
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 046

Rectilinear Shortest Path and Rectilinear
Minimum Spanning Tree with

Neighborhoods

Yann Disser, Matus Mihalak, and Sandro Montanari

January 2014

Rectilinear Shortest Path and Rectilinear Minimum
Spanning Tree with Neighborhoods

Yann Disser1, Matús Mihalák2, and Sandro Montanari2

1 Institut für Mathematik, TU Berlin, Germany disser@math.tu-berlin.de
2 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{matus.mihalak,sandro.montanari}@inf.ethz.ch

Abstract. We study the geometric shortest path and the minimum spanning tree
problem with neighborhoods in the L1 metric. In this setting, we are given a
graph G = (R, E), where R = {R1, . . . , Rn} is a set of polygonal regions in
the plane. Placing a point pi inside each region Ri turns G into an edge-weighted
graph Gp, p = {p1, . . . , pn}, where the cost of an edge is the distance between
the points. The Shortest Path Problem with Neighborhoods asks, for given Rs and
Rt, to find a placement p such that the resulting shortest s-t path in Gp is smallest
among all graphs Gp. The Minimum Spanning Tree Problem with Neighborhoods
asks for a placement p such that the resulting minimum spanning tree of Gp has
the smallest cost among all minimum spanning trees of all graphs Gp. We study
these problems in the L1 metric, and show that the shortest path problem with
neighborhoods is solvable in polynomial time, whereas the minimum spanning
tree problem with neighborhoods is NP-hard, even if the neighborhood regions
are segments.

1 Introduction

Given a sequence of n polygons in the plane, a start point s, and a target point t, TOUR-
INGPOLYGONS is the problem to find a shortest path that starts at s, visits the n poly-
gons in the given order, and ends at t. This problem is solvable in polynomial time,
whenever the polygons are convex and disjoint [3]. In general, if the polygons are al-
lowed to be non-convex and intersecting, the problem is NP-hard [3] (in the L2 metric).
For several years, the complexity of the problem for the case of non-convex, yet dis-
joint polygons has been open (even for the L1 metric), which motivated the design of
approximation algorithms [11] for the problem. Recently, Ahadi et al. [1] proved that
TOURINGPOLYGONS is NP-hard even if the polygons are disjoint, for every Lp norm,
p ≥ 1, in the case where every polygon is formed by two joint line segments whose
angles with the x-axis are in {0,±π/4, π/2}.

Apparently, the difficulty of TOURINGPOLYGONS lies in the shape of the polygons
Pi, i = 1, . . . , n. It is a natural question to ask “How does the complexity of the problem
changes when the sequence of the polygons is not given up front?” If we still require that
all polygons are visited, the problem becomes to find a shortest path from s to t visiting
all polygons (in an arbitrary order). The NP-hardness of this problem follows easily,
as the related problem of finding a shortest tour starting at s, visiting all polygons, and

coming back to s, is NP-hard [12] (even if the polygons are points). Here, the difficulty
obviously lies in finding the right order of the polygons to be visited.

In this paper we study a related question which relaxes the requirements “visit all
polygons” and “follow the given order” in a natural way: Additionally to the set of n
polygons P1, . . . , Pn, we are given a set E ⊆ 2{P1,...,Pn} of allowed traversals, where
a pair {Pi, Pj} ∈ E states that a tour may traverse from Pi to Pj ; Given two polygons
Ps and Pt, we search for a shortest tour through the polygons such that for any two con-
secutively visited polygons P and P ′ along this tour we have {P, P ′} ∈ E. We call this
the Shortest Path Problem with Neighborhoods, SPN for short. An alternative view of
it is the following: Given n polygons P1, . . . , Pn and a graph G = ({P1, . . . , Pn}, E),
place a point inside each polygon Pi such that the shortest path in the resulting geo-
metric graph is smallest possible (among all such placements). Obviously, in general,
the problem remains NP-hard – TOURINGPOLYGONS is a special case of it (just set G
to be the path induced by the order in which the polygons need to be visited). We are
interested in polynomially solvable special cases of the problem.

