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1 Introduction

Nowadays, improving traffic flow in road networks has grown to be a challenging problem that has
major socio-economical and environmental effects. Thus, the notion of Intelligent Transportation
Systems (ITS) has emerged as a fully organized solution to the task of alleviating traffic condi-
tions. According to the Traffic Incident Management Handbook [1], studies have shown that traffic
congestion at U.S. roadways costs more than 85 billion dollars per year. In addition, almost 25%
of congestion is due to traffic incidents. An ITS could generally use various methods to improve
traffic conditions. Traffic prediction and jam prediction approaches have been widely used during
the last decade in order to alleviate congestion and improve routing of individuals or fleets. This
review, however, focuses mainly on the difficult task of predicting traffic incidents. Thus, the rest
of this review defines the problem and summarizes the main approaches towards its solution.

There are numerous incident detection systems, and many of them are actually used in real
world. The basic functionality of an incident management system, though, is common. The flow
chart of such a system is shown in Figure 1.
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Incident Detection
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Figure 1: Basic Flow Chart of an Incident Management System

As shown in Figure 1, the system continuously collects new road data and checks whether any
incidents have occurred. Upon detecting an incident, it is usually verified by a human observer who
is responsible for gathering the data for the incident as it is given by the system. Incident data
involves the location of the incident, the vehicles involved, possibly the lanes it affects, etc. Upon
verification, the motorists have to be informed at once usually by signs on the road or even by local
radio stations. This is vital to avoid chain incidents. After that, the authorities are informed in
order to take over and clear the incident, by e.g. removing any participating vehicles and restore
normal flow of the road.
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1.1 The Problem of Detecting Traffic Incidents

Traffic incidents are defined as non-recurring roadway events which may result in congestion. Ex-
amples of such events may include accidents, unpredictable weather conditions, or even artist tours.
Further analyzing the term non-recurring, one should note that periodic congestion, such as the
morning peak where several people drive to work, are not included in the category of incidents. In
other words, incidents are modeled as deviations of the normal flow, as it would be at a particular
time of the day. Due to the aforementioned issues, incident detection is considered a quite hard
problem; incidents cannot be predicted using conventional congestion techniques since no previous
data for the incidents are available.

Further formulating the problem comes down to defining the methodology for detecting non-
recurring incidents. In general, a traffic incident detection system receives traffic data as input and
is trained along the lines of identifying unexpected congestion. Evaluating such a system requires
having a database with known events. Subsection 1.2 summarizes the different sources of data used
by the algorithms, while subsection 1.2 comments on the measures used to evaluate traffic incident
detection techniques. The various techniques are analyzed in Section 2 which is the main section
of this report.

1.2 Traffic Descriptors

Traffic descriptors refer to the different traffic data forms that are acquired using multiple means.
Before analyzing current literature on incident prediction, the source and form of traffic data are
enumerated since the various techniques are usually bound to some specific input [2–5]. Thus, the
various traffic descriptors are:

• Traffic Flow: Also known as traffic intensity or traffic volume. It is measured using loop de-
tectors, i.e. systems that detect the presence (or absence) of a vehicle where they are installed.
Thus, traffic flow is measured in vehicles per hour.

• Occupancy: It measures the concentration of the vehicles in some specific area. Similarly
to traffic flow, occupancy is also usually measured using loop detectors, only the measured
quantity is actually the time percentage that each detector is “on”.

• Time Mean Speed: It is calculated as the mean speed of vehicles in a specific road segment
and it is measured in kilometers per hour. Although instantaneous speed probes drawn from
GPS devices on vehicles may be used, in practice the use of two loop detectors is sufficient
for calculating the time mean speed of the segment between them.

• Space Mean Speed: It is calculated using speed probes drawn from GPS devices. Instanta-
neous vehicle speeds form a trajectory for every vehicle, thus instead of using its location (as
in time mean speed), the mean of all vehicle speeds within the road segment is calculated. In
practice, when speed probes are available, space mean speed is preferred to time mean speed
since it is considered more accurate.

• Traffic Density: It is defined as the number of vehicles per distance unit for a specific
road segment. It can be calculated using loop detectors by computing the number of vehicles
traveling simultaneously along a road segment, i.e. between two detectors.

According to C. Xie and C. Parkany [2], the aforementioned descriptors are highly popular for most
transportation management centers, while the authors also note that several systems may use more
than one descriptor. Traffic flow, occupancy and time mean speed are actually present in almost
all systems. Apart from the above descriptors, other rarely used metrics may include average travel
time per road segment, or even congestion-related metrics such as the distance between subsequent
vehicles, known as headway, or the queue length.
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1.3 Performance Measures

Although current literature in incident detection is vast [2–5], evaluating the techniques is a rather
common ground. The performance measures of the algorithms are based on the fact that a set of
incidents is known. Given the actual incidents, the techniques are easily evaluated against them.
The main performance measures are [2]:

• Detection Rate (DR): It is defined as the percentage of the number of detected incidents
divided by the number of actual incidents. It is determined for any given time interval as:

DR =
NumberOfDetectedIncidents

NumberOfActualIncidents
· 100% (1)

Despite it being a simple measure, the detection rate is quite useful since it captures the recall
of the system, or, as one could say, the true positives. A system with low DR fails to capture a
significant number of incidents. Generally, satisfactory systems have DR values above 88.3%
[6], although this is usually a context-specific measure.

