
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 040

Data Trust and Security Mechanisms

D. Kehagias, C. Zaroliagis

June 2013

eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

FP7 - Information and Communication Technologies

Grant Agreement no: 288094

Collaborative Project
Project start: 1 November 2011, Duration: 36 months

Technical Report: Data Trust and Security Mechanisms

Responsible Partner: CERTH

Contributing Partners: CERTH

Nature: � Report � Prototype � Demonstrator � Other

Dissemination Level:

�� ����� �����	��

�� �����
����	������������������������	���������	��������������������������	�����

��
����
����	����������������	������������	������������	��������������������������	�����

�� ����� ����������� ������������������������	������������	��������������������������	�����

�
�
��������	
���!������ ���	����� ����������� ���	��������� ����"�	������������
�
�

�
�
#��� ���$�%��� ���"�	� �!!!&�	������'���"�	&���� ���
������� ��� ��� ��������� ���������� � (���������� ��	����
���� $�����)���	����� *������ � ���� *+'(�#� ���� #������� �
���������,�-����������&�

�
�

�
�
��������������������
���
�

�

�������� #�	�������� (������ .� ������ /)��������0� ��#(��
�	���������� �*���	��

�

����������
�����	������#�	��������1���������
#1� �*���	��

������2����	��� #�	����	��� 1�	��	����� 34��	�� ��#13� �
�!�5�������

�

6����������(����������#�	����������6(#� �*�������

�

#�$#�$�(7#�
7%#(�7%8�9:��#�$#�$� �7����������

�

�#:� �8%7�7*� #
%7���
#� :�
6�1
� %*&� ��#:� �
*�������

� �

Document history

Version Date Status Modifications made by

1.0 28.06.2013 First draft Dionisis Kehagias

…

…

…

Report Manager

� CERTH

List of Contributors

� CERTH

� CTI

Data Trust and Security Mechanisms

Objective

Data security mechanism was developed in order to ensure that information exchange
between the modules of the CGM. The mechanism protect the transfer and the exchange of
the data that are delivered both between the services and the end user. The mechanism
allows only authenticated content providers to register services and devices using the CGM
tool. Security Mechanism is about protecting data, that is, how to prevent unauthorized
access or damage to data that is in storage or in transit.

In security terms, there are two important concepts: authentication and authorization.
Understanding and the ways of implementing of these concepts can achieve the security
effect of a project. Authentication is the way in which an entity (a user, an application, or a
component) determines that another entity is who it claims to be. An entity uses security
credentials to authenticate itself. The credentials might be a username and password, a
digital certificate, or something else. When authentication is bidirectional, it is called mutual
authentication. Authorization, also known as access control, is the means by which users are
granted permission to access data or perform operations. After a user is authenticated, the
user's level of authorization determines what operations the owner can perform.

User's/ Services Trust and Security Techniques

Authentication techniques are found in many types of software ranging from databases to
operating systems. The concept is that for each user of a system or service is assigned a
unique username and the access to resources associated with that username is protected of
a specific password. This method is ordinary for Web services because most users are
already comfortable with and is easily understood by the users. The downside is that the
credentials (username/password) usually be stored or transferred as clear text and the
technique is unsecure. [1]

A more secure variation to this technique is to require a user identification code, called as
Globally Unique IDentifier (GUID), and the resource that require authentication accepts the
UserID in addition to its standard credentials. This approach is very hard to duplicate because
of the GUIDs. GUIDs are usually stored as 128-bit values, and are commonly displayed as 32
hexadecimal digits with groups separated by hyphens, such as {54CE1221-5CFD-4321-
B8BF-03007F21216C}.

Another option for securing web services is digital certificates. Digital certificates are small
pieces of software installed on client machines that verify the client's identity (Figure A). This
verification is done through a third-party that creates a unique certificate for every client
machine using encryption. The certificate is then passed along when the client requests a
web service. The web service checks for the presence of the digital certificate and reacts
accordingly.