Several other combinatorial optimization problems have been studied in this “with
neighborhoods” spirit, such as the Travelling Salesman Problem [4, 5]the problems of
finding (minimum-length) convex hull [9] or enclosing circle [10], or the Minimum
Spanning Tree Problem [9, 13, 2]. In all these studies, there is a set of neighborhood
regions R1, . . . , Rn (not necessarily polygons), and the graph G = ({R1, . . . , Rn}, E)
is a complete graph.

In all these “with neighborhood” variants, one searches for a placement of points
inside the region Ri such that the resulting geometric variant of the combinatorial op-
timization problem at hand has as cheap an optimal solution as possible. For example,
the Minimum Spanning Tree Problem with Neighborhoods (MSTN for short) asks for
a placement of n points, one in each region Ri, i = 1, . . . , n, such that the (euclidean)
minimum spanning tree spanning these points is smallest among all such placements.
Löffler and Kreveld showed [9] that this problem is NP-hard when the neighborhood
regions are squares (not necessarily disjoint). Yang et al. showed that when the neigh-
borhood regions are disjoint unit disks, the problem admits a PTAS [13] (i.e., it can be
approximated arbitrary well). Dorrigiv et al. [2] later showed that MSTN in L2 metric
is APX-hard when the neighborhood regions are disjoint disks, not necessarily of unit
diameter.

Our results. In Section 2, we show that SPN in L1 metric can be solved in polynomial
time if the neighborhood regions are axis-parallel polygons (convex or non-convex). In
Section 3 we adapt the hardness result of MSTN in L2 metric of Dorrigiv et al. [2] and
show that MSTN in L1 metric is APX-hard, even if the regions are line segments.

2 Shortest Path with Neighborhoods

In the Shortest Path Problem with Neighborhoods, or SPN, we are given a set of non-
overlapping axis-parallel polygonal regions R = {R1, . . . , Rn}, a directed underlying
graph G = (R, E), and a pair s, t ∈ {1, . . . , n}, s 6= t. The problem asks for a place-
ment p such that the cost of a shortest path between Rs and Rt in Gp is smallest among
all possible placements. We call such a placement an optimal SPN placement.

2

The SPN problem can be solved trivially if there is an edge in G from Rs to Rt. In
this case, a shortest st-path is the edge (Rs, Rt), and an optimum placement minimizes
the length of this edge. If (Rs, Rt) /∈ E, the problem becomes more interesting, because
it is not clear a priori what sequence of rectangles constitutes a shortest st-path, for an
optimum placement p. Note that, if we know which regions constitute a shortest st-
path, and in which order, the problem becomes the Touring Polygons Problem. Recall
that this problem can be solved efficiently in case of convex polygonal regions, and it
is NP-hard for any Lp metric (with p ≥ 1) in case the regions are composed of at most
two joint line segments whose angles with the x-axis are in {0,±π/4, π/2}. In the
following we show that the above hardness of TOURINGPOLYGONS is due to the±π/4
segments, and that in fact for every input of rectilinear and even non-convex polygonal
regions Ri, the more general SPN problem is solvable in polynomial time.

Given a finite set of points P ⊂ R2, the Hanan grid of P is induced by the vertical
and horizontal lines passing through each point of P . The Hanan grid is a well-studied
object, and it has been shown [6, 14] that the Hanan grid of a point set P contains a
rectilinear minimum Steiner tree of P .

In the following, we show that to find an optimum SPN placement it is sufficient
to consider only points of the Hanan grid induced by the corners of the regions in R.
Based on this, we provide an algorithm that computes an optimum SPN placement in
timeO(mn2k4), where n = |R|,m = |E|, and k is the maximum number of corners of
a region ofR. This implies that also TOURINGPOLYGONS withL1 metric can be solved
in polynomial time in case the regions are non-convex polygons whose segments form
angles with the x-axis that are in {0, π/2}. To the best of our knowledge, this is the only
known variant of TOURINGPOLYGONS that can be solved efficiently for non-convex
regions.

2.1 Properties of optimum solutions

If at least one of the regions inR has a non empty area, there exist infinitely many pos-
sible placements, and there may also exist infinitely many optimum SPN placements.
It is crucial for an efficient algorithm to consider only a finite (polynomial) subset of
points when looking for an optimum SPN solution.