• False Alarm Rate (FAR): It is a measure of the false positives of an algorithm. It is defined
as the number of falsely identified incidents divided by the number of algorithm applications:

FAR =
NumberOfFalseAlarms

NumberOfDetectorInvocations
· 100% (2)

Achieving low FAR is crucial. Studies have shown that when FAR is below 1.8%, the alarm
triggers easily enough to distract users and make them not trust the system [6]. Finally, as
noted in [2], two more definitions of FAR are used, one defined as the number of false alarms
divided by the total number of (correctly and incorrectly) detected incidents and one defined
as the number of false alarms for a specific time period. Although the former seems to capture
satisfactorily the precision of the system, the definition shown in equation (2) is the one used
more often.

• Time-To-Detection (TTD): Apart from detecting incidents, it is crucial that detection is
performed in a timely manner. Thus, TTD is defined as the time spent from the time of
occurrence of the incident until the time of its detection. For an incident i it is computed as:

TTD(i) = tdetect(i)− toccur(i) (3)

The average TTD metric is computed by averaging over all successfully detected incidents.
Lower TTD values are generally preferred, although the metric cannot be used on its own
since it contains no information about the success rate of the detection algorithm.

The three aforementioned metrics are widely used in current literature to evaluate quantitatively
the performance of incident detection techniques. Apart from them, common evaluation techniques
include drawing curves, such as the Receiver Operating Characteristic (ROC) curve, which is sat-
isfactorily applicable for most scenarios since the output of the algorithms is binary (incident - no
incident). A ROC curve is created by plotting the true positive rate versus the false positive rate
at various threshold settings.

Concerning, however, incident detection scenarios, Activity Monitor Operating Characteristic
(AMOC) curves are preferable [7] due to the rarity of incident occurrence. The curve is created
by plotting the TTD versus the FAR for various thresholds. Finally, certain other metrics may be
used as a combination of the three aforementioned metrics. For instance, Stephanedes et al. [3] plot
a DR-FAR curve, as an alternative to the known ROC curve. The relationship between DR, FAR,
and TTD, which is explored by K. N. Balke [5], is shown in Figure 2.
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Figure 2: Relationship between Detection Rate, False Alarm Rate, and Time To Detect, as in [5].
Concerning diagram (a), the red line ( ) is the False Alarm Rate versus the Time To Detect and
the blue line ( ) is the Detection Rate versus the Time To Detect. Concerning diagram (b), the
green line ( ) is the Detection Rate versus the False Alarm Rate.

As shown in Figure 2, the DR is qualitatively reversely proportional to the FAR. This is expected
since attempting to detect more and more incidents results also in more false alarms. Concerning
the TTD, when its maximum allowed threshold is increased, more incidents can be considered as
detected either correctly or falsely, while reducing the threshold provides lower DR but also higher
FAR.

1.4 Overview

Upon stating the problem and illustrating its significance, the main scope of this section was to
identify the elements that are present in any ITS that practices incident detection. Thus, the form
of the data was analyzed and the different approaches on measuring the performance of an incident
management technique are clear. The rest of this report is organized as follows. Section 2 provides
a taxonomy of current literature on traffic incident detection and summarizes the state-of-the-art
approaches on the task at hand. Section 3 provides with real world implementations of detection
techniques and comments on their impact. Finally, Section 4 concludes this report and provides
useful insight for future research.
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2 Traffic Incident Detection Techniques

Several researchers have tried to review current literature on traffic incident detection [2–5]. Al-
though all reviews on the topic are very valuable, most of them are outdated since they only
review algorithms that were implemented before 1990. This review aims to include both classic
literature and current state-of-the-art on incident detection. Subsection 2.1 provides a taxonomy
of traffic incident detection algorithms, while the 5 following subsections review different types of
algorithms. This section is summarized in subsection 2.6 providing with main points for the current
state-of-the-art in traffic incident detection.

2.1 Taxonomy of Traffic Incident Detection Techniques

Traffic incident detection has been a widely studied problem during the last few decades. Creating
a taxonomy that covers all techniques is very difficult, if not impossible. However, classifying the
techniques into different categories shall be useful in order to study their features, their similarities
and differences. C. Xie and C. Parkany [2] classify the techniques into several categories, while
including also non-automatic algorithms (i.e. driver-based) and distinguish them also according to
the type of the roads (e.g. urban, arterial, etc.). Deviating from the aforementioned taxonomy, we
classify the algorithms according to their applicability to different types of data. Figure 3 provides
the taxonomy of the algorithms.