Figure A

 Internet

Certificates, also called digital certificates, are electronic files that uniquely identify people and
resources on the Internet. Digital certificates are typically used in an global prospect for the
whole site, which means that it works for all content/services or for nothing. Each web service

aaaaaa
aaaaaa
aaaaaa

aaaaaa
aaaaaa
aaaaaa
aaa

Certificate is passed with

the web service request

Web Service

User
Digital

Certification aaaaaa
aaaaaa
aaaaaa

aaaaaa
aaaaaa
aaaaaa
aaa

usually calls a single function, which verifies that a certificate was passed along with the
request. If the function indicates that no certificate was passed, the web service fails and
returns an appropriate error message. If the certificate is present, then functionality is
executed normally. Digital certificates maintenance is easy and flexible. [2]

The security check for digital certificates doesn't occur until a Web method call is actually

made. Thus, visitors can still view (the WSDL) pages for web services or associated web

pages. However, the developer has to include code in each and every method that requires it,
in order to avoiding that this method will be freely available to anyone who wants to use it.

Since the certificate is secure and unique, there's no need for the user to supply other kind of
credentials such as username and password. The user/service can be authenticated with no
additional effort on their part, all without sacrificing detailed auditing or method-level
authorization. This is an important point toward user/ service friendliness. Also, certificates
never obtain input from the user/service for authentication purposes and is only authenticating
the machine/service, not the person using the machine.

The drawback of users' digital certificates is the restriction of the user to a specific machine.
Even if someone installs a certificate on his own device (i.e. pc, mobile, etc), he has to install
a second one in order to access the web service from another device. Although the fact that
certificates never obtain input from the user/service for authentication purposes is an
advantage, it can easily evolve into a disadvantage. If someone else try to use the device, the
web service will assume that he is the original user who uses the service.

Secure Sockets Layer (SSL) is the most popular standard for securing Internet
communications and transactions. Secure web applications use HTTPS (HTTP over SSL).
The HTTPS protocol uses certificates to ensure confidential and secure communications
between server and clients. In an SSL connection, both the client and the server encrypt data
before sending it. Data is decrypted upon receipt. When a Web browser (client) wants to
connect to a secure site, an SSL handshake happens, and the browser sends a message
over the network requesting a secure session (typically, by requesting a URL that begins with
https instead of http). The server responds by sending its certificate (including its public key).
The browser verifies that the server's certificate is valid and is signed by a CA whose
certificate is in the browser's database (and who is trusted). It also verifies that the CA
certificate has not expired. If the certificate is valid, the browser generates a one time, unique
session key and encrypts it with the server's public key. The browser then sends the
encrypted session key to the server so that they both have a copy. The server decrypts the
message using its private key and recovers the session key. The client has verified the
identity of the Web site, and only the client and the Web server have a copy of the session
key. From this point forward, the client and the server use the session key to encrypt all their
communications with each other. Thus, their communications are ensured to be secure. The
newest version of the SSL standard is called Transport Layer Security (TLS). [3]

Server's and CGM's Trust Abilities

Authentication

The Web Server of CGM is the GlassFish Server that is an open source software that provide
important security issues and instructions for configuring and administering a server. The
GlassFish Server is built on the Java security model, which uses a sandbox where
applications can run safely, without potential risk to systems or users and system security
affects all the applications in the GlassFish Server environment.

When an entity tries to access a protected resource, GlassFish Server uses the
authentication mechanism configured for that resource to determine whether to grant access.
For example, a user can enter a user name and password in a web browser, and if the
application verifies those credentials, the user is authenticated. The user is associated with
this authenticated security identity for the remainder of the session.

The Server supports several types of authentication, such as Basic, Form, Client-cert, Digest,
JSR 196 Server Authentication Modules, Passwords, Single Sign-on, etc. Operations of these
types [3]:

� Basic, which uses the server's built-in login dialog box via HTTP, but there is no
user's credentials encryption unless using SSL. This type is not considered to be a
secure method of user authentication unless used in conjunction with some external
secure system such as SSL.

� Form, the application provides its own custom login and error pages via HTTP, and
also there is no user's credentials encryption unless using SSL.

� Client-cert, where the server authenticates the client using a public key certificate via
HTTPS (HTTP over SSL) with user's credentials encryption using SSL.

� Digest, that the server authenticates a user based on a username and a password
and unlike to basic authentication, the password is never sent over the network and
the use of SSL is optional.

