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1 Traffic Prediction

Beyond any doubt, transportation plays a key role to the design and execution of the vast majority
of the modern economic and social activities and as a result it significantly affects the perceived
quality of the citizens’ everyday life. Hence, the establishment of a reliable as well as time and
cost efficient transportation system rises as a necessity of prodigious importance for the growth and
prosperity of the contemporary societies.

In consequence, the research has focused on optimizing the allocation of the transportation
network resources (roads’ capacity) among the competing actuators, i.e. the vehicles that use
the network or intend to use it in the imminent future. As an outcome, the notion of Intelligent
Transportation Systems (ITS) [20] has been introduced as the integration of adequate technological
infrastructure (data acquisition, storage, processing, transmission), Decision Support System (DSS)
(modelling methodologies, routing and prediction algorithms) and interfaces (user equipment, traffic
lights management, electronic information boards) that shall allow for the effective monitoring,
assessment and management of the offered traffic load. In this context, the ultimate goal of ITS is
to implement novel measures of both preventive as well as reactive nature against traffic congestion
given a specific set of desirable performance criteria, such as travel time, cost and prioritization
among different road segments.

However, despite the obvious merits from gathering the traffic data, having knowledge of the
instantaneous or historical traffic conditions does not provide a solid ground for achieving optimal
vehicle forwarding, since, especially in cases of intense traffic, the available data are bound to soon
become obsolete. In contrast, for effectively performing the demanding task of traffic routing, it is
required to obtain an as accurate as possible estimation of the network’s forthcoming states. This
information will allow the routing decisions to be based upon the network’s status and require-
ments at the critical time that the managed vehicles are expected to reach the nodes/edges under
investigation. As a result, the notion of vehicular traffic prediction has been soon developed as
the process for forecasting the values of specific traffic intensity metrics at a given horizon in the
future by taking into account the current and historical evolution of the traffic conditions in the
transportation network of interest. It becomes apparent that efficient traffic prediction rises as a
fundamental prerequisite for enhancing the performance of traffic management and succeeding in
building fully exploitable ITSs with realistic applicability.

In this respect, within the overall ITS field, profound research interest has been concentrated
in the specific area of traffic prediction, covering extensively all its various aspects and problem-
atics. As a matter of fact, numerous related papers can be found in the bibliography [97, 103],
while some of the introduced methodologies have also been applied and evaluated in real cases of
transportation networks at least at an experimental level. A complete classification of the existing
studies in traffic prediction on the basis of their fundamental characteristics is presented below, and
an exhaustive list of the proposed techniques is also provided along with a short description of each
contribution. Moreover, apart from the core traffic prediction algorithms, particular emphasis is
laid upon the map-matching techniques, which form the basis for the adoption of the most modern
traffic prediction methodologies that make virtue of the feedback from moving vehicles.

1.1 Taxonomy of traffic prediction techniques

There are several different criteria for categorizing the bulk of traffic prediction approaches. As
a result, a multi-dimensional classification scheme is derived, depending on the selected set of the
algorithms’ corresponding predominant features. Traffic prediction technologies can be classified
according to the following criteria:

• Traffic Descriptors. The term traffic descriptor refers to the metrics that are chosen to be
implemented in order to quantify the performance of the transportation network in a manner
that allows for
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– Consistently monitoring the dynamics of the traffic evolution

– Evidently capturing the underlying causes of any abrupt variations or outliers of the
traffic intensity

– Taking over the adequate measures for optimizing traffic forwarding and mitigating any
traffic congestion phenomena

Furthermore, it should be noted that, although in the vast majority of the studies, the output
of the traffic prediction algorithm is computed in the same metric as the input data, different
traffic descriptors can be selected for the input and the output of the traffic prediction module.
Further details are provided in Section 1.2.

• Sources of Input Data. This category regards the type and content of the information that
is acquired about the conditions of the transportation network. Two separate types of data
can be further isolated:

– Quantitative real-time measurements of traffic descriptors. It refers to measurements of
traffic intensity variables through the use of suitable technological means.

∗ Loop detectors, aka induction loops. The vehicle detection loops are used to detect
vehicles passing or arriving at a certain point, for instance approaching a traffic light.
The presence of the vehicle’s metal body causes the alteration of the inductance of
an electrically conducting wire loop that is installed under the road surface in the
pavement. The calculation of different metrics of the traffic intensity is facilitated
with adequate data processing and transformation. Besides the straightforward
traffic flow computation, speed can be also estimated [126, 88, 58].

∗ Automatic vehicle identification systems, such as i) RFID and ii) Video cameras with
image processing capabilities for license plate recognition. RFID detectors are being
installed on many highways, especially for automated toll payment. As a RFID-
enabled vehicle passes through two consecutive detection points, an estimate of the
traffic density between the two points can be obtained by calculating the vehicles
entering the section between the times of entrance and exit of the tagged vehicle, on
the basis of its measured speed [27].

∗ GPS-enabled devices, such as navigators and smartphones. These devices report on
the location and the instantaneous speed of the vehicle, while enhanced versions also
provide information of the vehicle’s direction [2]. Depending on their operational
purpose, the carrying vehicles are commonly referred to either as prove cars or as
floating cars, while in some studies, these terms are also used interchangeably.
· Probe cars, which are either appropriately equipped public-service vehicles (buses,

taxis, police cars) that combine their normal functionality with providing traffic
feedback or vehicles dedicated for traffic data collection (usually in short-term
expenditures for experimental studies or pilot use cases)
· Floating cars, which are private vehicles with commercial handheld user equip-

ment whose owners have agreed to participate in traffic data collection either
voluntarily or as part of an added value service [19].

Particular emphasis must be laid on the fact that due to their profound proliferation,
the GPS-enabled devices appear nowadays as the most promising source of traffic
data, since they form a vast pool of real-time information with exhaustive temporal
and spatial coverage. Moreover, considering the realistic implementation of such a
data collection system of GPS-oriented traffic information, a key technical aspect
regards the sampling methodology. In more detail, two sampling approaches are
addressed:
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· Temporal. The GPS-devices transmit their feedback, consisting usually of times-
tamp, location coordinates and speed, periodically at specific time intervals [35].
Despite its simplicity from the equipment’s point of view, this technique requires
the deployment of efficient map-matching algorithms, in order to be able to ac-
curately match the vehicle’s location onto an actual road link and therefore to
aggregate the total feedback from individual vehicles into statistics of specific
links of the transportation network [82]. Given the favourable characteristics of
GPS-oriented traffic data and the corresponding research and industrial trend
towards their maximum exploitation, the optimization of the map-matching pro-
cedures arises as a rather complicated task of primary importance.
· Spatial. The GPS-devices transmit their feedback when crossing predefined lo-

cations. To this aim, the devices are equipped with adequate software, capable
of identifying the road link that the vehicle traverses and compare it with the list
of predetermined observation points [39, 19]. Hence, the map-matching proce-
dure is still executed but it is implemented locally at the user’s side. Because the
device can keep a short history of its trace without any privacy issues or signifi-
cant storage overhead, the map-matching efficiency is augmented. Furthermore,
the vehicle’s location has only to be compared with a finitely limited set of road
links or nodes and hence the processing overhead is dramatically reduced.

– Semantic information. This data category entails information about qualitative at-
tributes of the state of the transportation network that can substantially affect the
traffic conditions at different spatiotemporal extent. The most common of these features
are the weather conditions and the accidents occurrence. Castro-Neto et al. address the
need for effectively incorporating semantic information into the traffic prediction process
by diversifying their approach between typical and atypical conditions [9]. Furthermore,
in [51] weather, holiday information and accident counts are utilized through a linear
regression model for both traffic volume prediction and accident count prediction. More-
over, the authors in [22, 5] specifically study the exploitation of weather conditions in
order to forecast significant traffic deviations.

• Area of Implementation. It concerns the type of the transportation network that the
traffic prediction procedure is applied to. Two broad subcategories can be mainly identified:

– Freeways/Highways. The majority of the existing studies refers to the case of freeways
and highways, since the longer distances to be travelled and the large, yet slow, alter-
ations in traffic intensity augment the precision of the forecasts, while at the same time
make prediction more important for traffic management.

– Urban roads. Traffic prediction for urban roads requires more complex approaches,
due to the high density of the network, the interdependencies among neighboring road
segments and the abrupt fluctuations in traffic conditions including great percentage of
outliers.