Traffic Incident
Detection Techniques

Loop-Based

Comparative Statistical Time Series
Smoothing
Filtering

Modeling
Artificial

Intelligence

Probe-Based
Sensor

Fusion-Based

Figure 3: Taxonomy of traffic incident detection techniques.

As shown in Figure 3, there are five categories concerning the data used by the algorithms. Loop-
based techniques, which are the most well-studied ones [2], use data from loop detectors, i.e. usually
traffic flow or occupancy and less often time mean speed or traffic density (see subsection 1.2). The
subcategories for loop-based algorithms follow the taxonomy of C. Xie and C. Parkany [2] which
in turn originated from the one provided by K. N. Balke [5]. Probe-based systems rely on probe
instantaneous speeds of GPS-equipped vehicles, thus the preferred descriptor is usually space mean
speed. Finally, sensor fusion-based algorithms use multiple data sources, usually both loop detector
data and probe data to detect incidents.

As already noted, several taxonomies may emerge by classifying algorithms according to their
effectiveness in different scenarios, as in [2]. Concerning, however, this report, the main categories
of algorithms are rather sufficient, since comments on the performance shall be integrated in the
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description of each algorithm. Subsections 2.2, 2.3, and 2.4 describe the algorithms of the loop-
based, probe-based and sensor fusion-based categories respectively, while subsection 2.5 comments
on omitted algorithms that do not match any of the above categories.

2.2 Loop-Based Techniques

Loop-based techniques are the most widely studied category of techniques due mainly to the fact
that equipping vehicles with GPS locators has been difficult and/or costly until before the last
decade of the past century. Thus, most incident detection systems acquired data from loop detec-
tors, and the main measures used are flow and occupancy. This subsection provides an overview
of different loop-based algorithms that are known for their performance. Each subcategory of
algorithms, as shown in Figure 3, is analyzed in the following paragraphs.

2.2.1 Comparative Techniques

The comparative incident detection algorithms are based on comparing the value of a descriptor to
specific threshold values. Probably the most widely known comparative algorithm is the California
algorithm [8, 9], also known as the Traffic Services Corporation (TSC) algorithm. The California
algorithm, in its simplest form, poses simple heuristic thresholds on traffic occupancy derived be-
tween two consecutive loop detectors. Given the detectors are A and B, the algorithm has three
parameters:

• The absolute difference between the occupancy values of the two detectors:

P1 = |OCCA −OCCB | (4)

• The ratio of the difference of the occupancy values of the detectors divided by the occupancy
value of the first detector:

P2 =
OCCA −OCCB

OCCA
(5)

• The ratio of the difference of the occupancy values of the detectors divided by the occupancy
value of the second detector:

P3 =
OCCA −OCCB

OCCB
(6)

The three parameters P1, P2, and P3 are compared to the thresholds T1, T2, and T3 respectively.
When all parameter values exceed the corresponding thresholds, then an incident is indicated by
the algorithm. Although the California algorithm is generally effective, it is very simplistic and
selecting appropriate values for the three thresholds is usually a difficult task. Consider also that
the thresholds may differ among different loop detector pairs (e.g. an uphill and a downhill may
differ significantly).

Upon further research [10], H. J. Payne and S. C. Tignor developed 10 different algorithms based
on the California algorithm, known in current literature as California #1, California #2, etc. Out
of all algorithms, California #7 and California #8 are the ones which had the best performance.
California #7 is an attempt to reduce false alarms due to compression waves. The compression waves
problem occurs when a sudden increase in occupancy is observer in both loop detectors that the
California algorithm is applied. Thus, the difference of occupancy values equation (6) is replaced by
the current occupancy in the first detector (OCCA) to regard for recurrent high occupancy values.
The other variation, California #8, is the most complex one with many parameters. It involves
detection compression waves by categorizing traffic state into 9 different states and uses 5 threshold
values to determine the current state.

The All Purpose Incident Detection (APID) algorithm was designed by P. H. Masters et al. [11]
as a combination of the variations of the California algorithms. The main intuition of the APID
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algorithm lies in using different policies on different traffic conditions. Thus, the algorithm has
three policies corresponding to low, medium and high traffic occupancy conditions, as well as two
policies that take dynamic events into account, the first checks for compression waves while the
second checks whether the conditions are persistent for a specific time interval.

Finally, another interesting algorithm is the Pattern Recognition (PATREG) algorithm, devel-
oped by J. F. Collins et al. [12], along with HIOCC (see subsection 2.2.3) in order to operate as
a combined system. The PATREG algorithm uses traffic flow measurements to initially estimate
travel times between subsequent loop detectors and subsequently construct the time mean speed
for the corresponding road segment. This measure is then compared to the mean speed of the road
at a given time. Although interesting, this approach is rather outdated and is not used today.