� JSR 196 Server Authentication Modules, that defines a standard service-provider
interface (SPI) for integrating authentication mechanism implementations in message
processing runtimes. JSR 196 extends the concepts of the Java Authentication and
Authorization Service (JAAS) to enable pluggability of message authentication
modules in message processing runtimes. The standard defines profiles that
establish contracts for the use of the SPI in specific contexts.

� Passwords, are the forefront of defense against unauthorized access to the
components and data of GlassFish Server. GlassFish Server affords Master
Password and Keystores. The master password is not tied to a user account and it is
not used for authentication. Instead, GlassFish Server uses the master password only
to encrypt the keystore and truststore for the DAS (Domain Administration Server)
and instances. The DAS is a specially designated GlassFish Server instance that
hosts administrative applications and is similar to any other GlassFish Server
instance, except that the DAS has additional administration capabilities.
The master password is used encrypt the keystore and truststore for the DAS and
instances. The DAS needs the master password to open these stores at startup.
GlassFish Server keeps the keystore and truststore for the DAS and instances in
sync, which guarantees that all copies of the stores are encrypted with the same
master password.
However, GlassFish Server does not synchronize the master password itself, and it is
possible thatthe DAS and instances might attempt to use different master passwords.
Files that contain encoded passwords need to be protected using file system
permissions.

� Single Sign-on, with which a user who logs in to one application becomes implicitly
logged in to other applications that require the same authentication information.
Single sign-on is based on groups. Single sign-on applies to web applications
configured for the same realm and virtual server. The realm is defined by the realm-
name element in the web.xml file.
On GlassFish Server, single sign-on behavior can be inherited from the HTTP
Service, enabled, or disabled. By default, it is inherited from the HTTP Service. If
enabled, single sign-on is enabled for web applications on this virtual server that are
configured for the same realm. If disabled, single sign-on is disabled for this virtual
server, and users must authenticate separately to every application on the virtual
server.

Authorization

User's authorization is based on roles. Roles, on GlassFish Server, a user's authorization is
based on the user's role. A role defines which applications and what parts of each application
users can access and what those users or groups can do with the applications. For example,
in a personnel application of a transport company, all truckers might be able to see phone
numbers and email addresses, but only managers have access to salary information. This
application would define at least two roles; employee and manager. A role is different from a
group in that a role defines a function in an application, while a group is a set of users who
are related in some way. For the previous example of the company, the personnel application
specify groups such as national and international truck drivers. Users in these groups are all
employees (role).

Certificates and SSL

Certificates enable secure, confidential communication between two entities. There are
different kinds of certificates:

� Personal certificates are used by individuals.

� Server certificates are used to establish secure sessions between the server and
clients through secure sockets layer (SSL) technology.

Certificates are based on public key cryptography, which uses pairs of digital keys (very long
numbers) to encrypt, or encode, information so the information can be read only by its
intended recipient. The recipient then decrypts (decodes) the information to read it. A key pair
contains a public key and a private key. The owner distributes the public key and makes it
available to anyone. But the owner never distributes the private key, which is always kept
secret. Because the keys are mathematically related, data encrypted with one key can only
be decrypted with the other key in the pair.

Certificates are issued by a trusted third party called a Certification Authority (CA), and it
validates the certificate holder's identity and signs the certificate so that it cannot be forged or
tampered with. After a CA has signed a certificate, the holder can present it as proof of
identity and to establish encrypted, confidential communications. Most importantly, a
certificate binds the owner's public key to the owner's identity.

In addition to the public key, a certificate typically includes information such as the following:

� The name of the holder and other identification, such as the URL of the web server
using the certificate, or an individual's email address

� The name of the CA that issued the certificate

� An expiration date

Certificates are governed by the technical specifications of the X.509 format. To verify the
identity of a user in the certificate realm, the authentication service verifies an X.509
certificate, using the common name field of the X.509 certificate as the principal name.

A certificate chain is a series of certificates issued by successive CA certificates, eventually
ending in a root CA certificate. Web browsers are preconfigured with a set of root CA
certificates that the browser automatically trusts. Any certificates from elsewhere must come
with a certificate chain to verify their validity.