• Prediction Resolution. It regards the time response of the prediction algorithm and it can
be described by two parameters:

– Prediction horizon. It is the extent of time ahead to which the forecast is referring.
There exist methods that allow for prediction at multiple time windows ahead and/or
at time windows of different width. Although the vast majority of the studies found in
literature deal with the issue of short-term forecasting (horizon varying from 5 minutes
to 1 hour), long-range trips in large areas, requiring long-term predictions in a large
network are also considered [83].
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– Prediction step. It is the time interval upon which the forecasts are executed. It is
closely connected to the time period of traffic data acquisition and aggregation.

• Univariate vs. Multivariate. These terms refer to the number of traffic descriptors that
are utilized as the input (sources of data) of the prediction module or the number of traffic
descriptors for which their forecasted values are provided as output. The term multivariate is
also often used to describe prediction algorithms that incorporate into the prediction process
measurements from multiple observation locations. Such methodologies are based upon the
spatio-temporal analysis of the transportation network, i.e. in order to calculate the predicted
values of a single traffic descriptor at a given location time series of data samples from different
nodes/links of the network are taken into account.

• Traffic Prediction Methodology. It regards the core traffic prediction method and algo-
rithm that is utilized. Due to its critical impact on the performance of the traffic prediction
procedure as its core module, the traffic prediction methodology will be further scrutinized in
Section 1.3.

1.2 Traffic Descriptors

According to the existing literature, the most broadly used traffic descriptors are:

• Traffic Flow. It is also referred to with the terms traffic intensity or traffic volume and it is
defined as the number of vehicles passing through a point of observation per time unit. It is
commonly measured in vehicles per hour.

• Traffic Density. It is defined as the number of vehicles per distance unit, i.e. the number of
vehicles that are simultaneously travelling along a continuous road segment of known length.
It is measured in vehicles per kilometer [60].

• Occupancy. One of the most common methods for acquiring traffic data is through the
deployment of loop detectors, i.e. induction loops that are placed underneath the roads’
surface at locations of particular interest so as to act as indicator of a vehicle’s the presence.
Occupancy is a measure of traffic stream concentration and is the percentage of time that the
sensor is detecting vehicle presence, or, in other words, the percentage of time that the sensor
is “on” [112].

• Speed. It is the average speed of all the vehicles that passed from a specific link/road during
a certain time window. It is measured in kilometers per hour and it can be calculated either
as the algebraic or the harmonic mean of the sample velocity values, depending on the exact
implementation.

• Travel Time. It is defined as the necessary travel time between two fixed point along
a highway, freeway or urban arterial [103]. Moreover, besides the aforementioned per link
definition, travel time can be also defined on per aggregate route basis, i.e. total duration
from start to destination. This later approach is mostly applicable in the case of Advanced
Traveler’s Information Systems (ATIS), such as navigators, where a travel time of reference
exists, e.g. alternative routes to be evaluated, maximum acceptable travel time, historical
information of the time performance of the route of interest. It must be underlined that, in
comparison with all the other available traffic descriptors, travel time is the most easily and
widely understood notion, since:

– It is common for all transportation modes, e.g. car, bicycle, walking, bus, metro and thus
it facilitates the integration of all the transportation means into a multi-modal routing
framework.
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– It expresses a basic physical quantity familiar to the human perception and intuition, i.e.
how long will it take to move from one point to another or reach the final destination.

– Time is the fundamental variable behind well-established traffic analysis methods, such
as the queuing theory [32]

Hence, it provides the most suitable interface for achieving the effective communication among
all the transportation actuators, such as planners, engineers, administrator, users [95].

1.2.1 Selection of Traffic Descriptors

Based on the aforementioned definitions, it can be noted that there is a profound cross-correlation
among the traffic variables. Nevertheless, despite their inherent inter-dependency, it is neither pos-
sible nor beneficial to consolidate the multiple traffic descriptors into one common metric. This
desirable redundancy is dictated at first by the fact that the efficiency of each traffic descriptor
in accommodating the monitoring and forecasting of the traffic conditions varies significantly as a
function of the system’s configuration, status and requirements. As a matter of fact, the several
studies that dealt during the previous decades with the issue of assessing and comparing the per-
formance of traffic prediction models based on different variables have reached contradictory results
regarding the definition of the prevailing metric to be used in traffic prediction. A very early study
shows traffic flow as the most stable traffic descriptor [57], while the authors in [63] argue in favour
of occupancy. Finally, Dougherty and Cobbett showed an inefficiency of speed under conditions of
rather high congestion [23]. Hence, the generic conclusion that can be deduced is that the selection
of the optimum traffic descriptor heavily relies on the characteristics of the investigated scenario.

Moreover, the choice of the variable to be deployed for describing the traffic conditions is usually
determined in a rather straightforward manner by the available sources of input data. The measured
physical quantity is tightly connected to the type of technological means that are implemented for
monitoring the traffic conditions. Hence, given a certain traffic monitoring infrastructure, the cor-
responding traffic descriptor is uniquely derived, at least for the input data of the traffic prediction
algorithm.

In this respect, during the early years, research on traffic prediction was based predominantly
on traffic flow analysis and secondarily on the exploitation of occupancy measurements, since this
kind of information could be easily extracted from the technological means that were deployed for
traffic monitoring at that period and which were merely restricted to induction loops. In contrast,
time and speed calculations required the establishment of equipment for vehicle identification, such
as cameras with image processing capabilities and RFID-enabled vehicles, in order to be able to
track down the travel time and respectively the speed of a given sample-vehicle between two fixed
points of reference. Therefore, given the technological status quo and the respective availability of
test data, the bulk of the studies in traffic prediction, especially until the middle 00’s, are primarily
focused on traffic flow and occupancy [13, 117, 86, 90, 91, 112, 47, 102, 125], while substantial
research work on the basis of traffic flow is still performed [29, 92, 9, 59, 10, 93, 11].

However, the public availability of GPS services for civilian applications and the respective broad
proliferation of GPS-enabled handheld devices (smartphones, navigators) with high processing ca-
pabilities, along with the establishment of efficient mobile data communications, allowed for the
collection of vast amounts of real-time speed traces. Additionally, the advent of Assisted-GPS al-
lowed for the ubiquitous acquisition of location information of high accuracy even under conditions
of absence of Line-of-Sight connection with the satellites, e.g. in urban territories of dense building
environment. In consequence, along the most recent years research on traffic prediction strived
towards speed-oriented analysis, in order to take advantage of the enhanced potentials provided
by the new technological era in the field of traffic conditions monitoring and specifically in the
field of collecting speed feedback from numerous vehicles with wide geographic distribution. For
example Mobile Century is a traffic monitoring system based on the collection of speed data from
GPS-enabled smartphones [37]. The extensive mobile coverage provided by the existing cellular
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network infrastructure is exploited for acquiring the position and velocity measurements of high
accuracy that are provided by the modern GPS devices. Moreover, Li et al. study the optimization
of the GPS data transmission interval, so as to minimize the communications overhead without
decreasing the quality of the traffic estimation [62]. In this respect, extensive research activity has
been concentrated on the development of traffic prediction algorithms specifically addressing the
exploitation of the GPS data [14, 114, 19, 35, 82, 39, 68, 83, 8]. In parallel, travel time prediction
has always been a hot topic in vehicular traffic forecasting due to its favourable features that have
been described above [75, 81, 124, 41, 44].

Furthermore, the selection of the traffic descriptor is dependent upon the application type.
In particular, ATIS operate optimally with physical quantities whose conceptual content is closer
to the human perception, such as time and speed, since the measured values are targeted to be
effectively communicated to the end-user. On the contrary, in the case of ATMS (Advanced Traffic
Management System), where the ultimate goal is traffic control, traffic flow and occupancy can
be proven to provide more exploitable information. Similarly, the area of the implementation
(urban/suburban/highway/freeway) is a primary factor for traffic descriptor selection, since, for
example, the time and speed measurements in urban environments pertain outliers and abrupt
variations that result in high degree of uncertainty and call for more complex data pre-processing
methods, while on the other hand most metropolitan areas are equipped with an extensive network
of loop detectors that guarantee robust feedback of traffic flow and occupancy. Exactly the opposite
holds for suburban or rural environments, where the speed data from GPS-enabled devices provide
a cost-efficient solution for acquiring a reliable overview of the whole network.