2.2.2 Statistical Techniques

As the name implies, statistical algorithms use statistical metrics to detect non-recurring traffic
events. The first algorithm of this category is the Standard Normal Deviate (SND) algorithm,
developed by C. L. Dudek et al. [13]. The algorithm uses historic data to determine the values
of the mean and the standard deviation of the occupancy at different time intervals. The SND
is defined as the number of deviations that the occupancy is away from the mean occupancy.
Intuitively, the SND is a metric of the deviating behavior of traffic for a specific time interval.
Using certain heuristic thresholds, any SND occupancy value exceeding these thresholds triggers
the incident alarm.

Another significant statistical techniques is the Bayesian algorithm, proposed by M. Levin and
G. M. Krause [14]. The algorithm uses the relative difference of occupancy values of loop detectors
similarly to the California algorithm (see equations (5),(6)). However, instead of using predefined
thresholds, exceeding values are determined using the conditional probability that the difference in
occupancy between the detectors is caused by an incident. Since that probability is computed using
the well-known Bayes theorem, the name of the algorithm is justified. Computing the probability
is not trivial; it requires occupancy and traffic volume values in both incident and normal-flow
conditions to construct the incident occurring distributions. Furthermore, an archive of occurring
incidents is necessary to keep track of historical probabilities. Generally, the probability of an
incident occurring in a t-minute time interval is given by the following equation [5]:

PINCIDENT =
N̄INCIDENTS
NDETECTORS · t (7)

where N̄INCIDENTS is the average number of incidents for the area of interest and NDETECTORS
is the total number of loop detectors.

2.2.3 Time Series Techniques

The techniques of this category employ algorithms drawn from Time Series Analysis, assuming
that traffic follows particular patterns. Probably the most well known model of this category
is the Auto-Regressive Integrated Moving Average (ARIMA), which was first introduced by Box
and Jenkins [15]. The generic Auto-Regressive Moving Average (ARMA) model comprises of two
components [16]:

• The Auto-Regressive (AR) part provides the current value Xt as the linear aggregate of p
previous values:

Xt =
p∑
k=1

φkXt−k + εt (8)

where εt is the error term and follows a Gaussian distribution of type (0, σ2
ε ) (White Noise).
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• The Moving Average (MA) part provides the current value Xt as the aggregate of q previous
error terms:

Xt =
q∑

k=1

θkεt−k + εt (9)

Hence, according to (8) and (9), the ARMA(p, q) model is given by:

Xt =
p∑
k=1

φkXt−k +
q∑

k=1

θkεt−k + εt (10)

or equivalently:

1−
p∑
k=1

(φkBk)Xt = 1 +
q∑

k=1

(θkBk)εt (11)

where B is the backwards shift operator (BkXt = Xt−k). Upon differencing the series at the d-th
degree ((1−B)dXt):

1−
p∑
k=1

(φkBk)(1−B)dXt = 1 +
q∑

k=1

(θkBk)εt (12)

Finally, (12) describes an ARIMA(p, d, q) model.
In traffic incident detection, the ARIMA model was studied extensively by M. S. Ahmed and

A. R. Cook, [17–19]. The authors employed an ARIMA(0, 1, 3) model providing it with occupancy
values for specific time intervals. Thus, given occupancy for the past q = 3 time intervals, the model
provides an estimation of the occupancy value for the current time interval of the series. Given
this value as well as the observed value for 1 interval before, the difference in occupancy between
the current interval t and t − 1 can be computed. This difference can then be checked against
specific thresholds to determine the existence of an incident. Finally, Note that although ARIMA
has initially been adapted to occupancy measuring systems, other descriptors, such as speed or
travel time, can easily be used in conjunction with this universal model, given in equation (12).

Another popular time series algorithm is the High Occupancy (HIOCC) algorithm, created
by J. F. Collins et al. [12], as part of an ensemble technique with the PATREG algorithm (see
subsection 2.2.1). The time series are modeled individually given the mean occupancy of each loop
detector, which is computed for small time intervals. The algorithm attempts to detect consecutive
high occupancy values (hence its name) and triggers an alarm when they exceed a specific threshold.
Since high occupancy values on a detector may not be exactly “consecutive”, small gaps are filled
when their duration is below a given threshold to avoid triggering multiple alarms for a single
incident.

2.2.4 Smoothing or Filtering Techniques

Traffic data usually forms patterns, i.e. descriptor values that keep reappearing with certain trend
and periodicity. Morning peaks, for example, are quite common causes for increased occupancy,
yet they cannot be classified as incident-related congestion states. As opposed to incidents, these
traffic states are recurrent. Smoothing or Filtering techniques aim to remove such data in order to
reduce the FAR of the algorithm and isolate the non-recurrent incidents.