Since distances between points are measured in L1 metric and the neighborhood
regions are axis-parallel, one of the most trivial approaches is to consider as possible
placement points only the corners of regions in R. It is however easy to construct in-
stances where every optimum placement contains at least one point that is not a corner
of a region in R. We do not have to consider many more points other than the corners
of the regions, though. Lemma 1 (below) shows that there always exists an optimum
SPN placement where all points are points of the Hanan grid induced by the corners
of the regions in R, lying on the perimeters of those regions. To prove this fact, we
use a particular property of the L1 metric defined in terms of bounding boxes of points
in R2. Given x, y ∈ R2, the bounding box Bxy is the smallest axis-parallel rectangle
containing x and y.

Proposition 1. For every x, y, z ∈ R2,

z ∈ Bxy ⇐⇒ ‖xy‖ = ‖xz‖+ ‖zy‖

3

z /∈ Bxy ⇐⇒ ‖xy‖ < ‖xz‖+ ‖zy‖.
Lemma 1. There exists an optimum placement p such that every pi ∈ p lies on the
perimeter of Ri and is a grid point of the Hanan grid induced by the corners of the
regions inR.

Proof. Let p be an optimum placement and P a shortest st-path in Gp. We show how to
move points in p not satisfying the lemma to points of the Hanan grid on the perimeter
of the regions in a way such that the resulting placement is still optimum. We distinguish
between regions on (visited by) P and not on P .

A point in p of a region not on P not satisfying the lemma can be trivially moved to
an arbitrary corner of that region. Since the cost of P in the resulting placement is the
same as in Gp, the resulting placement is still optimum.

We first show how to move points of regions on P not satisfying the lemma to the
perimeter in a way such that the resulting placement is still optimum. Then, we show
that every remaining point still not satisfying the lemma can be moved to a Hanan grid
point on the perimeter of its region.

Note first that ps of Rs must lie on its perimeter, otherwise we could obtain a better
placement by moving it to a point on the perimeter of Rs closest to the point in the
successor of Rs on P . The same argument holds by simmetry for pt.

Let Rj /∈ {Rs, Rt} be a region on P , and consider pi, pk ∈ p, where Ri is the
predecessor of Rj on P and Rk is its successor. Consider the bounding box Bpipj

, and
let pc be a point on the perimeter of Rj contained in Bij . By Proposition 1 and triangle
inequality, we have

‖pipj‖+ ‖pjpk‖ = ‖pipc‖+ ‖pcpj‖+ ‖pjpk‖ ≥ ‖pipc‖+ ‖pcpk‖.
Thus, moving pj to pc does not increase the cost of P . The resulting placement is still
optimum, and pj now lies on the perimeter of Rj . We can apply this operation to every
point in the interior of its region.

We now show how to move points in p to Hanan grid points on the perimeters of
their regions in such a way that the resulting placement is still optimum. By the above,
we can assume each point of p to be lying on the perimeter its region, and that only
points of regions on P may not be grid points.

Let pj = (xj , yj) ∈ p be a point on the perimeter of Rj not on the Hanan grid.
SinceRj is axis-parallel, pj lies on a line of the grid. Thus, either xj is the x-coordinate
of a grid point, or yj is the y-coordinate of a grid point. We consider only the latter case;
the former is symmetric.

Let xl be the largest x-coordinate of a grid point lying to the left of pj , and xr

be the smallest x-coordinate of a grid point lying to the right of pj . We define the set
{(x, y) ∈ R2 |xl < x < xr} as the vertical stripe of pj .

Consider a sequence Ri, . . . , Rk of consecutive regions on P of maximal length
such that Rj is in the sequence, and every point in p of a region in the sequence lies
in the vertical stripe of pj . None of the points in the sequence is a grid point. We first
consider the case where Ri 6= Rs and Rk 6= Rt.