1.2.2 Additional Traffic Descriptors

Besides the five basic traffic descriptors that have already been hereby described, additional metrics
of traffic intensity have also been introduced aiming at providing a more explicit indication of the
traffic conditions, according to the particular user/system requirements and specifications. One of
the most prominent examples is queue length at signalized intersections, as formulating solid queue
length estimations at signalized intersections are of prodigious interest for optimizing the dynamic
control of the involved traffic signals. Comert and Cetin introduce an algorithm for calculating
queue length by making virtue of the feedback (location and time) from the fleet of probe vehicles,
while they also develop an analytical model for estimating the error in their results as a function of
the percentage of probe vehicles in the traffic stream [18]. Moreover, Yingfeng et al. propose image
processing methods for detecting the queue length by exploiting available video footage taken during
the red cycle [118], while Liu et al. take also into consideration the phenomenon that the congested
queue covers the whole length between two successive signalized junctions [65]. Furthermore, Kim
and Park develop a model that allows for multi-time step queue prediction, based on discrete time
point process [52].

In general, it should be pointed out that the concept of traffic estimation and forecasting at
signalized intersections shares many common primitives with the area of queueing theory, which is
regarded as the cornerstone of traffic (telecommunications, vehicular) analysis at servicing points,
where bottlenecks are expected to arise. Therefore, apart from exploiting queue length as a metric
of traffic intensity, the queuing theory principles (management of arrival/departure processes) have
also been applied in order to model traffic behaviour [100] as one of the first approaches to the
traffic flow problem [67]. Soh et al. implement Markov decision control methods for minimizing
waiting time and queue length through optimal control of traffic signalling at junctions of interest
with varying arrival rates of the vehicles.

Additionally, several studies have dealt with the issue of quantifying the qualitative concept of
congestion, which merely refers to the human perception of the state of low speed drive and the
corresponding delays induced to the travel time, due to traffic overload. Initially, the congestion
index was introduced by Van Vuren and Leonard on the basis of travel time latencies [99]. Grant-
Muller and Laird perform a rather thorough analysis of traffic congestion and attempt to define this
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notion from both the network’s and the user’s perspective, while they also provide multiple different
quantitative approaches as functions of delay, journey time, speed and flow/capacity [31]. Moreover,
Yunteng et al. claim that congestion quantification methods that are tailored for the freeway and
which use operational characteristics (e.g., delay, speed and occupation etc.) are inconvenient to
be used on signalized intersections. Hence, they combine traffic demand and traffic supply into
a whole, to describe the congestion in signalized intersection based on loop detector data [121].
Marfia and Roccetti propose a novel definition of traffic congestion according to which a road is in
a congested state only when the likelihood of finding it in the same congested state is high in the
near future. Based on this new definition, an algorithm is devised that, exploiting probe vehicles,
for any given road identifies if it is congested or not and provides the estimation that a current
congested state will last for at least a given time interval [66].

Furthermore, special reference should be made to the detection and prediction of traffic acci-
dents, which, although they are not of course considered as indicators of the traffic intensity, their
occurrence still induces significant impact upon the evolution of traffic conditions. In this respect,
Kamijo et al. developed an image processing algorithm that determines the state transit of each
pixel along both the x-y image axes and the timeline and achieves event detection on the basis of
the hidden Markov model (HMM) and the predefines behavioral patterns [48]. The authors in [109]
follow a completely alternative approach to accident detection, through the use of the standard
equipment of commercial smartphones, i.e. accelerometers and microphone. Huilin and Yucai take
the step ahead towards accident prediction through the implementation of Neural Networks in order
to enhance planning and traffic management [40].

1.2.3 Integration of Multiple Traffic Descriptors

As it has already been mentioned, each traffic descriptor facilitates a different perspective of analysis
of the traffic conditions, while, at the same time, the availability of multiple data sources in the
majority of real-life scenarios results in the co-existence of respectively multiple metrics of traffic
intensity. Within this framework, several methods have been proposed for integrating disparate
traffic information into a common traffic prediction model. Being more specific, the authors in [25]
attempt to map the inter-relations among flow, speed and density, while their approach also aims at
incorporating semantic information, such as weather and visibility conditions. The results include
predictions of all the three input variables. Similarly, Chandra and Al-Deek are concerned with the
forecasting of both traffic speeds and traffic flows at different locations in the investigated area [12].
Wei and Lee develop a functional relation between real-time traffic data as the input variables and
real bus travel time as the output variable. Real-time traffic data are collected from bus GPS, loop
detectors and incident databases and eventually the forecasted travel time is provided [107]. In the
same way, Yuan et al. incorporate observation models for both Eulerian and Lagrangian sensor
data that originate from loop detectors and vehicle trajectories respectively [119].

Alternatively, instead of independently modelling and predicting each traffic descriptor, Muraki
and Kanoh implement the transformation of speed feedback into density values, so as to the new
information format to better accommodate the dynamic control of traffic signals [70]. Moreover, in
order to enhance the exploitation of the novel GPS-oriented speed data that are broadly available
in the modern era, Herrera and Bayen incorporate speed measurements into existing traffic flow
models [38]. Finally, by dividing the traffic volume with the road occupancy, Kamarianakis and
Prastacos extract a new feature for traffic assessment that is called relative velocity [46].

1.3 Traffic Prediction Methodology

Traffic prediction algorithms aim at producing a solid forecast of maximum accuracy regarding the
expected traffic conditions at given locations of the transportation network at the near future. To
achieve this goal, the general approach that is followed is to make virtue of the most recent as
well as historical traffic data, so as to deduce consistent conclusion about the network’s upcoming
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states. As a result, the estimation of the system’s forthcoming behaviour is deduced on the basis
of the available information about its present and past status. In this respect, the research activity
in traffic prediction has been focused on the development of the adequate processing scheme for
the optimum exploitation of the available traffic data and the consolidation of this information
towards the formulation of the requested traffic prediction. The performance of the implemented
methodology is assessed according to its precision in reference to the values of the monitored traffic
descriptors that are actually measured a posteriori, while the complexity of its deployment as well
as the introduced processing overhead are also taken into account. Certain distance metrics are
utilized for computing the divergence between the forecasted and the actually measured values of
the analyzed traffic descriptors. The most widely accepted distance metrics for the evaluation of
a prediction’s error are the Mean Absolute Percentage Error (MAPE) and the Root Mean Square
Error (RMSE) [86, 19] as well as the Mean Absolute Error (MAE), the Mean Relative Percent
Error (MRPE) and the correlation coefficient between the actual and the predicted flow series [102].
Moreover, a key factor that characterizes the efficiency of any traffic prediction methodology is its
robustness and reliability when applied to varying traffic environments.

According to the exact mathematical method that is implemented in order to formulate the
traffic forecasting output on the basis of the monitored traffic conditions, a common taxonomy of
the existing studies on traffic prediction is provided below [97] [103], including also an exhaustive
presentation of the most interesting and promising solutions of each category.

1.3.1 Naive Methods (NM)

Although the term naive can have many interpretations, it is mainly used to refer to traffic pre-
diction methods that are characterized by the absence of any advanced mathematical model or
processing scheme for the exploitation of the traffic data. Hence, this category basically comprises
of simplistic techniques, which should only be selected due to their minimum computational over-
head and their ease of deployment, since they are characterized by significant drawbacks as far as
the achieved accuracy is considered. Naive methods totally fail to capture any complex evolution
of the traffic conditions. Moreover, they are completely inappropriate to follow the usually abrupt
fluctuations of the traffic intensity and their efficiency is radically degraded by the existence of
outliers, which is very common in traffic analysis, due to the inherently on-off nature of vehicular
traffic, especially when congestion is faced. Therefore, they are outperformed by any other method
for short-term prediction, while they can be proven tolerably trustworthy only in the case that
longer prediction horizons are desirable.

Naive methods are basically limited to preliminary studies and implementations. The most
common approach for performing forecasting in any type of discipline and for any type of quanti-
tative metric is the computation of its historical average. Assuming the existence of a time series
of traffic data for the network location of interest, the computation of historical average provides
an estimation of the forthcoming state by averaging together the samples residing within the most
recent time-window of a predefined width [72, 46]. Due to their minimum processing requirements,
variations of the historical average model were applied to early deployments of ATISs, such as
AUTOGUIDE [43] and LISB [50]. Historical average could also be considered as a simplified form
of Moving Average [24] [92] and hence to be classified with the time series methodologies. Fur-
thermore, historical average is often used as the scheme of reference for assessing the improvement
achieved by novel prediction techniques [86]. In its simplified form, historical average of depth p is
given by:

Xt =
1
p

p∑
k=1

Xt−k (1)

where Xt−k is the variable’s value as measured at the kth sample in the past. Moreover, a weighted
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scheme can be also implemented to apply different weight (wt−k) at different historical samples:

Xt =
1
p

p∑
k=1

wt−kXt−k (2)

For the applied weights:
p∑
k=1

wt−k = 1 (3)

From an utterly different perspective, the authors in [108] perform a draft, yet lightweight,
forecasting of the traffic conditions, by clustering the weekdays into groups of common traffic
attributes by means of Ward’s hierarchical clustering procedure. Eventually, the currently measured
conditions are matching with one of the resulting clusters. Similarly, Chrobok et al. define a set
of days’ classes according to their daily and seasonal attributes, by averaging the traffic flow data
from all the monitoring loop detectors [16]. A new series of measurements is mapped to the classes
derived from the training data, using the Mean Average Deviation and the Mean Relative Deviation.