When a certificate is first generated, it is a self-signed certificate. A self-signed certificate is
one for which the issuer (signer) is the same as the subject (the entity whose public key is
being authenticated by the certificate). When the owner sends a certificate signing request
(CSR) to a CA, then imports the response, the self-signed certificate is replaced by a chain of
certificates. At the bottom of the chain is the certificate (reply) issued by the CA authenticating
the subject's public key. The next certificate in the chain is one that authenticates the CA's
public key. Usually, this is a self-signed certificate (that is, a certificate from the CA
authenticating its own public key) and the last certificate in the chain.

In other cases, the CA can return a chain of certificates. In this situation, the bottom certificate
in the chain is the same (a certificate signed by the CA, authenticating the public key of the
key entry), but the second certificate in the chain is a certificate signed by a different CA,
authenticating the public key of the CA to which you sent the CSR. Then, the next certificate
in the chain is a certificate authenticating the second CA's key, and so on, until a self-signed
root certificate is reached. Each certificate in the chain (after the first) thus authenticates the
public key of the signer of the previous certificate in the chain.

The GlassFish Server supports the SSL 3.0 and the TLS 1.0 encryption protocols. To use
SSL, GlassFish Server must have a certificate for each external interface or IP address that
accepts secure connections. The HTTPS service of most web servers will not run unless a
certificate has been installed. For instructions on applying SSL to HTTP listeners. SSL and
TLS support a variety of ciphers- cryptographic algorithm used for encryption or decryption-
used to authenticate the server and client to each other, transmit certificates, and establish
session keys.

Security Scheme and Roadmap of CGM

Certificate Generation and Processes

If private secure communication is that the authentication is required, can use only a self-
signed certificate. By default, the keytool utility creates a keystore file in the directory where
the utility is run. Before the keytool utility is running, shell environment must be configured so
that the Java/bin directory is in the path, otherwise the full path to the utility must be present
on the command line. In order to create a certification (not signed by a certificate authority)
accomplish this the administrator must follow next steps from command line [3], [4]:

1. Change the path to the directory that contains the keystore and truststore files.
Always generate the certificate in the directory containing the keystore and truststore
files. The default is domain-dir/config (i.e. glassfish/domains/domain1/config).

2. Generate the certificate in the keystore file (keystore.jks), using the following
command format:

jdk/bin> keytool -genkey -alias <user_or_service_alias> -keyalg RSA -

keypass changeit -storepass changeit -keystore keystore.jks

Running this command, the administrator has to fill in the following screen arguments:

What is your first and last name?

 [Unknown]: <i.e. CGM>

What is the name of your organizational unit?

 [Unknown]: <i.e. eCompassDev>

What is the name of your organization?

 [Unknown]: <i.e. eCompass>

What is the name of your City or Locality?

 [Unknown]: <i.e. Thessaloniki>

What is the name of your State or Province?

 [Unknown]: <i.e. Thessalonikis>

What is the two-letter country code for this unit?

 [Unknown]: <i.e. GR>

The keytool is asking to verify the correction of the answers:

Is CN=CGM, OU=eCompassDev, O=eCompass, L=Thessaloniki,

ST=Thessalonikis, C=GR correct?

 [no]: yes

Use any unique name as a <user_or_service_alias>. If the administrator has changed
the keystore or private key password from the default (changeit), substitute the new
password for changeit.

3. Export the generated certificate to the server.cer file (or client.cer if you prefer), using
the following command format:

jdk/bin> keytool -export -alias <user_or_service_alias> -storepass

changeit -file server.cer -keystore keystore.jks

4. Create the cacerts.jks truststore file and add the certificate to the truststore, using the
following command format:

jdk1/bin> keytool -import -v -trustcacerts -alias

<user_or_service_alias> -file server.cer -keystore cacerts.jks -

keypass changeit

If the keystore or private key password have been changed from the default
(changeit), substitute the new password. Information about the certificate is displayed
and a prompt appears asking if you
want to trust the certificate. Information similar to the following is displayed:

Enter keystore password:

Re-enter new password:

Owner: CN=CGM, OU=eCompassDev, O=eCompass, L=Thessaloniki,

ST=Thessalonikis, C=GR

Issuer: CN=CGM, OU=eCompassDev, O=eCompass, L=Thessaloniki,

ST=Thessalonikis, C=GR

Serial number: 3e4d3eb5

Valid from: Fri Jun 21 13:15:27 EEST 2013 until: Thu Sep 19 13:15:27

EEST 2013

Certificate fingerprints:

 MD5: 16:9A:B7:C6:77:8F:C4:3C:34:2A:83:C5:57:F8:F7:60

 SHA1:

25:24:C8:18:70:FF:91:04:DA:5C:AB:13:BB:EF:58:B7:25:48:3E:85

 SHA256:

4F:B5:BD:8D:F8:81:6B:50:A7:CD:9C:BC:A3:0E:83:0E:E5:CE:77:8D:15:

09:9D:CB:FC:92:5D:D6:CB:EB:E4:7F

 Signature algorithm name: SHA256withRSA

 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: A7 4B 3B 6D 5D 8C A6 F3 34 7C 65 27 68 AE E1

FC .K;m]...4.e'h...

0010: 94 BC 57 FF ..W.

]

]

Trust this certificate? [no]: yes

Certificate was added to keystore

[Storing cacerts.jks]

In order to display available certificates from a JKS Keystore, you can use the following
command:

jdk/bin> keytool -list -v -keystore <keystore.file> -storepass

<keystore.pass>

and for displaying certificate information from a JKS Keystore the appropriate command is:

jdk/bin> keytool -list -v -alias ${cert.alias} -keystore ${keystore.file} -

storepass ${keystore.pass}

Delete the default self-signed certificate as follow:

jdk/bin> keytool -delete -alias s1as -keystore keystore.jks -storepass

<store_passwd>

where <store_passwd> is the password for the keystore (i.e. mypass) and s1as is the default
alias of the GlassFish Server keystore.

Generation of a new key pair for the application server is like:

jdk/bin> keytool -genkeypair -keyalg <key_alg> -keystore keystore.jks -

validity <val_days> -alias s1as

where <key_alg> is the algorithm to be used for generating the key pair (i.e. RSA,
base64Binary, etc.), and <val_days> is the number of days that the certificate should be
considered valid. In addition to generating a key pair, the command wraps the public key into

a self-signed certificate and stores the certificate and the private key in a new keystore entry
identified by the alias.

For HTTPS hostname verification, it is important to ensure that the name of the certificate
(CN) matches the fully-qualified hostname of your site (fully-qualified domain name). If the
names do not match, clients connecting to the server will see a security alert stating that the
name of the certificate does not match the name of the site.

Another variation of execution of the command keytool follows, and this variation create a
digital signature:

jdk/bin> keytool -certreq -keyalg RSA -alias <user_or_service_alias> -file

certreq.csr -keystore keystore

Running this command, the administrator has to fill in the following screen

arguments:

Enter keystore password:

Enter key password for <user_or_service_alias>

Information similar to the following is displayed using the command type:

jdk/bin> type certreq.csr

-----BEGIN NEW CERTIFICATE REQUEST-----

MIIC2TCCAcECAQAwZDELMAkGA1UEBhMCR1IxDzANBgNVBAgTBkFjaGFpYTEQMA4GA1UEBxMHVXBh

dHJhczENMAsGA1UEChMEQ0VJRDERMA8GA1UECxMIZUNvbXBhc3MxEDAOBgNVBAMTB0NHTVRlc3Qw

ggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCv4cLCZooEgIHWQGLD48lz/Y5FX2lG/bdQ