Let Ri′ be the predecessor of Ri on P , and Rk′ be the successor of Rk on P . If pi′

lies to the left of the vertical stripe of pj , we move every point pi, . . . , pk horizontally

4

pi

pk′

pi′

pk

pj

xl xr

pk′

pi′

xl xr

pi

pk

pj

Fig. 1. Moving points in a vertical stripe.

to the x-coordinate xl. Otherwise, we move them horizontally to xr. Figure 1 illustrates
an example of such a moving. The cost difference of P before and after moving the
points can be expressed as ∑

(Ra,Rb)∈P ′
‖pa, pb‖ − ‖p′a, p′b‖, (1)

where P ′ is the sub-path between Ri′ and Rk′ , and p′a (resp. p′b) is the new location
of pa (pb). Since points are only moved horizontally, their y-differences do not change.
Thus, (1) can be rewritten as ∑

(Ra,Rb)∈P ′
|xa − xb| − |x′a − x′b|. (2)

Before moving them, all points pi, . . . , pk are contained in the vertical stripe of pj ;
therefore the cost of P ′ before the moving is at least |xi′ − xi|+ |xk′ − xk|. After the
moving, the x-coordinates of all pi, . . . , pk become x′ ∈ {xl, xr}. Thus, (2) is at least

|xi′ − xi|+ |xk′ − xk| − |xi′ − x′| − |xk′ − x′|. (3)

If pi′ and pk′ lie on the same side of the vertical stripe of pj , the new coordinate x′ is
closer to both xi′ and xk′ . If pi′ and pk′ lie on different sides of the vertical stripe, then
|xi′ − x′|+ |xk′ − x′| = |xi′ − xk′ |. In both cases, (3) is positive; that is, the cost of P
does not increase and the new placement is still optimum.

The case where Ri = Rs follows trivially from above, because we can define pi′ to
be the point pi itself. In this way, the distance between pi and pi′ is always 0, no matter
where the point is moved. The same holds also for the remaining cases. ut

2.2 Algorithm

We now present an algorithm that computes an optimum SPN placement by exploiting
the structural properties of optimal placements established in Lemma 1. To do so, we
create an auxiliary graph from R and E with the property that a shortest path between
two designated vertices of this graph yields a minimum SPN placement. Such a path
can be found using standard shortest path techniques, such as Dijkstra’s algorithm. The

5

auxiliary graph D = (VD, ED) is defined as follows. There is a vertex in VD for every
point on the perimeter of a region that is also a point of the Hanan grid induced by the
corners of the regions in R, and two additional vertices vs and vt. In the following, we
say “a vertex v of region Ri” to indicate a vertex corresponding to a point of Ri. There
is an edge in ED from vs to every vertex ofRs, and from every vertex ofRt to vt. Also,
let u be a vertex of Ri and Rj be a region such that (Ri, Rj) ∈ E. For every segment
composing the perimeter of Rj , there is an edge in ED from u to its closest vertex on
that segment. Furthermore, there is an edge in ED from u to the next vertex along the
perimeter of Ri, in both directions. We assign a cost to an edge (u, v) ∈ ED equal to 0
if either u = vs or v = vt, and equal to ‖uv‖ otherwise. The following theorem shows
that a shortest path between vs and vt in D yields an optimum SPN placement.

Theorem 1. Given a shortest path PD from vs to vt in D, let p be a placement as
follows. For each region Ri ∈ R, if Ri has vertices on PD, p contains the first of
them. Otherwise, p contains one of its corners chosen arbitrarily. The placement p is
an optimum SPN placement.

Proof. To see that p is optimum, consider the vertices on PD chosen as points of p
in the order as they appear on PD. Since the regions of these points are connected in
G, the path PD corresponds to an st-path P in G. By triangle inequality, the cost of P
in Gp is at most the cost of PD. For the sake of contradiction, suppose there exists an
optimum placement q and a shortest st-path Q in Gq whose cost is smaller than the
cost of P in Gp. Without loss of generality, we can assume the points in q to satisfy
Lemma 1. Thus, every point of q corresponds to a vertex of D. We construct a path
QD from vs to vt in D as follows. The first edge is (vs, qs); after that, for every edge
(Ri, Rj) on Q, consider the points qi, qj ∈ q, the bounding box Bqiqj

, and the at most
two segments on the perimeter of Rj on which qj lies. By construction, qi is connected
in D to a vertex on both segments; let v be one of them chosen arbitrarily such that
v ∈ Bqiqj . We add to QD the path that from qi goes to v, and follows the perimeter of
Rj to qj . By Proposition 1, the cost of this path is equal to the distance ‖qiqj‖. The last
edge on QD is (qt, vt). To see that the cost of QD is equal to the cost of Q in Gq it is
sufficient to notice that the first and the last edge of QD have cost 0 and, for every edge
(Ri, Rj) on Q, the sub-path from qi to qj in QD has cost equal to ‖qiqj‖. This results
in a contradiction, because we have then found a path from vs to vt with cost smaller
than PD. ut