1.3.2 Parametric Methods (PM)

The term parametric is used in the traffic prediction bibliography to imply that the corresponding
techniques are based on specific models, whose general structure and primitives have been defined
in advance and only the exact values of a given set of parameters needs to be determined through a
learning procedure that is implemented heuristically on the basis of the available data that refer to
the system’s historical behaviour. The general methodology that is followed for the implementation
of parametric methods, is that initially the most suitable model is selected and established according
to its fundamental principles. The model is fed (input) with traffic data of the network locations
for which the upcoming state for the desirable forecasting horizon is a priori known as historical
information. The values of the model’s open parameters are determined (training of the model) by
iteratively calculating the prediction error for different sets of these parameters and choosing the
set of parameter values that minimizes the prediction error for the majority of the scenarios.

The most common category of parametric traffic prediction algorithms, comprises of methods
that are based on time series analysis. In brief, time series forecasting algorithms calculate the
variable under study as a function of its previous values and an error-term. The rational behind
the utilization and implementation of time series approaches instead of traffic theory methodologies,
which would be mostly expected, is that traffic data do not correspond to stationary processes and
hence a way of capturing their inherently seasonal behaviour is necessary.

Basic Approaches

One of the most elementary methods for prediction through time series analysis is exponential
smoothing (ES), which can be also regarded as a specific simplified case of ARIMA models [111,
112]. According to the exponential smoothing technique, the present value of the variable can be
estimated as a weighted sum of its previous measurement and the previously estimated value:

Xt = wXt−1 + (1− w)St−1 (4)

where w is the smoothing factor with 0 < w < 1 and St−1 is the estimated value at the previous
step with S1 = X0.

Additionally, aiming also at combining minimum complexity with acceptably increased precision
accuracy and versatility, Linear Regression (LR) has also been applied as a solution for vehicular
traffic prediction [91]. In [81], Linear Regression is deployed for forecasting the travel time at
freeway/highway segments. The selection of LR as the optimum prediction method is motivated by
the empirical observation that the future travel time on a segment of a highway can be described
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by a linear model of the instantaneous and historical travel times on that segment. Actually, after
extensive experimental measurements, it has been noticed that, although the slope and intercept
of this linear relationships can alter heavily depending on the time of day and the interval until the
departure, the linearity still persists. Hence, the prediction scheme is based on the implementation
of Linear Regression with time-varying coefficients [124].

Univariate Auto-Regressive Integrated Moving Average

The Auto-Regressive Integrated Moving Average (ARIMA) family of models is the most widely
deployed approach for vehicular traffic prediction and for time series forecasting in general. ARIMA
models are also well known as Box-Jenkins models, since they were first introduced by Box and
Jenkins in order to perform forecasting through determining the optimal matching of a given time
series to a set of its past values [6]. ARIMA is a generalization of the Auto-Regressive Moving
Average (ARMA) model, which is applied strictly to stationary time series, in order to capture
the probable non-stationary nature of the investigated time series [7]. ARMA comprises of two
components:

• Auto-Regressive (AR) part. It provides the current value of the process as the linear aggregate
of a finite number of previous values of the process plus an error term. A time series Xt is
expressed according to the AR model as:

Xt =
p∑
k=1

φkXt−k + εt (5)

where p is a non-negative integer denoting the order of the AR part, i.e. the number of
past lagged terms taken into account. εt is the error term, which is considered to follow a
Gaussian distribution of type (0, σ2

ε ), i.e. White Noise (WN). The AR(p) model requires the
estimation of p+ 1 parameters, i.e. the factors of the process’s past values φ1, . . . , φp and the
WN variation σ2

ε , which are calculated by the data themselves.

• Moving Average (MA) part. It computes the current value of the process as the linear
aggregation of a finite number of previous error terms. A time series Xt is expressed according
to the AR model as:

Xt =
q∑

k=1

θiεt−k + εt (6)

where q is a non-negative integer denoting the order of the MA part.

Hence, the total ARMA(p,q) model of a time series Xt is expressed as:

Xt =
p∑
k=1

φkXt−k +
q∑

k=1

θkεt−k + εt (7)

or equivalently, using the notation most commonly used in time series theory:

(
1−

p∑
k=1

φkB
k
)
Xt =

(
1 +

q∑
k=1

θkB
k
)
εt (8)

where B denotes the backwards shift or lag operator

BkXt = Xt−k (9)

An even more compact notation commonly used is:

φ (B)Xt = θ (B) εt (10)
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Moreover, let Yt be the time series that is derived from the initial time series Xt by differencing
Xt at the dth degree, where d is a non-negative integer:

Yt = 5dXt = (1−B)dXt (11)

where 5 is the differencing operator. Differencing a time series results in creating a transformed
time series that consists of the differences between lagged series observations. Hence, based on the
assumption that the dth difference of a non-stationary AR model in terms of lags can be described
by a stationary ARMA(p,q) model, the ARIMA(p,d,q) model is defined by:

(
1−

p∑
k=1

φkB
k
)

(1−B)dXt =
(
1 +

q∑
k=1

θkB
k
)
εt (12)

or equivalently
φ (B) (1−B)dXt = θ (B) εt (13)

The first implementation of univariate ARIMA for traffic forecasting was performed more than
three decades ago by Ahmed and Cook [4] and it immediately drew the massive attention of the
research community [71] and gained broad acceptance as a well-established solution for vehicular
traffic forecasting for both freeway [57] and urban [34] scenarios.

At this point, before proceeding further with the presentation of the time series methodologies,
it should be once again mentioned in reference also to the time series terminology, that the term
univariate refers to analysis of single-variable time series, i.e. prediction of a single traffic descriptor
(e.g. speed, flow etc.) based on successive measurements of this traffic descriptor at a single location
(node, link). On the contrary, the term multivariate, regards either the integration of time series
from multiple traffic descriptors into the prediction of a single prediction output or, which is the
most usual case, the integration of time series of the same forecasted traffic descriptor from multiple
locations that are inter-correlated with the location of interest.

Nevertheless, ARIMA models are characterized by their inherent inclination to lay particular
weight on the average values and highly disregard any outliers, i.e. ARIMA models are considered
to follow the predominant pattern of the time series evolution in time. Hence, the performance
of the ARIMA techniques can be proven to be rather limited in the particular case of vehicular
traffic prediction, since they suffer from the severe drawback that they fail to promptly capture
the frequent occurrence of transitions between stop-and-go situations and conditions of free flow,
which is the most interesting phenomenon of transportation networks as far as the requirements
for building a robust ATIS/ATMS are concerned. To overcome this deficient response of ARIMA
models to significant flow alterations, several variations of the initial univariate ARIMA model
have been so far proposed in the literature, aiming at providing an as solid as possible methodology
for consistently as well as transparently predicting the fluctuations of traffic intensity in a timely
manner.

In this context, Lee and Fabro suggested the use of subset ARIMA (SUBARIMA), so as to
achieve higher adaptability, through the selective incorporation of time series components of specific
lags [56]. The model for subset ARIMA is derived from 12 if the factors for all the other lags apart
from the chosen ones are set to zero. It was found that subset ARIMA provided results of increased
stability and accuracy under the tested scenarios. Moreover, given the fact that traffic data present
profoundly periodic behaviour at different time-scales (weekly, daily, hourly), Seasonal ARIMA
(SARIMA) soon caught the interest of the researchers as the most effective means for modelling
these seasonal patterns. In SARIMA both the Auto-Regressive and the Moving Average component
are multiplied by a seasonal factor (polynomial). Thus the Seasonal ARIMA(p,d,q)(P ,D,Q) model
of a time series Xt with period S is defined as:

(
1−

p∑
k=1

φkB
k
)(

1−
P∑
k=1

Φk(BS)k
)

(1−B)d
(
1−BS)DXt =

(
1+

q∑
k=1

θkB
k
)(

1+
Q∑
k=1

θk(BS)k
)
εt (14)
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or equivalently
φ (B) Φ (B) (1−B)d

(
1−BS)DXt = θ (B) Θ

(
BS
)
εt (15)

where i) p, P are the orders of the non-seasonal and seasonal Auto-Regressive polynomials, ii)
q, Q are the orders of the non-seasonal and seasonal Moving Average polynomials and iii) d, D are
the order of non-seasonal and seasonal differencing. From the definition of SARIMA in 14 it can be
drawn the conclusion that a time series Xt is a SARIMA(p,d,q)(P ,D,Q) process if the differenced
series Yt = (1−B)d

(
1−BS)DXt can be described as a stationary ARMA model. Williams et al.

were the first to propose the exploitation of Seasonal ARIMA for vehicular traffic prediction [111],
while the authors in [112] provide an extensive theoretical background enriched with experimental
results for the implementation of SARIMA in traffic forecasting. Additionally, Smith et al. compare
the performance of Seasonal ARIMA, as the standard parametric method of traffic prediction,
against non-parametric regression models [86]. It has been proved that SARIMA, when applicable,
steadily outperforms the non-parametric regression techniques, drawing the conclusion that traffic
conditions present stochastic rather than chaotic behaviour.