ZvwdK8oh4kAPL9bZ3ApQb23PMcMjzp1PKwwvGd51d2A1B03h/thn70JTMUvcF3oE1232Cv7pEh1R

+5jY8AGFizJe/C00hndKrqP0cpxBx/p8O0QoTh0mLGYtFeBHv/BKKlDMpQDIzeN9LVXByJkcW4vv

EV7A6eM5NwHGQd3LlW9dynsHV72yS7TnGBXV1DVI57X/PRoPg2Fh2MAX5jkj2GZnF5/wcrTyuHo6

tv6gAMq+1F9mXB2T6IxMMMwhXmUBcVHWuxPaV/f8SA95byInTgreAtNuhPLF/p9/sPJlE6VmNqk+

qIILAgMBAAGgMDAuBgkqhkiG9w0BCQ4xITAfMB0GA1UdDgQWBBS2014A2jSpKtTQbEeg/RlAzw9C

GzANBgkqhkiG9w0BAQsFAAOCAQEAGncARSZbGL6IV4DwoTsXVl6FCKUXxqrKQD385z0cpvRshBLi

Rc8fTe80EpXgM7YmJJW2p/5ti46GyWNV5Hi2Jwf4XYZxqMcR2iXFcPgb2m0gamf7FRt8FLvCQ+fQ

BkmoN8/XdqyvWTcnOPdrp8G9E4ISpAMRl0HMP90PwD2hs/sckZzsjoWa+QeHfIQzFT9ASIJ5aYtZ

52S1pt0YKZpmEPDQCOwuEKMhkgBY+r4Ux/ytv0Djq4BHpXHPXYuZFiD9DG3fUv7+KhYMFJODf6aO

l0LroFc4+byQEWijL/jrB2cbuAT9WiRts/dMdyREojcTvknqAB3hVQ3dWtVvv03xdA==

-----END NEW CERTIFICATE REQUEST-----

To apply any changes, you have to restart GlassFish Server. At this point a certificate that
can be used for digital signatures has been obtained.

Services Certificate Processing

The next step is to sign a document. There are a number of ways to do this and the process
will vary based on how your original document is set up. Signing basically involves picking
one or more sections in the document that are marked for signing, getting them signed and
then embedding the signature into the documents [5].

Web Services Policy (WS-Policy) is a standards-based framework for defining a Web
service’s security constraints and requirements. It expresses security constraints and
requirements in a collection of XML statements called policies, each of which contains one or
more assertions. WS-Policy assertions are used to specify a Web service’s requirements for
digital signatures and encryption, along with the security algorithms and authentication
mechanisms that it requires, however the WS-Policy specification has not been fully
standardized. WS-Policy policies can be included directly in a WSDL document or included by
reference, and a WSDL document may import other WSDL documents that contain or refer to
WS-Policy policies. An XML file that contains these policies can be used by multiple proxy
services or business services [6], [7].

WebLogic Web Services are implemented according to the Enterprise Web Services 1.1
specification (JSR-921), which defines the standard J2EE runtime architecture for
implementing Web Services in Java. The specification also describes a standard J2EE Web
Service packaging format, deployment model, and runtime services, all of which are
implemented by WebLogic Web Services.

WebLogic provides message-level security for web services through an implementation of the
WS-Security web service security standard. WS-Security gives the opportunity of securing the
SOAP messages passed between web services using (1) security tokens, (2) digital
signatures, and (3) encryption. Although supports both transport and message-level security,
it is generally not necessary to use both sorts of security to secure a web service. In most
cases, developers should choose one or the other type of security to secure their web
services.

Security tokens are credentials used for authentication, authorization, or both. The
implementation supports two types of tokens. (1) Username and password tokens, and (2)
X509 Binary Security Tokens. Digital signatures are used for two purposes: (1) to
authenticate the identity of the sender and (2) to ensure the integrity of SOAP messages. If
any part of an incoming SOAP message has been changed in transport, the signature
validation performed by the recipient will fail. In WebLogic, if XML signatures is required for
incoming SOAP messages, the SOAP body must be digitally signed to be processed by the
web service. By default, digital signatures are applied only to the body of outgoing SOAP
messages. The developer must specifically provide the signing of elements in the header
(<addtionalSignedElements>). Encryption is used to encrypt either the body of the SOAP
message, the header, or both. If a web service requires encryption for incoming messages,
then, at a minimum, the body of incoming SOAP messages must be encrypted. For outgoing
SOAP messages, encryption is applied only to the SOAP body by default and must
specifically provide for the encryption of elements in the header
(<addtionalEncryptedElements>). Keys used in WebLogic's implementation of WS-Security
must be RSA keys [8].