The above theorem shows how to construct an optimum SPN placement once a
shortest path between vs and vt inD is known. Since edge costs inD are greater or equal
than 0, we can find such a path with Dijkstra’s algorithm in time O(|VD| log |VD| +
|ED|). The sizes of VD and ED depend on the number of points on the perimeters of
the regions that are the grid points of the Hanan grid induced by the corners of R. To
evaluate this number, consider a line of the Hanan grid. Each time this line intersects
(cut in two nonempty parts) an orthogonal segment on the perimeter of a region, an
additional vertex is introduced. Conversely, each segment of the perimeter of a region
can in the worst case be intersected by every grid line orthogonal to it. If k is the
maximum number of corners of a region inR (and therefore on the number of segments
of its perimeter), and |R| = n, the number of grid lines is O(nk). Thus, the number

6

v1 v2 v3 v4 v5

Fig. 2. An example of a planar 3-SAT instance on 5 variables. Dashed line are parts of the spinal
path, solid lines are clauses.

of grid points lying on the perimeter of one region is O(nk2), and the size of VD is
O(n2k2). To evaluate the size of ED, consider an edge (Ri, Rj) ∈ E and a vertex
v of Ri. By construction, there is an edge from v to a vertex on each of the at most k
segments on the perimeter ofRj . Furthermore, v is connected to at most two vertices on
the perimeter of Ri. If we have |E| = m edges and O(nk2) vertices in each region, the
size of ED is therefore O(mnk3). Therefore, the running time of Dijkstra’s algorithm
for computing a shortest path from vs to vt in D is O(n2k2 log nk +mnk3).

3 Minimum Spanning Tree with Neighborhoods

In the Minimum Spanning Tree Problem with Neighborhoods, or MSTN, we are given
a set of regionsR = {R1, . . . , Rn} and an underlying graph G = (R, E). The problem
asks for a placement p such that the cost of a minimum spanning tree in Gp is smallest
among all possible placements.

It is known [2] that, if distances are measured in L2 norm and the neighborhood
regions are disks, the MSTN problem does not admit an FPTAS unless P = NP. We will
adapt their proof and show that MSTN does not admit an FPTAS also in the case where
distances are measured in L1 metric, the neighborhood regions are non-overlapping
axis-parallel segments, and the underlying graph is complete. In the following, the term
MSTN refers to this variant.

The reduction is from the planar 3-SAT problem. Planar 3-SAT is a variant of 3-
SAT where the graph associated with the formula is planar. The graph contains a vertex
for each variable and each clause, and there is an edge from a variable to a clause if
the clause contains a literal of that variable. Planar 3-SAT was shown to be NP-hard
by a reduction from the standard 3-SAT problem [8]. Furthermore, it was shown that in
the plane embedding used in the reduction there always exists a so-called spinal path
passing through every vertex corresponding to a variable without crossing any edge of
the graph. Knuth and Raghunathan [7] observed that there always is a simple embedding
where the variables are arranged on a straight line (the spinal path), and the clauses are
drawn as three legged segments completely above or below them, in a way such that
none of the legs cross each other. Figure 2 shows an example of such an embedding.

The reduction starts from a plane embedding of an instance of planar 3-SAT and
constructs an instance of MSTN such that a solution to the latter indicates whether the
former is satisfiable. First, we define three types of gadgets: a gadget for each variable, a
gadget for each clause, and a gadget for the spinal path. Then, we show how to replace
each variable, clause and the spinal path with a corresponding gadget resulting in an

7

instance of MSTN. From our construction, it will be easy to see that the size of the
resulting MSTN instance is polynomially bounded. Finally, we provide two threshold
values t1 and t2, with t1 < t2, and we prove that an optimum solution of the constructed
MSTN instance has a cost smaller than t1 if and only if the initial 3-SAT formula is
satisfiable. If the formula is not satisfiable, the cost of an optimum solution of the MSTN
instance is at least t2. This proves that MSTN does not admit an FPTAS unless P = NP.

