution
with profit at least bOPT

2ρ c to the UAOP in undirected graphs.

Proof. The proof is similar to the Lemma 6 with the only difference that instead of choosing a
maximal feasible set of segments with one third of the total profit, we pick the bk2 c segments with
the least travel time, hence obtaining a solution with profit at least bprofit of solution of UOP

2 c.
Similarly to Theorem 7 we obtain the following theorem.

Theorem 9. There exists a (4+ε)−approximation algorithm for the UAOP in undirected graphs
running in nO( 1

ε2
) time.

9



5 The Mixed Orienteering Problem

The Mixed Orienteering Problem MOP first mentioned in [17], also seen as bus touring problem
[7], is the combination of the OP and the AOP. In the MOP, profits are associated to the nodes as
well as to the arcs of the graph. The problem can be formally defined as follows: Given an instance
(N = (V,A), t, p, B) where N = (V,A) is a directed graph with V = {s = u1, u2, . . . , un = l} its
set of nodes and A its set of arcs, t : A→ R+ i.e., each arc a ∈ A is associated with a travel time
ta, p : V ∪ A → R+ i.e., each node and arc is associated with a profit, and a non-negative time
budget B, the goal is to find an s− l walk with length at most B so as to maximize the sum of
the profits of the nodes visited and the arcs traversed by the walk. The profit from a node or
an arc is collected only once, independently of the number of times a node is visited or an arc is
traversed.

Theorem 10. The Mixed Orienteering Problem can be reduced to AOP.

Proof. Given an instance of the Mixed Orienteering Problem (N = (V,A), t, p, B) we construct
an instance of the AOP (N ′ = (V ′, A′), t′, p′, B′) as follows: for each node u ∈ V we create a
node u′ ∈ V ′ connected only with u, such than both arcs (u, u′) and (u′, u) have zero length
and profit equal to half of the profit of node u in the instance of Mixed Orienteering problem.
Formally, V ′ = {u, u′ : u ∈ V } and A′ = A ∪ {(u, u′), (u′, u) : u ∈ V }, t′(u,v) = t(u,v), (u, v) ∈ A
and t′(u,u′) = t′(u′,u) = 0 and p′(u,v) = p(u,v), (u, v) ∈ A and p′(u,u′) = p′(u′,u) = pu

2 and B′ = B.
Every walk W = (s, w1, w2, . . . , wk, t) in the instance of the Mixed Orienteering Problem

can be transformed into a walk W ′ = (s, w1, w
′
1, w1, w2, w

′
2, w2, . . . , wk, w

′
k, wk, t) with the same

length and profit. So the optimal value of the MOP OPTMOP is less than or equal to the optimal
value of the AOP OPTAOP . Similarly, any walk of the AOP instance is re-transformed in a walk
of the MOP instance by removing all the u′ ∈ V ′ from the path and has the same length with
the former and at least the same profit. So, OPTMOP =OPTAOP .

Note that from the previous proof the re-transformation of the AOP to the MOP yields at
least a same profit solution. Therefore, the following corollary holds.

Corollary 11. Any approximation algorithm for the AOP yields an approximation algorithm
for the MOP and hence based on Corollary 3 we have obtained an O( log2 n

log logn )−approximation
algorithm for the MOP.

The MOP in undirected graphs is the MOP defined over an undirected graph. In a similar
reduction to the one given in Theorem 10, with the only difference of inserting for each node
u ∈ V an edge {u, u′} with profit equal to the profit of u instead of two arcs (u, u′) and (u′, u)
with half of the profit, we obtain the following Lemma

Lemma 12. MOP in undirected graphs can be reduced to AOP in undirected graphs and any
approximation algorithm for the AOP in undirected graphs yields an approximation algorithm for
the MOP in undirected graphs with the same approximation ratio.

Hence, using Theorem 7 we obtain the following Corolary

Corollary 13. There exists a (6+ε+o(1))−approximation algorithm for the MOP in undirected
graphs running in nO( 1

ε2
).
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