Moreover, besides the selection of the most suitable model for formulating the evolution of the
traffic conditions, determining the optimum set of weighting parameters for the model of choice still
remains a task of prodigious importance that dictates the accuracy of the prediction. Hence, the
Ghosh et al. lay emphasis on developing an advanced methodology for inferring the parameters of
the SARIMA model [28]. In more detail, in contrast to the traditional estimation that is based upon
maximum likelihood and/or least-squares techniques, the Bayesian method is employed to estimate
these parameters, since in Bayesian analysis the Markov chain Monte Carlo method is used to solve
the posterior integration problem in high dimension. Each of the estimated parameters from the
Bayesian method has a probability density function conditional to the observed traffic volumes
and thus the forecasts from the Bayesian model are expected to better fit to a traffic behaviour of
frequent outliers and abrupt alterations.

Multivariate Auto-Regressive Integrated Moving Average

In contrast to the aforementioned univariate ARIMA models, a major evolution to the ARIMA
methodology concerns the development of space-time models, in order to succeed in incorporating
measurements from multiple locations, i.e. multivariate analysis. In general, the spatiotemporal
attributes of traffic data have been the target of substantial research activity [15], since it is evident
that, due to the consistency of the traffic flow across the transportation network and its directional
nature, a road segment cannot be studied in an isolated manner. Yue and Yeh introduce Pearson
Coefficient as the most adequate distance metric for quantifying the dynamically altering cross-
correlations among a given set of links, while they also propose an empirical rule for defining both
the extent of each link’s neighbourhood and their dependency weights according to the computed
Pearson Coefficient value [120]. One of the preliminary attempts to integrate spatially disparate
time series for traffic prediction resulted to the development of the ARIMAX model, which applies
transfer functions with autoregressive integrated moving average errors [110]. Alternatively, in [29],
a new Multivariate Structural Time-series (MST) model using the Seemingly Unrelated Time-series
Equation (SUTSE) has been chosen to model the traffic flow time-series observations from multiple
junctions within a congested urban transportation network.

Among all the multivariate space-time approaches, Space-Time ARIMA (STARIMA)and its
variations rise as the most promising solution fro performing reliable traffic forecasting. Space-
Time ARIMA was first introduced by Pfeifer and Deutsch back in the early eighties for studying
the spread of diseases [78]. Thereafter, STARIMA has been applied to a wide range of disparate
disciplines as a solution for exploiting the cross-correlation among multiple interdependent time
series. Indicatively, the study of river flow [79] and spatial econometrics [30] can be noted as
prominent cases of STARIMA implementation. In brief, STARIMA models capture the space-time
dependency by expressing the requested variable at a given time t and location l as a weighted
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linear combination of all previous measurements performed within the monitor time window at
all the correlated locations of l, introducing a lag both in space and time. To achieve this goal,
neighbours of each location are hierarchically ordered through the definition of a corresponding
sequence of weighting matrices, which quantify the physical properties of the spatial system being
under investigation. Hence, if Xt is the N × 1 vector of measurements at time instant t at N
locations, the seasonal STARIMA model of order (pl, d, qm) times(PΛ, D,QM )S can be computed
from [47]:

φp,λ (B) ΦP,Λ
(
BS
)

(1−B)d
(
1−BS)D Xt = θq,m (B) ΘQ,M

(
BS
)
εt (16)

where

φp,λ (B) = 1−
p∑
k=1

λk∑
l=0

φk,lWlB
k

ΦP,Λ
(
BS
)

= 1−
P∑
k=1

Λk∑
l=0

Φk,lWlB
kS

θq,m (B) = 1−
q∑

k=1

mk∑
l=0

θk,lWlB
k

ΘQ,M

(
BS
)

= 1−
Q∑
k=1

Mk∑
l=0

Θk,lWlB
kS

φk,l and Φk,l are the non-seasonal and seasonal autoregressive parameters at temporal lag k and
spatial lag l, while θk,l and Θk,l are the respective moving average parameters. λk and Λk are the
non-seasonal and seasonal moving average spatial orders for the kth autoregressive term, while mk

and Mk are the non-seasonal and seasonal moving average spatial orders for the kth moving average
term. Finally, Wl is the N ×N matrix for spatial lag l.

In case of no seasonality, the simple STARMA model is derived:

Xt =
p∑
k=1

λk∑
l=0

φk,lWlXt−k −
q∑

k=1

mk∑
l=0

θk,lWlεt−k + εt (17)

The deployment of STARIMA models for the optimization of vehicular traffic prediction has
been extensively studied by Kamarianakis and Prastacos who address the issue of STARIMA imple-
mentation as a special case of Vector Autoregressive Moving Average (VARMA) models [46, 47].
A set of N time series is described by using a set of N × N square matrices that include the
autoregressive and moving average parameters among locations at different spatial order, so as to
represent all autocorrelations and cross-correlations of the corresponding time series obtained at
these locations. A STARIMA and VARMA model are separately applied and their performance
is compared against the results acquired via the implementation of historical average and univari-
ate ARIMA. One weight matrix is determined for each hop-level distance between road links, i.e.
kth-order matrix corresponds to the correlation between links that are connected through k hops
(junctions), and the elements of the matrix (weights of kth-order matrix) are computed as a function
of the portion of traffic flow that each link inherits from its downstream links residing k hops away.

The effect of neighbouring downstream and upstream locations to the traffic conditions of a
particular link are demonstrated in [12] and Vector Auto-Regressive models are applied for formu-
lating these spatial interrelations of parallel time series. The authors in [21] calculate the weights
as a function not only of the links’ physical distance but also of their average speed, so as to take
into consideration the time necessary for the traffic to propagate. In [69], Generalized STARIMA
(GSTARIMA) is introduced to allow for the more flexible definition of the weighting parameters
on per location basis. The AR and MA components can be adhusted dynamically to follow the
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Figure 1: Block Diagram of Kalman Filter

respectively heterogeneous autocorrelations at different locations of the transport network. How-
ever, although the time parameters are space dependent, the space cross-correlations are still static
according to a fixed predefined neighbourhood structure. A rather significant extension to the
STARIMA model, as this has been established by Kamarianakis and Prastacos, is described by
Min and Wynter who target at overcoming shortcomings of classical STARIMA, such as the sup-
posed stationarity of the system and the constant relationship among the neighbouring links, which
is depicted by the fixed space weighting matrices that are derived depending only on the links’
distance, without considering the traffic status [68]. To this end, a Multivariate Spatial-Temporal
Autoregressive (MSTAR) model is utilized.

Kalman Filter (KF)

Apart from the ARIMA-oriented methodologies that have been described above, Kalman Filters
(KF) [45] was also one of the pivotal techniques that were proposed in the literature in the early
eighties for the purposes of vehicular traffic prediction [73]. The main motivation behind the
deployment of Kalman Filters lies within their ability of update the state variable continuously
according to the new measurements [54].

According to the Kalman Filter theory, an estimation of the current state variable is performed,
along with the covariance (uncertainty) of this estimation. Subsequently, upon the introduction of
the next actual measurement, the estimates are recalculated as the weighted average of the compo-
nents, laying additional weight to the estimates with higher certainty. This procedure is performed
recursively, allowing for the prediction of the forthcoming state, by exploiting solely the current
monitoring feedback and the immediately previously calculated state, without any additional past
information being required. A draft description of the basic Kalman Filter functionality is presented
in Figure 1 [94].

