
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 044

Time Series Segmentation

T. Diamantopoulos, D. Kehagias

September 2013

Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 044

Time Series Segmentation

T. Diamantopoulos, D. Kehagias

September 2013

Time Series Segmentation

1 Introduction

This document provides information about the idea of segmenting a time series
to identify segments that have constant trend. When trying to predict the next
value of a series, as in a traffic scenario, it is common that the series has different
behavior (e.g. trend) on different segments. With respect to traffic prediction
scenarios, we first analyze the data for the city of Berlin and plot their mean
to understand the nature of the series. After that, we demonstrate a way of
segmenting the time series of the roads. Thus, finally we are able to apply
well known time series algorithms (i.e. Space Time Auto-Regressive Integrated
Moving Average (STARIMA)[1, 2]) in different segments.

2 Taking a look into traffic time series

Figure 1 depicts the mean of all road timeseries for the first and the second
Monday of the dataset. The x axis corresponds to time intervals. Since each
time interval is 5 minutes, the total number of intervals for 24 hours are 2881.

0 50 100 150 200 250 300
Time Intervals

36

38

40

42

44

46

48

50

52

H
a
rm

 S
p
e
e
d

Monday Week 1

0 50 100 150 200 250 300
Time Intervals

H
a
rm

 S
p
e
e
d

Monday Week 2

Figure 1: Example mean time series for the Mondays of week 1 and week 2.
124 hours are 24 · 60 = 1440 minutes, so the number of 5-min intervals is 1440/5 = 288.

1

As one can clearly observe in Figure 1, there are different trends that concern
different times of the day. Around 7:00 in the morning (interval 722), the traffic
starts having higher values since more and more cars speed on the large roads of
Berlin. The traffic is trend-free (actually not entirely trend-free but these trends
will be analyzed later) for some period until 18:00 in the afternoon (interval
2043) and then it lowers again in the evening.

As one can clearly see in the above figure, the time series can be segmented
to provide with clear representative segments. Concerning our traffic prediction
scenario, the segmentation has to be automatic in order to be applicable on dif-
ferent datasets. Furthermore, since the data from the second week corresponds
to input (testing) data, and is given in real time, it is necessary that the seg-
mentation is done at an online manner. These problems will be approached in
the following section.

3 Segmenting the time series

Time series segmentation is a well known problem in current literature [3, 4]. As
noted in [4], there are three algorithms for time series segmentation: the sliding
window algorithm, the top-down algorithm, and the bottom-up algorithm. The
sliding window algorithm iterates over the time series values and for each new
value it uses a sliding window containing past values in order to check whether
certain error criteria are met to keep the value in the current window or if
it should spawn a new segment. The top-down algorithm finds all possible
partitioning of the time series and splits it using certain error criteria, while the
bottom-up algorithm works by creating small segments and merging adjacent
segments according to the same criteria.

Although all algorithms are known to be effective on different scenarios, not
all of them are applicable in a real-time scenario such as the traffic one since
the online criterion is not met. In specific, only the sliding window algorithm
can be used. The pseudocode of the algorithm is shown in Figure 2. Note that
Figure 2 illustrates a version of the algorithm different from that shown in [4],
since the former adds also the MinElementsPerSegment parameter which sets
a minimum size for each segment of the time series. One can clearly see that
the algorithm is online since it iterates the time series once from its starting to
its ending point. For each new segment, the algorithm has an anchor which
is the starting point of the segment. Every time a new value comes, variable
i increases and the error of the subseries containing the segment and the new
value (T[anchor:anchor+i]) is checked against a threshold (MaxError). The
values keep adding to the segment as long as the threshold is not surpassed.
If the threshold is surpassed, the segment is saved (or simply returned for the
online case), and a new segment is created by setting the anchor to the next
value of the series.

2Note that 7:00 in the morning in Berlin corresponds to UTC time 6:00, which corresponds
to 6 · 60 = 360 minutes from zero, thus the interval will indeed be 360/5 = 72.

3Similarly, 18:00 is 17:00 UTC, i.e. 17 · 60 = 1020 minutes, so the interval is 1020/5 = 204.

2

def SegmentTimeSeries(T, MaxError, MinElementsPerSegment):
SegmentedT = []
anchor = 0
while anchor < len(Timeseries):

if anchor + MinElementsPerSegment <= len(means):
i = MinElementsPerSegment

else:
i = len(means) - anchor

while (error(T[anchor:anchor+i]) < MaxError) and i<len(T)+1:
i += 1
SegmentedT.append(T[anchor:anchor + i])
anchor += i

Figure 2: The sliding window algorithm for time series segmentation.

The application of the algorithm on the means of Figure 1 is shown in Figure 3
for both the Monday of the first week (training) and the second week (testing).

0 50 100 150 200 250 300
Time Intervals

36

38

40

42

44

46

48

50

52

H
a
rm

 S
p
e
e
d

Monday Week 1 Segmented

0 50 100 150 200 250 300
Time Intervals

H
a
rm

 S
p
e
e
d

Monday Week 2 Segmented

Figure 3: Segmented mean time series for the Mondays of week 1 and week 2.

As shown in Figure 3, the algorithm seems quite effective since it splits the time
series to reasonable segments.