An important tool in the definitions of the gadgets is a so-called wire. A wire is a set
of points (i.e., regions) placed in close succession, so that any minimum spanning tree
(for any placement) will contain the edges connecting the points. To ensure this, it is
sufficient to place two consecutive points in a wire at a suitably small distance. Since the
edges between consecutive points in wires do not form a cycle, any minimum spanning
tree in any placement will contain the edge connecting them. However, this suitably
small distance must still be large enough to guarantee that a wire can be realized with a
polynomial number of points. Since in the following construction the smallest non-zero
distance between any two regions (other than those for the wires) is at least d/2, for a
constant d := 0.25, a suitably small value for the points of a wire is, for example, d/4.

3.1 Reduction Gadgets

Variable gadget. For each variable there are k = 6c + 6 segments, or rectangles with
empty area, of length α, where c is the maximum number of clauses in which the vari-
able appears as a literal that are completely above or below the variable vertex in the
embedding. Note that k ≥ 12, because a variable appears at least once in a clause. In
the following we specify the value of the parameter α more precisely, and we show it
to be polynomial in the number of clauses and variables.

As illustrated in Figure 3, the segments are placed along the perimeter of a rectangle
with sides of length 3cα + d and 3α + d. In its interior we place a wire for every two
segments consecutive in clockwise order. Each of these wires ends on the line bisecting
the angle formed by the corresponding segments; for parallel segments, the endpoint is
at distance d from their common point. For perpendicular segments, the endpoint is at
distance d from the intersection of the lines passing through the segments. We connect
these wires in the bounded region in a tree-like structure as in Figure 3. We call this
arrangement of wires in the internal region a k-tree.

A placement of points inside a variable gadget is called a configuration if, for every
two consecutive segments in clockwise order, the placement contains either their two
closest points or their two farthest points. For a variable gadget there exist exactly two
different configurations. To see this, consider two consecutive segments in a variable
gadget and a configuration placement. If the placement contains their two closest points,
we can place points in the remaining segments in exactly one way in order to obtain a
configuration. Similarly, if the placement contains their two farthest points, we have
exactly one way to place points in the remaining segments. We associate these two
possible configurations with the two assignments to the variable.

Clause gadget. Clause gadgets are composed of at most three wires meeting at a single
point following the embedding. As in Figure 3, each wire of a clause gadget approaches
the common point of two adjacent horizontal segments of a variable gadget. Clauses that

8

Fig. 3. A variable gadget with k = 18. The variable appears in A with negative sign and in B, C
with positive sign. Thicker lines are the segments, the rest wires.

are located above the spinal path in the rectilinear embedding approach variable gadgets
from above, while clauses that in the rectilinear embedding are located below the spinal
path approach variable gadgets from below. Furthermore, clause wires approach a vari-
able gadget in the same clockwise order as the edges connecting the variable vertex to
the corresponding clauses in the rectilinear embedding.

A clause wire terminates at distance 1 + 2d from the common point of the ap-
proached segments along the vertical line passing through it. The approached segments
are chosen such that their common point is contained in a configuration satisfying the
clause. That is, an edge with cost 1 + 2d connects the clause wire to the segments in a
configuration placement satisfying the clause.

Spinal path gadget. The spinal path gadget consists of wires following the embedding
of the planar 3-SAT instance. As in Figure 3, the spinal path gadget approaches every
variable gadget twice, once from the left and once from the right. For each side, the
spinal path wire is split in two parts, each approaching two adjacent vertical segments.
The point at which a part terminates is located at distance 1 from the common point of
the approached segments along the horizontal line passing through it.

3.2 The reduction

Given an instance of a planar 3-SAT and its rectilinear embedding on the plane [7], we
create an instance of MSTN and provide two threshold values t1, t2, with t1 < t2. We
show that if the 3-SAT instance is satisfiable, then there is a placement with a minimum
spanning tree of cost at most t1, and if the 3-SAT instance is unsatisfiable, then the cost
of a minimum spanning tree for any placement is at leat t2.

Theorem 2. MSTN with L1 metric and neighborhood regions as segments is APX-
hard.