In this context, a common approach is to combine Kalman Filter with state-space modelling for
multivariate analysis, where the Kalman Filter is deployed for the state estimation. In this respect,
state space model has been implemented by Stathopoulos and Karlaftis for capturing the impact of
upstream links along with a Kalman filter for calculating the sequential states [90]. Similar approach
has been followed by the authors in [105, 106] who develop a stochastic macroscopic traffic flow
model of freeway stretches, while some simple formulas are proposed to recreate real-time traffic
measurements. This macroscopic traffic flow model along with the measurement model is organized
in a compact state-space form, based on which a traffic state estimator is designed by use of the
Extended-Kalman-filtering method, which is capable of capturing the non-linearity of the vehicular
traffic data. Although Kalman Filter methodology has raised much lower research activity for
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traffic prediction than the ARIMA family of models, techniques for improving the Kalman Filter
functionality for traffic prediction operation are still introduced. More concisely, Jula et al. exploit
Kalman Filter as the tool of choice for forecasting travel times at freeway/highway segments, so
as to eventually manage to calculate the anticipated arrival time at a given node [44]. Moreover,
Hinsbergen at al. propose a method for reducing the processing overhead of Extended Kalman
Filter, so as to overcome its inability to be implemented in real time in the case of large networks
[98].

1.3.3 Non-Parametric Methods (NPM)

For the development of any of the parametric methods that have been described above, a model of
basis is selected in advance and its parameters are determined through an optimization process for
maximizing the prediction’s accuracy either for a generalized approach or for the specific scenario
under investigation. In juxtaposition, the term non-parametric is used, in order, not to indicate the
absence of parameters, but to underline the fact that this category of traffic forecasting techniques
does not presuppose a particular model structure. Hence, for the non-parametric methods, both
the exact model structure and its parameters need to be specified along the processing of the traffic
data, i.e. training of the model. Therefore, more extensive training procedure of the model is
usually required as well as broader training dataset in juxtaposition with the parametric methods.
The non-parametric prediction methods can be roughly classified into two broad categories:

• Model-based. These methods exploit the available historical data only during the training
procedure, in order to build the model and define its parameters. Afterwards these data are
discarded, since along the forecasting step no reference to the training data is necessary and
only the current measurements are taken into consideration and are provided as input to the
model. The most common example of model-based prediction techniques are the Artificial
Neural Networks (ANN).

• Memory-based. On the contrary, these methods require to retain a database of historical
samples, since, besides the model’s training process, this information is also essential for
formulating the estimation of the system’s forthcoming states. The most prominent case of
memory-based forecasting methods is non-parametric regression.

Non-Parametric Regression

Non-parametric regression is mainly identified with the k-Nearest Neighbour (kNN) methodology.
According to the k-Nearest Neighbour techniques, let S be the set of available traffic observations
of the D investigated traffic descriptors at the L locations of interest within a time window of depth
w. Then, in order to acquire the forecasting for the system’s forthcoming status, the maintained
historical database is searched for the k clusters of traffic data (also referring to time windows of
width w) that present the closest behavioural pattern in comparison with the reference set S of
traffic data (pattern matching). After detecting these past states that show the highest similarity
with the current status, the traffic intensity at an prediction horizon h is calculated as a parametric
function of the traffic intensity measured at a step h ahead of the k-Nearest states that have
been previously pinpointed in the historical database. As it becomes evident, the deployment of
the k-Nearest Neighbour methodology for the purposes of vehicular traffic prediction exploits the
inherently seasonal traffic attributes of the transportation networks, i.e. it is assumed that the
evolution of the traffic intensity along the prediction horizon shall be similar with the evolution
of the traffic intensity that has been so far monitored ahead of system states that resemble with
the current one. As far as its implementation in traffic prediction schemes is concerned, the k-
Nearest Neighbour technique was first introduced by Smith and Demetsky [85], who proved that it
outperforms both the naive method of historical average and the parametric ARIMA model in terms
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of robustness against variable datasets. However, Williams et al. showed that the results obtained
through Seasonal ARIMA modelling exceed the precision of k-Nearest Neighbour technique [111].

Further enhancing the study of non-parametric regression, the authors in [86], including both
Smith and Williams, present a complete list of the open issues and challenges regarding the imple-
mentation of the k-Nearest Neighbour in real-life scenarios:

• State space. In the simplest deployment of kNN, the description of the system’s current
state refers to a set of w (width of monitoring window) sequential measurements (or a set
of periodically aggregated measurements) of a single variable (speed, flow etc.) at a given
node/link. Besides the issue of optimally defining w, even for a constant value of w there exists
a practically infinite number of historical state spaces for different values of lag in reference
to the current state.

• Distance metric. A distance metric needs to be defined for the pattern matching procedure,
in order to quantify the proximity of each one of the available historical states with the inves-
tigated one that corresponds to the current traffic conditions of the transportation network.

• Forecast generation. As it has already been mentioned, the forecast is computed as the
parametric function of the values of the resembling past states that fall at the prediction
horizon. Such a parametric function can either be defined as the simple average of the
considered values or a more complicated form can be selected. The most common approach is
the calculation of the samples’ weighted sum, where each weight is inversely proportional to
the value of the distance metric between the current state and the respective historical state
that the measurement refers to.

• Management of potential neighbor database. The performance of the k-Nearest Neighbour
method is gravely dependent upon the extent and the quality of the historical data pool.
Nevertheless, the larger the historical dataset becomes the higher the processing overhead
introduced by the searching of the database is.

In this respect, the authors in [86] propose a method for heuristically improving the forecast gen-
eration by dynamically adjusting the weights of the forecast generation function. Moreover, an
exhaustive assessment of this novel approach for non-parametric regression is performed against
the Seasonal ARIMA model. The superiority of SARIMA is still deduced as a conclusion of the
evaluation process, while, however, a combined model is suggested as an alternative when the
requirements for the complete implementation of SARIMA are not satisfied.

Furthermore, k-Nearest Neighbour method has also been introduced for multivariate traffic
analysis. Clark proposed a multivariate extension of non-parametric regression that exploits the
three-dimensional nature of the traffic state in a multivariate manner that succeeds to incorporate
traffic flow, occupancy and speed feedback [17]. Additionally, broadening the applicability of the
kNN technique to multivariate prediction from multi-spatial point of view, a composite method
has been suggested in [53] for utilizing the data from multiple loop detectors. The novelty lies
within the fact that data from loop detectors in physical proximity with the loop detector where
the forecasting is executed are also taken into account.

As a significant enhancement to the non-parametric regression, de Fabritiis et al. present a
categorical k-Nearest Neighbour approach that is based upon the fundamental statement that,
given the nature of traffic measurements, pattern matching for traffic prediction shall present higher
efficiency when categorical data are processed [19]. The authors further support their choice of
classifying traffic measurements into quantized levels of intensity, by putting forward the reasonable
assumption that travellers have a better understanding of qualitative information due to the natural
ordering and conceptual content. Within this framework, the time is discretized into 3-minutes
frames and the speed observations for each monitored link are averaged on per timeframe basis.
The spatiotemporal cross-correlation among neighbouring links is computed through the calculation
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of the Pearson Coefficient for different values of time lag for each pair of links and it is verified
that every link is maximally interrelated with its upstream and downstream links. The speed value
of each time frame is transformed into a categorical format that characterizes the link’s traffic
conditions: i) free, ii) conditioned, iii) slow and iv) congested. Moreover, if t is the index of the
current timeframe, then the pattern of the current traffic state comprises of the categorical time
series obtained from the target link and its immediate upstream and downstream links for different
historical depths p, u, d respectively.

1. Target link: Speed at the [t− p, t] timeframes.

2. Upstream link: Speed at the [k − u, k] timeframes.

3. Downstream link: Speed at the [k − d, k] timeframes.

For limiting state space, in order to minimize computational overhead, the pattern matching pro-
cedure is limited to searching the historical database of all previous days within only a specific time
offset of ±f timeframes. Furthermore, two distance metrics are used for estimating the similarity
between the current and each one of the past traffic patterns: Euclidean Distance (Ei) and the
Spearman Coefficient. One separate threshold is defined for each of the distance metrics and only
the past speed patterns that satisfy both criteria are taken into account for the calculation of the
traffic prediction. Hence, in reference to the classical k-Nearest Neighbour methodology, where the
value of k is defined in advanced, here the value of k is dynamically determined as the result of the
forecasting procedure. Eventually, the forecast generation function is a weighted sum of the forth-
coming speed values of all the k-Nearest Neighbours patterns, where the weight of each component
is reversely proportional to the square root of the sum of the squares of the corresponding values
of the two distance metrics.