The first algorithm of this category is the Double Exponential Smoothing (DES) algorithm
utilized by A. R. Cook and D. E. Cleveland [20]. In its simple form, exponential smoothing is a
method of estimating the value of a series x̂t as a weighted average of the previously estimated
value x̂t−1 and the previously observed value xt−1:

x̂t = α · xt−1 + (1− α) · x̂t−1 (13)
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where α is the smoothing factor and determines the weighting given to the real and the estimated
values. The initial value of x̂t is x̂1 = x0. Although simplistic, exponential smoothing can generally
be quite strong at estimating consecutive time series values. However, when the series has a specific
trend, the algorithm is rather weak. To address this, one may use the DES, which introduces also
a series b for the best estimate at all times, thus resulting in the following equations:

x̂t = α · xt + (1− α) · x̂t−1 (14)
bt = β · x̂t + (1− β) · bt−1 (15)

where β is the trend smoothing factor. The initial value of x̂t is x̂1 = x1 and the initial value
of bt is b1 = x1 − x0. Hence, A. R. Cook and D. E. Cleveland [20] utilized the model given
by equations (14),(15) providing with different descriptors and concluding that traffic flow and
occupancy yielded the most satisfactory results. Upon applying the algorithm, one can easily
determine the difference between the real and estimated value x̂t − xt. When this value deviates
from zero it can indicate a possible incident. Thus, in practice, an upper threshold is set and when
the difference exceeds it, an alarm is triggered.

A different set of smoothing algorithms comprise of the Low-Pass Filter (LPF) algorithms, also
known as the Detection Logic with Smoothing (DELOS) algorithms, which were extensively studied
by Y. J. Stephanedes and A. P. Chassiakos [21–23]. Given the total number of filtered intervals N ,
the equation used to remove high frequencies (i.e. noise in traffic data) is [5]:

x′t =
M∑
k

xt−k
M + 1

(16)

where x′t is the smoothed counterpart of the occupancy value xt. The algorithms compare occupancy
levels on two consecutive loop detectors. In its initial form, two occupancy values are considered
for each detector, given equation (16), for three and five minute intervals respectively [21]. Using
two values ensures lower FAR. Variations include using median values [22] or using exponential
smoothing [23].

A similar line of work by A. Samant and H. Adeli [24] includes using Discrete Wavelet Transform
(DWT) and Linear Discriminant Analysis (LDA), forming thus the DWT-LDA method, in order
to smooth the data. DWT is a transform of the input signal that TODO: Write

about DWT
and LDA

TODO: Write
about DWT
and LDA2.2.5 Modeling Techniques

Modeling algorithms.. TODO: Write
about Traffic
Modeling Algo-
rithms

TODO: Write
about Traffic
Modeling Algo-
rithms

2.2.6 Artificial Intelligence Techniques

Artificial Intelligence (AI) is certainly a quite broad field. In its general definition, AI may include
virtually all intelligent decision-making algorithms. In the context of incident detection, however,
the algorithms classified in this category are complex or “black box” algorithms [2]. Early research
on incident detection employed Fuzzy Logic (FL) and Artificial Neural Networks (ANNs), while
lately the problem is also faced using other methods, such as Decision Trees or Support Vector
Machines (SVMs).

Artificial Neural Network Techniques ANNs have several variations which are used for a
wide range of problems. Concerning the problem at hand, two ANN structures are preferred by
current literature: Multi-layer Feed-Forward Neural Networks (MLF-NNs) and Probabilistic Neural
Networks (PNNs). An example NN is shown in Figure 4. Each node of the ANN of Figure 4
is called a perceptron. The perceptron is actually a processing unit, receiving a particular input
and providing an output according to an activation function. Several activation are defined for
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Figure 4: An Artificial Neural Network consisting of three layers

classification and regression problems, however they are omitted since they lie outsize the main
scope of this report. The layers of an ANN are proportional to the complexity of the problem,
i.e. the number of defined parameters. Thus, a network can be called Multi-layer as long as it
has more than one layers. Although ANNs can have multiple different structures, one of the most
well known ones is the structure shown in Figure 4, where the information moves only towards one
direction: from the input to the output layer (with as may hidden layers as required). Hence, this
is actually a Feed-forward network. Finally, each connection of an ANN carries a specific weight,
which denotes the impact of the corresponding perceptron on the output. The process of training
the network usually comes down to defining the weights, since the activation function is fixed.
Out of the possible weight determining methodologies, the most widely used is backpropagation.
The method includes two phases: propagation and weight update. During the former, the ANN
is fed with input and provides with the outputs, while during the latter, the weights are updated
according to the error between the known and the estimated output values.