Web service security is controlled through WSSE policy files. WSSE policy files are XML files
with a .WSSE file extension. To secure a web service with web service security, it is
necessary to create a WSSE policy file and that file ought to be associated with the web
service. All outbound and inbound SOAP messages are processed according to the policy
called for in the WSSE file. Inbound messages are first checked for the necessary security
measures called for in the policy file. If the inbound message is found to be appropriately
secured, then the SOAP message, cleaned of its security enhancements, is passed to the
web service for normal processing. Outbound messages go through the reverse process: they
are enhanced with the security measures called for in the policy file before they sent out over
the wire. To access a web service secured with WS-Security, create a policy file and
associate that file with the web service control. The policy file that is associated with a web
service's control should match the policy file of the target web service. If the target web
service requires encrypted incoming messages, then a control file targeting that web service
should encrypt messages before they are sent to the web service [8].

The WebLogic Web Services runtime environment recognizes two types of WS-Policy
statements:

� Concrete WS-Policy statements specify the security tokens that are used for
authentication, encryption, and digital signatures and can create concrete WS-Policy
statements if it is known at design time the type of authentication that you want to
require; whether multiple private key and certificate pairs from the keystore are going
to be used for encryption and digital signatures; and so on.

� Abstract WS-Policy statements that do not specify security tokens.

AquaLogic comprised a software suite developed by Oracle (BEA Systems) for managing
service-oriented architecture (SOA). AquaLogic Service Bus is a product that has operational
service-management. It allows the interaction between services, routing relationships,
transformations, and policies. includes three XML files that contain simple, abstract WS-Policy
policies:

� Auth.xml, that contains a policy that requires Web service clients to authenticate.

� Encrypt.xml, which contains a policy that requires clients to encrypt the SOAP body
(i.e using algorithm RSA).

� Sign.xml, it contains a policy that requires clients to sign the SOAP body. It also
requires that the WS-Security engine on the client add a signed timestamp to the
wsse:Security header, which prevents certain replay attacks. All system headers are

also signed. The digital signature algorithm is RSA-SHA1. Exclusive XML
canonicalization is used.

The system headers are:

� wsrm:SequenceAcknowledgement | AckRequested | Sequence

� wsa:Action | From | To | FaultTo | MessageID | RelatesTo | ReplyTo

� wsu:Timestamp

� wsax:SetCookie

and the namespace prefixes correspond to the:

� http://schemas.xmlsoap.org/ws/2005/02/rm

� http://schemas.xmlsoap.org/ws/2004/08/addressing

� http://schemas.xmlsoap.org/ws/2002/07/utility

� http://schemas.xmlsoap.org/ws/2004/01/addressingx

It is recommended to use these pre-packaged policies whenever possible. However, they
cannot be used in some cases that if the provided WS-Policy statements don't meet the
security needs. Instead, it is possible for the developer to write his own WS-Policy statements
(custom WS-Policy statements), but cannot modify the AquaLogic Service Bus WS-Policy
statements. The developer can either write custom WS-Policy statements directly in a Web
service’s WSDL document or, in case of reusing the statements in multiple Web services, the
developer can write them in a separate XML file and refer to them from the WSDL documents.

To apply encryption policy for a service and if we want the service's messages to be
encrypted, it is necessary to create a custom WS-Policy. The policy must be concrete (it must
contain the encryption certificate instead of using a certificate from a proxy service provider)
and it must be located directly in a WSDL document instead of being included by reference. It
would require messages to a service to be encrypted if the proxy service that sends
messages to the service is a pass-through proxy service. That is, the proxy service that
receives messages from a client does not process the SOAP message. Instead, the proxy
service routes the message to the service, and the service takes on the responsibility of Web
Services Security. In the following listing is shown the encrypting of the Body with a Concrete
Policy, Embedding the Policy in the WSDL Document:

<definitions name="WssServiceDefinitions"

targetNamespace="http://com.bea.alsb/tests/wss"

xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:wsu="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"...>

 <wsp:UsingPolicy xmlns:n1="http://schemas.xmlsoap.org/wsdl/"

n1:Required="true"/>

 <!-- The policy provides a unique ID -->

 <wsp:Policy wsu:Id="myEncrypt.xml">

 <wssp:Confidentiality

 xmlns:wssp="http://www.bea.com/wls90/security/policy">

 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-

1_5"/>

 <!-- Require the user name and password in the security header to be

encrypted -->

 <wssp:Target>

 <wssp:EncryptionAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <wssp:MessageParts

Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">

 wsp:Body()

 </wssp:MessageParts>

 </wssp:Target>

 <!-- Embed the token type and encryption certificate -->

 <wssp:KeyInfo>

 <wssp:SecurityToken TokenType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

 <wssp:SecurityTokenReference>

 <wssp:Embedded>

 <wsse:BinarySecurityToken

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-

message-security-1.0#Base64Binary" ValueType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd">

 MIICfjCCAeegAwIBAgIQV/PDyj3...