The authors in [82] suggest an alternative method for deriving the traffic patterns to be com-
pared, in order to overcome the phenomenon that, under heavy urban conditions, the GPS-oriented
speed data that are obtained from the fleet of floating cars present rather abrupt fluctuations, in-
cluding high percentage of zero values (stop-and-go conditions). According to this study’s approach,
the traffic pattern is formulated as the number of samples of zero speeds at the successive discrete
timeframes. Furthermore, both a local and a global similarity measurement is calculated:

• Local similarity. The similarity between the current pattern at the link under investigation
and previous observations of the same link. It is computed as the Euclidean distance between
the two corresponding counts of zero speed values. Local similarity targets at capturing
resemblance in the traffic conditions of the link itself.

• Global similarity. The similarity between the current and past patterns for the total trans-
portation network as a whole. It is calculated as the Euclidean distance between the counts
of zero speed values at the corresponding time windows throughout all the network’s links.
Global similarity aims at pinpointing timeframes where the traffic conditions of the aggregate
network are similar.

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN), or just Neural Networks for simplicity, are by far the non-
parametric models that have been mostly exploited in the field of vehicular traffic prediction. The
ANNs, which are developed upon the fundamentals of artificial intelligence, can be roughly de-
scribed as mathematical models that are being formulated in an automated manner by dynamically
adjusting their structure and configuration according to the processed dataset, i.e. data-driven mod-
els. Thus, Artificial Neural Networks present outstanding performance in pattern classification and
recognition [36]. The definition of the model’s configuration is performed during the ANN’s training
procedure, which involves the execution of appropriate learning algorithms. In the same context,
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what is of prodigious importance as fas as their exploitation in real-life operations is concerned,
ANNs present the highly desirable attribute of being capable to associate input and output pat-
terns adaptively, without exhibiting any knowledge regarding the underlying physical relationships
and processes that are actually responsible for the eventual result [74]. Hence, no a priori study
or assumptions of the complicated and continuously altering network’s characteristics is needed.
Therefore, Artificial Neural Networks are regarded to prevail among the available traffic prediction
methods in terms of their transparent applicability to the most wide range of scenarios. Due to
this ability for reliable high-level analysis, which has established them as one of the most robust
and accurate forecasting techniques, ANNs present the following advantages that are of particular
interest in the special case of vehicular traffic predictions [103]:

• Efficient modelling of non-linear interrelations among the different functional entities of the
transportation network as well as the variety of data sources and traffic descriptors.

• Efficient incorporation of the spatiotemporal correlations of the traffic conditions measure-
ments.

• Traffic forecasting for multiple prediction horizons, without significant overhead.

The vast majority of the ANNs applications in the area of vehicular traffic prediction regard
extensions of the Multi-Layered Perceptrons (MLPs) [55, 123, 41, 102]. The MLP is a distinc-
tive subcategory of the Feed-Forward Neural Networks (FFNN) and the most commonly selected
method for their training is the Error Back-Propagation (Back-Propagation Neural Networks -
BPNN) learning rule. The basic architecture of such an ANN is depicted in Figure 2. FFNNs
comprise of neurons (processing elements), which are arranged in multiple layers. More concisely,
Feed-Forward Neural Networks are built upon the sequential interconnection of a single input layer,
at least one hidden layer and the output layer, while each layer consists of different number of neu-
rons. Additionally, relational functions are defined between the neurons residing at immediate
neighbouring layers; on the contrary, neurons of the same layer respond completely independently
from each other. These relationships between neurons of successive layers are determined by suit-
able weights that are assigned to the corresponding connection along the processing of data that
is performed during the training stage and which is dictated by the Back-Propagation learning
approach. According to the Back-Propagation training method, a two-phase iterative procedure is
implemented:

• Forward. The sample data are fed as input to the hidden layers and an output is eventually
produced, providing the estimated response of the transportation network, i.e. the prediction
of the traffic conditions at the requested horizon when the current traffic intensity is equal to
the initial training data that were given as input.

• Backward. The obtained state calculation is compared against the actually observed system
response, i.e. the traffic forecasts are compared against the values that were eventually mea-
sured after the event described by the training data. The error is computed, using standard
prediction error metrics, such as the MAPE, RMSE, MAE and MRPE, and the measured dif-
ference is propagated backwards into the ANN, so as the weights of the inter-layer connectors
to be respectively adjusted.

This procedure is executed repeatedly until the error is stabilized, which means that no further
optimization of the weights can be achieved [74].

As it has already been described above, the introduction of ANNs allows for the dynamical
modelling of the system under investigation in a data-driven, completely unsupervised manner that
guarantees the model’s adaptability to the whole range of scenarios with acceptable performance.
Nevertheless, it must be underlined that rather challenging issues still arise regarding the opti-
mization of the ANN’s implementation on per case basis, since significant aspects of the ANN’s
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Figure 2: Feed Forward ANN with Back-Propagation

configuration remain to be defined by the analyst manually. More concisely, the maximization of
an ANN’s efficiency regards the addressing of three main issues:

• Preprocessing of the training data, so as to be offered to the ANN in a format that fits to the
structure of the ANN and augments the effectiveness of the given training algorithm.

• The selection of the learning algorithm and its optimal parametrization. In brief, the learning
algorithm refers to the methodology that is applied for pinpointing the local and global minima
of the output error of so as to adjust the connections’ weights during the back-propagation
phase of the iterative training procedure. The most commonly used learning algorithms apply
the Leverberg-Marquardt (aka Damped Least-Squares)[19] and the Gradient Descent [102]
methods for minima calculation. Moreover, specific parameters of the learning algorithm need
to be defined. For instant, the Gradient Descent implementation introduces two parameters
for computing the step size along the adjustment of the weights’ value:

– Learning Rate. The current adjustment step is defined as a function of each weight’s
previous value. Learning Rate is the constant factor denoting the percentage of the
previous weight value that is incorporated to the current weight calculation.

– Momentum. For avoiding large oscillations, the current adjustment step is also estimated
as a function of each weight’s previous adjustment step. Momentum is the constant factor
denoting the percentage of the previous weight adjustment step that is incorporated to
the current weight computation.

• The definition of the ANN’s structure, i.e. the number of hidden layers and the population of
each one of them. The fundamental advantage of the ANNs lies within their ability to perform
forecasting for system conditions for which the ANN has not been trained (no such data were
fed during the training procedure). This feature of the ANNs, which is usually referred to as
generalization ability, is affected by both the extent and content of the learning procedure and
the structure of the ANN itself. In more detail, low structural complexity (few hidden layers
and neurons per layer) results in decreased generalization ability, since the ANN’s structure
fails to support sufficient training. On the other hand, large number of connections is bound
to cause the overfitting/overtraining of the ANN since it is incapable of differing from the
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training patterns. Hence, although there exist several techniques for stopping the training
procedure early enough to prevent from overfitting, the definition of the optimal structure is
still considered as fundamental for building a high performance ANN.

Within the framework of the aforementioned optimization issues, numerous studies have focused
on the development of ANN schemes particularly addressing the special requirements and intrinsic
characteristics of vehicular traffic forecasting. Ishak and Alecsandru proposed the utilization of
Principal Component Analysis (PCA) in order to project the input vector onto a smaller dimen-
sional space and hence to improve the MLP performance by reducing the number of its inputs
[42]. Moreover, the authors in [75] classify the historically available link travel times through an
unsupervised clustering technique, so as an individual Artificial Neural Network (Modular ANN)
to be defined and calibrated for each class and eventually each modular ANN to be used to perform
the requested travel time forecasting. Furthermore, the use of a Self-Organizing Map (SOM, aka
Kohonen map) has been proposed, in order to cluster the traffic data depending on the quality of the
traffic conditions [13]. The output of the SOM-ANN are fed into the core MLP and the accuracy of
the predictions is found to be superior of many parametric and naive methods. Moreover, given the
time series nature of the traffic data, Lingras and Mountford utilized a Time Delay Neural Network
(TDNN), which have been proven to be beneficial for time series analysis, since the neurons in a
given layer can receive delayed input from other neurons in the same layer [64]. Additionally, a
genetic algorithm is used by Vlahogianni et al. in order to develop the structure and the learning
procedure of the ANNs, so as the ANN to become capable of capturing the spatial and temporal
correlations of the fed source data [102]. Furthermore, the authors in [76] introduce an ANN for
satisfying the specific requirements of speed prediction in modern transportation networks. The
holistic model comprises of multiple NNs, in order to capture the dynamic nature of the traffic
phenomena, through the incorporation of different prediction time intervals for each sensor location
in the route.

