
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 042

Traffic Prediction Module Documentation

D. Kehagias, T. Diamantopoulos

September 2013





Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 042

Traffic Prediction Module Documentation

D. Kehagias, T. Diamantopoulos

September 2013





Traffic Prediction Module

DOCUMENTATION

The purpose of this document is to properly accompany the implementation of the
traffic prediction module of the ECOMPASS project. This document presents the main
parts of the traffic prediction module and explains their functionality. These parts are
divided to the following:

• Road Network

• Data Input and Output

• Algorithm Execution

The aforementioned parts of the system are explained in the following paragraphs.

Road Network

The road network is loaded in the form of a shapefile (shp). The class CNetworkParser
handles loading a network shapefile and constructing a CNetwork instance as well as the
links and the nodes of the instance. CNetworkParser uses the GDAL library to load data
features and map them to the CNetwork instance. Upon loading links and nodes, the
CNetwork instance creates the roads of the network. Note that any straight network line
is a link, whereas a road is defined as a segment between two intersections (i.e. containing
arbitrary number of links). Links, nodes, and roads have their respective classes CLink,
CNode, and CRoad. Each CRoad contains the links it covers, and two CNode instances
that denote its starting and ending point. In addition, it contains its neighboring roads.

Data Input and Output

Input and output is handled by the fpars namespace. The namespace has two main
functions, LoadData and SaveKMLData.

LoadData is used to parse the speed probe data and assign the speed records to
the roads according to the link ID that each record has as well as the given link direc-
tion. The parsing is similar for both the training and the input (testing) dataset. In
any case (training or testing data), the timestamp-speed pair is provided to the respec-
tive Intervals instance of the appropriate road. The Intervals object contains one
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Interval instance per 5-minute interval. Interval instances contain arithmetic aver-
age, harmonic average etc. of speed for the 5-minute interval. The record is also given
to CDataStatistics instance, that contains accumulative statistics for the whole file.

The SaveKMLData function handles saving the results of any algorithm in KML files.
The function instantiates a CKMLFileWriter for each prediction interval that was asked.
In specific, assuming the number of intervals to predict ahead is e.g. 2 and the testing
data consists of intervals from 3 to 20, the function writes a KML file for interval 3 and
1 intervals ahead of 3, interval 3 and 2 intervals ahead of 3, interval 4 and 1 intervals
ahead of 4, interval 4 and 2 intervals ahead of 4, interval 5 and 1 intervals ahead of 5, etc.
The CKMLFileWriter handles saving the data in the appropriate KML format. Thus,
the SaveKMLData function iterates over all roads for all predicted intervals and provides
the predicted speed value to the appropriate CKMLFileWriter.

Algorithm Execution

The CTrafficPrediction class serves as an intermediate API between the user (or
any) interface and the CTrafficPredictionAlgorithm class. All algorithms inherit the
CTrafficPredictionAlgorithm class. The latter contains useful functions that allow
algorithms to receive mean (or harm, etc.) speed values without using other objects. All
algorithms are trained by implementing the virtual TrainAlgorithm function and are
tested by implementing the virtual RunAlgorithm function. Each of the algorithms is
analyzed in the following paragraphs.

k-Nearest Neighbors The kNN algorithm (CKNN) selects certain neighboring roads of
each road by finding the Coefficient of Determination (CoD) between them and the road
to predict. Thus, for each road, the algorithm initially uses the CreateAllRoadsForRoad
function which in turn calls the GetCoD function. The latter provides the CoD for 2 road
series x and y at lag k which is computed as follows [1]:

CoDxy(k) = 100

[
E [(xt − µx)(yt+k − µy)]

σxσy

]2

(1)

CreateAllRoadsForRoad returns the most well correlated neighboring roads to the road
at hand. After that the algorithm calls the CreateAllTrainingVectorsForRoad func-
tion which creates the vectors for road r defined as:

x(t) = [Vr(t), Vr(t− 1), Vr(t− 2), Vn1(t), Vn1(t− 1), Vn1(t− 2), Vn2(t), . . . ] (2)

and the respective output value:

y(t) = Vr(t+ 1) (3)

where n1, n2, . . . are the well correlated neighboring roads and Vr(t) is the speed of road
r at time t.
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The aforementioned vectors are saved to and loaded from disk (for training and
testing respectively) using a black-box CKKNFileWriter.

Running the algorithm (using RunAlgorithm) iterates over all desired intervals and
calls the CreateInputVectors function that creates an input vector similar to (2) for
the testing data at time t. After that, the function RunForIntervalForRoad is called
to find the k nearest neighbors of the created vector and output the predicted value by
averaging their respective output values (see (3)).

STARIMA Space-Time Auto-Regressive Integrated Moving Average (STARIMA) is
implemented by the CStarima class. Training the algorithm for a road involves calling
the CreateTrainingZArrayForRoad function. The latter finds and retrieves the Z (and
neighboring W ) terms of the following equation [3]:

Zt+1 = φ00 · Zt + φ10 · Zt−1 + φ20 · Zt−2 + φ11 ·W1Zt + φ12 ·W2Zt + . . . (4)

where Zt represents road speed(s) at time t, Wo is the neighbor matrix of order o and φto

is the parameter(s) for road(s) of order o at interval t. After that, the algorithm finds
the optimal φ parameters:

φ = [φ00 φ10 φ20 φ11 φ12 . . . ] (5)

using the function ApproximateFUsingLeastSquares which calls external library func-
tions (OpenCV) and saves the approximation.

The approximated parameters are saved to and loaded from disk (for training and
testing respectively) using a black-box CStarimaFileWriter.

RunAlgorithm iterates over all desired intervals and calls the CreateInputVectors

function in order to create the Z (and neighboring W ) terms of equation (4) for the
respective testing set interval. After that, the function RunForIntervalForRoad applies
equation (4) using the loaded φ values, and outputs the predicted value.

RandomForest The Random Forest (RF) is trained using the TrainAlgorithm func-
tion. The function creates 3 arrays, corresponding to the features of the algorithm,
the responses, as well as a missing mask denoting. Each missing mask value denotes
if the corresponding response is known or not. The functions prepLocalInputs and
prepResponses are called to create the feature and responses tables respectively, which
conform with the selection shown in [2]. After that the data is cleaned by discarding the
vectors where the missing mask indicates there are no response values. The algorithm is
trained using an external library function (OpenCV).

The models of the algorithm are saved to and loaded from disk (for training and
testing respectively) using a black-box CRandomForestFileWriter.

Running the algorithm is similar. RunAlgorithm iterates over all desired intervals
and calls the prepLocalInputs function to create the features of the road for the interval
to predict. After that, the features are given to the respective RF that computes the
output.
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