9

Proof. To create an instance of MSTN, replace in the given embedding every variable,
clause, and the spinal path with a gadget as explained above. The wires forming the
spinal path, the m clause gadgets and the k-trees in the internal region of each variable
gadget have a fixed cost in every MST, denoted as cwires. The remaining cost of the
spanning tree is given by connecting the segments of the variable gadgets to the k-trees
and the spinal path and clause wires.

Suppose there exists a satisfying assignment. Then, we place points in each variable
gadget in a configuration according to its value in the assignment. We provide an upper
bound t1 on the cost of a minimum spanning tree in this placement by constructing
a spanning tree and evaluating its cost. For each pair of consecutive segments having
their closest points in the placement, the spanning tree connects them to the k-tree of
the corresponding variable with cost d. If there is a total of K segments among all
variable gadgets, the spanning tree requires a cost of (K/2)d to connect all of them to
the k-trees (note that K is even). For each clause gadget, consider a variable satisfying
it in the assignment. We connect the corresponding endpoint of the clause wire to one
of the segments it approaches with an edge with cost 1 + 2d. Overall, the cost for
connecting all the clause wires to the tree is m(1 + 2d). For each part of the spinal path
gadget approaching a variable gadget, exactly one of its endpoint approaches a point
of the placement. The spanning tree contains the 2n edges of cost 1 connecting them.
Overall, the cost of an optimum MSTN solution in case a satisfying assignment exists
is therefore at most

t1 := cwires + (K/2)d+ (1 + 2d)m+ 2n.

If there is no satisfying assignment, we show that the cost of an optimum MSTN
solution is at least t2 := t1+d. To see this, consider an optimum placement where every
point in a segment is one of its extreme points. The existence of such an optmimum
placement is guaranteed by the fact that wires approaching variable gadgets and wires
of the k-trees terminate either to the left or to the right of horizontal segments, and
above or below vertical segments.

First, we provide an upper bound on the minimum spanning tree cost for such a
placement. To provide this upper bound, we construct a spanning tree and we evaluate
its cost in the placement. Then, we use this upper bound to show that, in every minimum
spanning tree, clause wires are connected to the tree either with an edge from one of the
endpoints to one of the approached segments, or with an edge from one of its endpoints
to the approached k-tree endpoint. Finally, we show that the cost of any optimum MSTN
solution is at least t2.

The spanning tree contains the wires composing the spinal path, the clauses, and all
k-trees. Every segment in a variable gadget is connected to an endpoint of the k-tree
with an edge of cost d. Every part of a wire of the spinal path approaching a variable
gadget is connected to one of the approached segments by one of its endpoints with
an edge with cost 1. Similarly, an endpoint of each clause wire chosen arbitrarily is
connected to a k-tree of a variable appearing in that clause with an edge with cost
1 + 3d. The cost of such a spanning tree is

cwires + 2n+m(1 + 3d) +Kd. (4)

10

We now prove that, in every minimum spanning tree, each clause is connected to
it either with an edge from one of its endpoint to an approached segment, or with an
edge from one of its endpoints to the corresponding k-tree endpoint. Suppose this is
not the case, and there is a clause whose endpoint in the MST is connected neither to
an approached segment, nor to the corresponding k-tree endpoint. By construction, the
next closest object is located at distance at least α, where α is the above defined length
of the segments of the variable gadgets. Since the wires composing the spinal path, the
clauses and the k-trees are part of every MST, by setting

α := 2n+m(1 + 3d) +Kd+ 1

we get a contradiction, because the cost of a minimum spanning tree would then be
greater than (4), the cost of the spanning tree shown above. Thus, in every minimum
spanning tree every clause is connected via one of its endpoints to one of the approached
regions.

Finally, we show that if the formula is not satisfiable, any optimum MSTN solution
has cost greater than t2. Clearly, we cannot provide a configuration for each variable
gadget such that every clause where that variable appears can be connected to it with
an edge with cost 1 + 2d, otherwise the formula would be satisfiable. Therefore, in an
optimum solution, either at least one variable gadget is not set in a configuration, or
every variable gadget is in a configuration and for at least one clause no wire endpoint
approaches a point of the placement.