MLF-NNs have been used by several researchers [25–29] in the field of traffic incident detection.
The input layer of the ANNs can be provided with any measure, i.e. occupancy, speed, volume, etc.,
and the output is binary denoting whether there is an incident or not. As C. Xie and C. Parkany [2]
note, correctly identifying incidents is a matter of properly training the network to most possible
conditions. Cautious training is crucial in order to discriminate recurring and non-recurring con-
gestion conditions, and thus to avoid false alarms.

Another widely used class of ANN techniques for incident detection are the ones based on
PNNs [30–32]. The main discriminating feature of PNNs is that they have a pattern layer and a
summation layer in place of the hidden layer. The input layer works as a distributor of the input to
the perceptrons of the pattern layer, while the latter represent incident and free flow conditions. The
summation layer concentrates all information into two perceptrons, one for each state as previously
mentioned. Thus, upon normalizing, the perceptron of the output layer determines whether there is
an incident or not. Although PNNs are quite adaptive to numerous traffic applications, MLF-NNs
perform better in terms of higher DR and lower FAR.

Finally, a slightly different approach includes using DWT (see subsection 2.2.4) to improve the
ANN implementations. Indicatively, reference must be given R. Prasenjit and B. Abdulhai [33]
for using DWTs to train the PNN. Another interesting line of work is the one by A. Karim and
H. Adeli [34, 35]. The authors form an input signal using both occupancy and speed values, and
perform DWT in order to smooth the signal by discarding traffic fluctuations (see subsection 2.2.4).
The data is then given to a Radial Basis Function Neural Network (RBFNN), i.e. an ANN which
has a Radial Basis Function (RBF) as its activation function. Upon further research [36, 37], the
method is further improved using wavelet theory and LPFs to further smooth the time series before
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giving them as input to the RBFNN. Finally, A. Samant and H. Adeli [38, 39] propose the use of
ACGNN TODO: write
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ACGNN

TODO: write
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ACGNN

As shown above, ANNs have been widely studied for the field of traffic incident detection.
These models are also quite popular during the last decade, where several algorithms have emerged
that improve on known ANN techniques. Indicatively, X. Cheng et al. [40] perform smoothing
using wavelets before providing a back propagation ANN with the data, while D. Srinivasan et
al. [41] propose a Reduced Multivariate (RM) polynomial neural network in order to handle the
high dimensionality of the problem. Finally, an interesting evaluation of multiple different ANN
implementations, including an MLF-NN and a PNN, is performed by D. Srinivasan et al. [42, 43].
The authors propose the use of a a Constructive Probabilistic Neural Network (CPNN) which
consists of Gaussian components in the pattern layer. TODO: Write

about other
Neural Net-
work tech-
niques, if any

TODO: Write
about other
Neural Net-
work tech-
niques, if any

Fuzzy Logic Techniques The theory of FL is based on the construction of certain rules which
are applied to imprecise data. Intuitively, concerning traffic incident detection, FL techniques
attempt to pose loose rather than strict thresholds to incident and non-incident situations. Thus,
their output is actually a probability for an occurring incident. Finally, as C. Xie and C. Parkany [2]
note, FL techniques perform quite satisfactorily for missing or inexact data, which is common in
traffic scenarios.

FL-based techniques for traffic incident detection have been quite popular in early years [44–46].
The generic procedure of these techniques includes the following steps:

• Data Extraction: Refers to extracting the traffic data from the descriptors and transforming
them to convenient form for the rest of the algorithm. This step may be different for each
algorithm.

• Data Fuzzification: As its name implies, this step refers to fuzzifying the data, i.e. trans-
forming crisp values (e.g. 80km/h) to membership functions (e.g. 70% high speed). Initially,
the data crisps have to be identified in order to decide upon the definition of the fuzzy sets.
After that, the fuzzification of the data is a straightforward mapping procedure from the
crisps to the sets.

• Fuzzy Rules Construction: It refers to the construction of the rules that determine the
output given the input. Given particular measure values, the combination of different rules
outputs the probability of an occurring incident.

Recent approaches in FL use also the above principles. Interesting lines of research include using
either simulated [47–49] or real data [50]. Indicatively, the proposed algorithm by Y. E. Hawas [48]
seems quite satisfactory for discriminating among different incident types. In terms of effectiveness,
the evaluation of S. Xiaorong et al. [50] is quite reliable, since the authors rely on real data. Their
fuzzy learning classifier is proven to perform better than an ANN in both FAR and TTD.