Upon applying the algorithm to the time series of each specific road (since the
example of Figures 1 and 3 contains the mean time series of all roads), one can
train different models for different training segments. The problem, however,
lies in testing; selecting which of the models to use on each testing segment is a
non-trivial issue. We implemented three different approaches towards this issue.

3

The first approach is the simplest. Intuitively, one can say that the segments
for the Monday of the first week shall be similar to the ones for the Monday of
the second week. For example, if there is heavy traffic at the morning hours of
the first week, this is also expected to happen at the same hours of the second
week. Thus, a simple solution indicates using the same segmentation for the
testing set that we used for the input set, i.e. having predefined segments for
the input sets corresponding to the respective intervals on the training set.

The aforementioned approach could yield satisfactory results in most cases.
However, heavily relying on the periodicity of traffic is not optimal since, as
shown in Figure 3, the segmentation for each set (training and testing) could
be quite different. For example, in the first week one can observe a sudden
rise in harmonic average speed within intervals 50 to 60. This rise, however,
is observable in the second week within intervals 40 to 50. Ideally, we would
like to map these two segments to each other. Thus, the problem is reduced to
identifying which training segment corresponds to the input (testing) segment at
hand. This is accomplished by introducing a metric that measures the similarity
between the segment at hand and each of the training segments.

Immediate intuition indicates using correlation metrics. However, the seg-
ments may have different lengths, which makes the use of these metrics difficult.
Instead we use two different approaches, one based on the mean and standard
deviation of the segments, and one based on their trends. At first, one can
simply compare two series T1 and T2 using their mean and standard deviation.
The distance between the time series can then be defined as:

D(T1, T2) = |µ1 − µ2|+ |σ1 − σ2| (1)

where µ1, µ2 are the means and σ1, σ2 are the standard deviations of time series
T1 and T2 respectively.

Although means and standard deviations are fundamental statistics of time
series, their modeling potential is limited. Totally different time series may have
similar means and even similar standard deviations. A metrics that is actually
highly relevant to the problem at hand is the trend of a time series. Modeling the
trend is not an easy procedure. In terms of this work, we decided to refrain from
creating highly complex models (e.g. an ARMA) since the segmented time series
are (and should be) too simple to support such models. Furthermore, complex
models would be inefficient in such a scenario. Instead, we approximated the
trend of the time series by finding the line that is close enough to all values of
the series segment. The (deliberately simple) model is:

x = αt+ b (2)

where x is the speed value for time t and α, β are the parameters of the model
which are found using linear least squares approximation4. Thus, each time
series segment is actually represented by a line denoting its trend. Selecting the

4The method is actually quite fast, not only because of having only two parameters, but
also since the segments are generally small.

4

training segment that is closest to the testing segment at hand is a matter of
combining parameters α1 and β1 of the series T1 to the respective parameters
α2 and β2 of the series T2. This is accomplished by first finding the 5 nearest
series given the distance of the β’s, and then ending up to the series with
the nearest α. Intuitively, the 5 nearest series given the distance of the β’s
have similar values with the series at hand (so they should have similar means
and standard deviations as in the former method). Adding the constraint of
the minimum distance of α’s indicates the time series should also have similar
slopes, i.e. trends.

4 Results

We set up a suitable scenario using training data for 24 hours from Monday of
the first week and testing data for 24 hours from Monday of the second week.
Following the methodology for creating the series (as in [2]), we tested our
implementations for 1 to 6 intervals ahead of present time. We set MaxError to
15 and MinElementsPerSegment to 15 (see Figure 2) as these values provided
optimal results. The total RMSE values are shown in Table 1.

Table 1: RMSE of Different Lag STARIMA implementations
Lag STARIMA Lag STARIMA Lag STARIMA

Lag STARIMA with predefined with segments with segments
segments based on mean/std based on trend

2.982 3.015 3.066 3.052

As shown in Table 1, having a single model for all intervals proved optimal. Our
three approaches perform slightly worse without, however, much difference.

5 Conclusion

Our analysis indicated that using different models for different time series seg-
ments is reasonable. The intuition of the segmentation step is generally well
supported as to the different nature of each segment. When taking into account
the statistics of each segment, including its trend, one can train a better model
(in the sense that it should fit better).

However, the results of our analysis indicate no significant improvement
over our algorithm. Achieving an improvement would probably involve fine-
tuning the parameters (e.g. MaxError and/or MinElementsPerSegment) of our
algorithms automatically. In addition, one could use different segmentation
methods, or even create segments on a more coarse-grained level (e.g. mean
speed as in the figures) and use them for all different roads (although this could
produce better results only if all road time series are similar, which is not the
case in general).

5

References

[1] Yiannis Kamarianakis and Poulicos Prastacos. Space-time modeling of traf-
fic flow. Comput. Geosci., 31(2):119–133, March 2005.

[2] Themistoklis Diamantopoulos, Dionysios Kehagias, Felix G. König, and
Dimitrios Tzovaras. Investigating the effect of global metrics in travel time
forecasting. To appear in Proceedings of 16th International IEEE Conference
on Intelligent Transportation Systems (ITSC), 2013.

[3] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting
time series: A survey and novel approach. In In an Edited Volume, Data
mining in Time Series Databases. Published by World Scientific, pages 1–22.
Publishing Company, 1993.

[4] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for seg-
menting time series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE
International Conference on, pages 289–296, 2001.

6