 </wsse:BinarySecurityToken>

 </wssp:Embedded>

 </wssp:SecurityTokenReference>

 </wssp:KeyInfo>

 </wssp:Confidentiality>

</wsp:Policy>

<binding name="WssServiceSoapBinding" type="tns:WssService">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getPurchaseOrder">

 <soap:operation soapAction="" style="document"/>

 <input>

 <soap:body parts="parameters" use="literal"/>

 <!-- Use a URI fragment to refer to the unique policy ID -->

 <wsp:Policy>

 <wsp:PolicyReference URI="#myEncrypt.xml"/>

 </wsp:Policy>

 </input>

<output>

 <soap:body parts="parameters" use="literal"/>

</output>

</operation>

</binding>

...

</definitions>

This listing is a WSDL document that contains a concrete policy. As is shown:

� The policy requires clients to encrypt the message body,

� the KeyInfo element specifies the type of token that a client must provide to is the
parent element that is used to describe and embed the encryption certificate. The
BinarySecurityToken element contains the encryption certificate. If the certificate is in
PEM format, the content of the PEM file (without the PEM prefix and suffix) is the

encoded representation of the certificate. If the encryption certificate is stored in a
JDK keystore, it can easily be exported to a PEM file.

� The policy provides a unique ID and the WSDL uses a URI fragment to refer to the
ID.

To attach WS-Policy statements to a WSDL document for a Web service, in case of creation
a custom WS-Policy in a separate XML file (after adding the custom WS-Policy file as a
resource in the AquaLogic Service Bus domain), add the following child element in the
<definitions> element of the WSDL document:

<wsp:UsingPolicy wsdl:Required="true"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>

where the wsdl:required="true" attribute ensures that proxy services and services are capable
of processing the policy attachments.

Within each element in the WSDL document that you want to secure, it is required to
determine the URI of the WS-Policy statements that use and specify the URI in the WSDL
document. To determining the URI of a WS-Policy Statement for the AquaLogic Service Bus,
the URIs are always as follows:

� policy:Auth.xml

� policy:Encrypt.xml

� policy:Sign.xml

For WS-Policy statements that are located directly in the WSDL document, the URI is as
follows:

#policy-ID where policy-ID is the value of the policy’s wsu:ID attribute

For WS-Policy statements that you created in a separate XML file and added as resources to
AquaLogic Service Bus, the URI is as follows:

policy:policy-ID

where policy-ID is the value of the policy’s wsu:ID attribute (which the developer specified in
the policy’s XML file).

Using one of the following techniques to specify the URI of a WS-Policy Statement in a WSDL
document (described in http://www.w3.org/TR/wsdl):

� PolicyURIs attribute, if the WSDL schema allows attribute extensibility for the element
that you want secure, add the PolicyURIs global attribute to the element.

� Nested <Policy> element, if the WSDL schema allows element extensibility for the
element that you want to secure, add <Policy> as a global child element. For each
WS-Policy that you want to use, add one <PolicyReference> element as a child of the
<Policy> element.

References

[1]. Jaroslav Imrich, APACHE web server and SSL authentication

(http://linuxconfig.org/apache-web-server-ssl-authentication)

[2]. IBM, Web services authentication method overview, i5/OS Information Center, Version

5 Release 4

[3]. GlassFish Server Open Source Edition, Security Guide, Release 4.0, May 2013

[4]. GlassFish Server Open Source Edition, Administration Guide, Release 4.0, May 2013

[5]. http://www.w3.org/TR/xmldsig-core/

[6]. XML Signature Syntax and Processing Version 1.1, W3C Recommendation. April 2013

[7]. Custom WS-Policies

(http://docs.oracle.com/cd/E13171_01/alsb/docs26/consolehelp/policies.html)

[8]. Programming Web Services for WebLogic Server

(http://docs.oracle.com/cd/E13222_01/wls/docs92/webserv/security.html)