Another well-studied class of algorithms for incident detection comprises of hybrid neuro-fuzzy
approaches. Research on the subject initially focused on constructing the membership functions of
the FL algorithm using ANNs. Indicatively, the approach by C. Hsiao et al. [51] involves neural
training mechanisms to determine the threshold values of the FL rules. Similar approaches include
using multiple sources of data, as in [52], while M. Viswanathan et al. [53] further develop the neuro-
fuzzy method and compare it also to a newly proposed model of theirs, which extracts the rules
using data mining techniques. On a different line of work, S. S. Ishak and H. M. Al-Deek [54, 55]
propose the use of an FL-ANN deriving from the Adaptive Resonance Theory (ART). The Fuzzy
ART algorithm, as they call it, has a structure similar to an ANN. It initially clusters the different
patterns and detection is thereafter performed on the corresponding cluster. A similar clustering
approach to the problem is proposed by D. Srinivasan et al. [56]. The authors use Least Squares
Regression (LSR) to train their model and evaluate it against a real dataset.
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Support Vector Machines Techniques SVMs have been widely used in literature for various
classification tasks. The main idea is to construct a hyperplane that sets apart the classes of a
sample. A classification example is shown in Figure 5.

x1

x2

H1 H2Ĥ

Figure 5: A Support Vector Machine, separating blue ( ) from red ( ) data points. H1 and H2 are
two valid hyperplanes, and Ĥ is the optimal hyperplane (dashed lines denote maximum distances).

The example of Figure 5 concerns a two-dimensional space (with dimensions x1 and x2), i.e. the
data instances are classified according to two attributes. For two dimensions, the hyperplanes
are reduced to single lines. Although there may be various hyperplanes that separate a dataset,
SVMs attempt to approximate the optimal hyperplane, i.e. the hyperplane that has maximum
distance from instances on both sides. Maximizing the margin comes down to solving the Quadratic
Programming (QP) problem. Current state-of-the-art suggests solving the problem using Sequential
Minimal Optimization (SMO).

F. Yuan and R. L. Cheu [57] were among the first researchers to address the problem of traffic
incident detection using SVMs. The authors employ different non-linear kernels and evaluate the
SVM implementations in both a simulated and a real dataset. Their results are encouraging,
achieving higher DR and lower FAR when compared to an MLF-NN and a PNN. However, since
selecting an appropriate kernel for the SVMs is usually a non-automated and non-trivial procedure,
applying an SVM in a real scenario is rather limited. S. Chen et al. [58] attempted to address the
problem by constructing an SVM ensemble. The ensemble is a system consisting of multiple SVMs
with different kernels, while its output is determined using a combining scheme over the outputs of
each individual classifier. The authors review different voting schemes and suggest new ones. The
ensembles perform quite satisfactorily with respect to each individual SVM. Similar research on
SVM ensembles was conducted by J. Xiao et al. [59, 60]. The authors also propose using a Multiple
Kernel Learning SVM (MKL-SVM), i.e. an ensemble of kernels (instead of SVM classifiers). The
ensemble of MKL-SVMs, which is constructed, is quite effective compared to plain SVM ensembles,
while it requires fewer classifiers.

Finally, recent research has also focused on improving the performance of SVMs using hybrid
methods. T. Šingliar and M. Hauskrecht [7] improve the TTD of the classifier by realigning the
output (detected incidents) with the data. To this end, the authors construct a dynamic Bayesian
network which proves quite effective; the performance of the SVMs is satisfactory. Another inter-
esting approach on improving SVMs is proposed by D. Zeng et al. [61]. The authors place SVMs
in different loop detectors and use the D-S evidence theory algorithm to rate the confidence of each
classifier. Their methods are proven to be effective against other implementations including an
MLF-NN.
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2.3 Probe-Based Techniques

The algorithms analyzed so far used data from loop detectors as their input. As shown, loop
detectors have been widely deployed during the last few decades. Recent advances in technology
have shown the way to acquiring more precise probe data using GPS locators or similar systems.
Probe data can reveal incidents in road segments that would be covered more sparsely between loop
detectors. Note, however, that probes provide with sample data from a small number of equipped
vehicles, and this number may reflect quite a small percentage of the vehicle population (usually
no more than 0.1% [2]). Consequently, an important metric that impacts the performance of any
algorithm is the penetration rate of sensor-equipped vehicles.

Possibly the first approach in probe-based traffic incident detection is the Managing Incidents
and Traffic (MIT) algorithm by E. Parkany and D. Bernstein [62]. The authors propose a fine-
grained method, scanning for headways and even lane switches. Given the different travel times
and volumes per lane, one could determine incidents as large deviations from lane to lane in the
same road. Although the approach seems quite interesting, it is difficult to apply in a real world
scenario. Indicatively, simulated probes are assumed to cover 50% of all vehicle data, which is not
the case in most cases.

V. Sethi et al. [63] have implemented another well-known approach based on travel time and
average speed per road segment. Their algorithm compares historical average values with current
values in order to determine the occurrence of incidents. In the same context, M. W. Sermons and
F. S. Koppelman [64] used multiple-form data ranging from travel time and position to running
time derived from position. Although the granularity of every measure is different, the authors
demonstrate the effectiveness of their approach by using detailed data. As one may note, the
measures derived from proved can be either observed or constructed. An example of a constructed
measures approach is the Berkeley algorithm by K. F. Petty et al. [65]. Instead of using average
speed, the authors construct vehicle acceleration per road segment and propose using two different
thresholds for speed and acceleration. Thus, when the probes indicate abrupt acceleration in
otherwise free flow speed conditions, it is interpreted as an incident.