In the former case, the cost of a minimum spanning tree is at least cwires + 2n +
(K/2)d+j(1+2d)+(m−j)δ, where j is the number of clauses that can be satisfied by
the assignment corresponding to the configuration and δ is the minimum cost necessary
to connect a clause that is not satisfied by the assignment. By the above, we know
that in any minimum spanning tree a clause wire is connected by one of its endpoint
to one of the approached segments or the corresponding k-tree endpoint. Since every
variable gadget is in a configuration, the smallest distance δ between an endpoint of
a non satisfied clause wire and a point in the placement is at least 1 + 3d. Thus, any
optimum MSTN solution where every variable gadget is set in a configuration results
in a minimum spanning tree with cost at least t2.

In the latter case, there exists at least one variable gadget that is not in a configura-
tion. Let then a be the overall number of segments for which the point in the placement
is not the closest or the farthest to the point in one of the consecutive segments. Note
that a is even, therefore a ≥ 2, and the cost of a spanning tree is at least

cwires + 2n+
(K + a)

2
d+m(1 + 2d) ≥ t2.

Suppose now that there exists an FPTAS for MSTN. Given an instance of planar 3-
SAT, we construct the gadget presented above and calculate t1. We then set a parameter
ε < d/t1, so a (1+ε)-approximate solution to the MSTN problem would tell us whether
the cost of the corresponding optimum solution is smaller than t1 or greater than t2, and
thus, whether there exists a satisfying assignment for the planar 3-SAT instance. ut

11

4 Conclusions

We considered the Shortest Path Problem and the Minimum Spanning Tree Problem
with Neighborhoods in L1 metric. We showed that the first problem can be solved
efficiently if the neighborhood regions are rectilinear non-convex polygons, while the
second one does not admit a PTAS unless P = NP even in the case where the regions
are segments.

An interesting open problem is to consider a variant of SPN where the goal is to
find a placement maximizing the cost of a shortest path between two given regions
(rectilinear polygons). In this case, it is easy to adapt the proof of Lemma 1 to show
that the Hanan grid induced by the corners of the regions still contains the points of an
optimum placement. However, it is not clear how to design a polynomial time algorithm
computing it.

References
1. Ahadi, A., Mozafari, A., Zarei, A.: Touring disjoint polygons problem is NP-hard. In: Proc.

7th International Conference on Combinatorial Optimization and Applications (COCOA).
pp. 351–360 (2013)

2. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A., Seco, D.:
On minimum-and maximum-weight minimum spanning trees with neighborhoods. In: Proc.
10th International Workshop on Approximation and Online Algorithms (WAOA). pp. 93–
106 (2012)

3. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons. In: Proc.
35th Annual ACM Symposium on Theory of Computing (STOC). pp. 473–482 (2003)

4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods
in the plane. In: Proc. Twelfth Annual ACM-SIAM Symposium on Discrete algorithms
(SODA). pp. 38–46 (2001)

5. Elbassioni, K.M., Fishkin, A.V., Mustafa, N.H., Sitters, R.: Approximation algorithms for
euclidean group TSP. In: Proc. 32nd International Colloquium on Automata, Languages and
Programming (ICALP). pp. 1115–1126 (2005)

6. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM Journal on Applied Math-
ematics 14(2), 255–265 (1966)

7. Knuth, D., Raghunathan, A.: The problem of compatible representatives. SIAM Journal on
Discrete Mathematics 5(3), 422–427 (1992)

8. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)
9. Löffler, M., Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorith-

mica 56(2), 235–269 (2010)
10. Löffler, M., van Kreveld, M.J.: Largest bounding box, smallest diameter, and related prob-

lems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)
11. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of pairwise

disjoint simple polygons. In: Proc. 22nd Canadian Conference on Computational Geometry
(CCCG). pp. 175–178 (2010)

12. Papadimitriou, C.H.: The euclidean travelling salesman problem is NP-complete. Theoretical
Computer Science 4(3), 237–244 (1977)

13. Yang, Y., Lin, M., Xu, J., Xie, Y.: Minimum spanning tree with neighborhoods. In: Proc.
Third International Conference on Algorithmic Aspects in Information and Management
(AAIM). pp. 306–316 (2007)

14. Zachariasen, M.: A catalog of Hanan grid problems. Networks 38(2), 76–83 (2001)

12