A different line of work, which is similar with the statistical loop techniques (see subsec-
tion 2.2.2), is proposed by K. N. Balke [5]. The author implemented an algorithm for the Texas
Transportation Institute (TTI), which uses thresholds similar to those of the SND algorithm (see
subsection 2.2.2) to detect large deviations of travel time per road segment. However, the perfor-
mance of the algorithm is rather unsatisfactory due to the low penetration rate of the data [2].
Other statistical algorithms include the TRANSCOM’s System for Managing Incidents and Traffic
(TRANSMIT) by K. C. Mouskos et al. [66, 67]. The system poses a threshold in travel time, given
historical travel times and their deviations. Both TTI and TRANSMIT algorithms assume normal
distributions over the data. Finally, similar research on the field has been conducted by B. Hellinga
and G. Knapp [68]. The authors, however, assume log-normally distributed travel times and pose
corresponding thresholds to both travel time and speed values.

As a final remark, although literature on probe-based detection seems rather limited, note that
there are several loop-based algorithms that can easily be adapted to the probe scenario. For the
applicability of the algorithms in different data scenarios, see subsection 2.6 of this report.

2.4 Sensor Fusion-Based Techniques

2.5 Other Techniques

Loop-Based Image Processing Techniques
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Driver-Based Techniques
Arterial-Applicable Techniques

2.6 Summary

Having already analyzed several algorithms for traffic incident detection, one could wonder whether
these algorithms are applicable to different scenarios. Generally, most algorithms, especially simple
statistical and AI implementations, are easily adaptable to the problem at hand. Concerning traffic
incident detection, the techniques analyzed are summarized in Table 1. Apart from a conclusive
summary of this section, Table 1 contains applicability information for each algorithm concerning
the type of data required.

Table 1: Traffic Incident Detection Algorithms and Supported Descriptors

Algorithm Authors Year
Applicability

Flow Volume Speed
Comparative

California Payne et al. [8, 9] 1976 3

California #7 Payne and Tignor [10] 1978 3

California #8 Payne and Tignor [10] 1978 3

APID Masters et al. [11] 1991 3 3

PATREG Collins et al. [12] 1979 3

Statistical

SND Dudek et al. [13] 1974 3 3

Bayesian Levin and Krause [14] 1978 3

Time Series

ARIMA Ahmed and Cook [17–19] 1977 3 3 3

HIOCC Collins et al. [12] 1979 3

Smoothing/Filtering

DES Cook and Cleveland [20] 1974 3 3 3

LPF Stephanedes et al. [21–23] 1993 3 3 3

DWT-LDA Samant and Adeli [24] 2000 3 3 3

Modeling

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
Artificial Intelligence

Neural Networks

MLF-NN Cheu et al. [25–27] 1991 3 3 3

Stephanedes and Liu [28] 1995 3 3 3

Dia and Rose [29] 1997 3 3 3

PNN Abdulhai and Ritchie [30, 31] 1999 3 3 3

Jin et al. [32] 2002 3 3 3

Srinivasan et al. [42, 43] 2004 3 3 3

DWT-NN Roy and Abdulhai [33] 2003 3 3 3

Adeli and Karim [34–37] 2000 3 3 3
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Algorithm Authors Year
Applicability

Flow Volume Speed
Adeli and Samant [38, 39] 2000 3 3 3

Other NN Cheng et al. [40] 2010 3 3 3

Srinivasan et al. [41] 2008 3 3 3

Fuzzy Logic

FL Chang [44, 45] 1994 3 3 3

Lin and Chang [46] 1998 3 3 3

Yaguang and Anke [47] 2006 3 3 3

Xiaorong et al. [50] 2007 3 3 3

Hawas [48] 2007 3 3 3

Binglei et al. [49] 2008 3 3 3

Neuro-Fuzzy Hsiao et al. [51] 1994 3 3 3

Lee et al. [52] 2005 3 3 3

Viswanathan et al. [53] 2006 3 3 3

Neuro-FL clusters Ishak and Al-Deek [54, 55] 1998 3 3 3

Srinivasan et al. [56] 2006 3 3 3

SVM

SVM Yuan and Cheu [57] 2003 3 3 3

SVM ensemble Chen et al. [58] 2009 3 3 3

Xiao and Liu [59, 60] 2012 3 3 3

Other SVM Šingliar and Hauskrecht [7] 2007 3 3 3

Zeng et al. [61] 2008 3 3 3

Thus, Table 1
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3 Real World Implementations
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4 Conclusion
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