Another method for traffic forecasting that originates in the area of artificial intelligence and
machine learning, is Support Vector Regression (SVR) [87], which is a supervised learning method
that is derived from the Support Vector Machine (SVM) theory. An application of SVR in vehicular
traffic prediction has been introduced in [113], while the authors in [104] propose the implementation
a variation that is based on the utilization of multiscale wavelet. Moreover, Castro-Neto et al.
present Online Support Vector Regression machine for the prediction of short-term freeway traffic
flow under both typical and atypical conditions [9]. Furthermore, SVR has also been exploited for
the forecasting of accidents [61].

1.3.4 Hybrid Methods

As it has already been presented in the previous sections, numerous methods have been so far
proposed for providing a reliable and robust solution to the complicated as well as rather important
problem of vehicular traffic prediction. To this end, several different approaches have been imple-
mented by exploiting a wide variety of mathematical theories and techniques that had already been
successfully applied to other disciplines and which have been optimally adjusted by the transporta-
tion researchers for the field of traffic forecasting. In the same context, extensive studies have also
been carried out regarding the assessment of the existing traffic prediction methodologies. In [84]
a comparative study is presented regarding the efficiency of different non-parametric forecasting
techniques. The performance of k-Nearest Neighbour models is evaluated against the accuracy of
ANNs and it is shown that k-Nearest Neighbour rises as a rather promising technique for traffic
forecasting. A comparison of non-parametric methods has also been performed in [101], where the
precision and versatility of Support Vector Machines is benchmarked against the corresponding
response of an ANN. Similarly, Time Delay and Recurrent ANNs are tested along with k-Nearest
Neighbour models in [33], in order to evaluate their ability of providing acceptable results under
both normal traffic conditions and in case of incidents’ occurrence. The comparison of parametric
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and non-parametric models is also addressed in [116], where the forecasting efficiency of ARIMA,
Support Vector Regression and Artificial Neural Networks is executed, through the exploitation
of probe vehicle data for varying traffic scenarios. Actually, apart from the univariate ARIMA, a
multivariate ARIMA version that incorporates an indicator variable for marking the unexpected
conditions (e.g. incidents, weather deterioration) is evaluated as well. Moreover, a Generalized
Auto-Regressive Conditional Heteroscedasticity (GARCH) model is deployed in [115] for assessing
the effectiveness of the algorithms applied in the specific area of travel time predictions. It is pointed
out that the forecasting errors are decreased for augmented demand of the reliability. Additionally,
in [49] an exhaustive analysis of the characteristics of ANNs and statistical approaches is presented.
From a broader perspective, the authors in [77] examine thoroughly the existence of specific factors
that contribute to the deficiency of the traffic forecasting methods. Their findings that are based on
multiple related projects carried out in the area of Minesota, USA, indicate that along the model
development there is a substantial underestimation of significant factors such as the roads’ type
and function classification direction. Additionally, it is noted that semantic information as societal
changes and trends are almost utterly neglected in the existing approaches.

The common conclusion that can be deduced from the analysis of all the evaluation studies that
are described above as well as from the assessment process that is performed for each technique
separately by the introducing researchers, is that no traffic prediction methodology can be decisively
regarded to prevail among the bulk of available solutions. On the contrary, it can be safely taken for
granted that the performance of the proposed forecasting algorithms is gravely dependent upon the
configuration and structural characteristics of the transportation network, the user requirements and
the sources and type of traffic data. Hence, different mathematical approaches and implementations
can be optimally applied to respective transportation scenarios.

In this respect, during the recent years, the research activity has focused on the development
of hybrid vehicular traffic prediction techniques, aiming at consolidating the favourable attributes
of each constituent method into a highly efficient integrated solution. Hence, making virtue of
the heterogeneity of its components, the aggregate modelling scheme is capable of serving under
the most wide range of scenarios. One of the first hybrid approaches involved the utilization of
Self-Organizing Maps as a data preprocessing step for an ARIMA-based predictor [96]. The tech-
nique, known as Kohonen-ARIMA (KARIMA), applies a Kohonen ANN for initially categorizing
the input data into classes. This functional separation between the classification and forecasting
tasks has been found to improve the prediction effectiveness in juxtaposition to both a univariate
ARIMA model and a MLP ANN. A similar method for hybrid Kohonen-ARIMA modelling is also
applied in [13] where, as it has already been mentioned, the Kohonen map has also been combined
with an MLP forecasting module. In the same context, the authors in [10] proposes the deploy-
ment of Exponential Smoothing as the most adequate technique for preprocessing the source data,
which will be thereafter fed to a Levenberg-Marquardt (LM) learning algorithm for training the
ANN that plays the role of the core forecasting module. Such an approach is regarded to enhance
the efficiency of the ANN implementation, since the new input presents more smoothed and co-
herent behaviour, without abrupt fluctuations. Furthermore, Zhang, proposes a methodology that
amalgamates ARIMA and ANN processes [122]. In more detail, it is noticed that ARIMA models
presuppose the existence of an underlying linear autocorrelation of the time series values and thus
they fail to capture non-linear patterns, while, on the other hand, ANN are well-established due
to their competence in following non-linear relationships. Therefore, initially an ARIMA model is
applied, so as to analyse the system’s linear constituents and subsequently an ANN is deployed to
model the residuals from the ARIMA model, which are expected to contain all the information of
the non-linearity of the traffic data. Eventually, the feedback from the ANN are provided as input
for defining the error terms of the ARIMA model. Moreover, the authors in [26] utilize a Fuzzy
Neural Network, which combines fuzzy logic and ANN for time series prediction, for developing a
Non-linear Autoregressive Moving Average with exogenous inputs (NARMAX) model. To this end
both feedforward and recurrent ANN structures are implemented. Similarly, a particular type of
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Fuzzy Neural Network, which is known under the term Pseudo Outer-Product Fuzzy Neural Net-
work using the Truth-Value-Restriction method (POPFNN-TVR), is deployed in [80] for performing
short-term vehicular traffic forecasting.

The aforementioned hybrid methods have the common feature that they apply the heterogeneous
components sequential, i.e. the output of the first element is provided as input to the second one.
Alternatively, a hybrid method can also execute the comprising heterogeneous modules in an utterly
separate manner and the individual results can be fused at a final integration step. Within such
a framework, Stathopoulos and Dimitriou propose the exploitation of fuzzy logic principles for the
fusion of predictions from multiple forecasting modules that operate completely individually from
each other [89]. For achieving this goal, a Fuzzy Rule-Based System is implemented for integrating
the separate forecasting outputs that result from an adaptive Kalman filter and an ANN model into
a solid holistic prediction. A Fuzzy Rule-Based System is also implemented in [59] for fusing the
traffic flow forecasts that are individually obtained from four independent modules: i) Exponential
Smoothing, ii) ARIMA, iii) ANN and iv) Fuzzy Logic. Furthermore, in order to optimally treat the
seasonal characteristics of the traffic data, the authors in [92] implement three different methods,
the Moving Average, the Exponential Smoothing and the ARIMA model, for analyzing the time
series that are derived from the weekly, daily and hourly cycle, respectively. Finally, an ANN is
applied for incorporating the output from each one of the three components.

In Table 1 a summary of the most prominent techniques that have been proposed for traffic
prediction in the area of transportation network is provided, laying particular emphasis on the
most resent approaches.

1.4 Real-World Implementations

Among this bulk of available traffic prediction algorithms, additional emphasis should be laid on
the approaches that have been designated to be implemented to the most modern applications of
ATIS and/or ATMS, since the efficiency of these methodologies has been extensively proven under
real-world scenarios and trials and therefore they can serve as a solid basis for further enhancements.

OCTOTelematics

As described in full detail in [19], OCTOTelematics has developed an ATIS by exploiting GPS
data and implementing suitable traffic estimation and prediction methodologies. More concisely,
OCTOTelematics, whose primary expertise lies in the field of telematics for insurance applications,
has developed an On Board Unit (OBU) that is installed on the vehicles and is responsible for
collecting statistics regarding the clients’ driving behaviour, the encountered traffic conditions,
any accidents’ occurrence etc. The processing of this information shall eventually allow for the
formulation of an as precise as possible insurance profiling on per client basis. Actually, in 2009
more than one million cars in Italy were equipped with the OCTOTelematics OBU (approximately
3% of the Italian cars), comprising a rather remarkable fleet of floating cars. Besides any other useful
data, the OBU transmits the GPS measurements (coordinates, speed, direction) at specific spatial
and temporal intervals (every 100 km or 12 minutes). Such a data gathering approach corresponds
to the temporal sampling procedure and thus mapping of the traces onto the actual road links is
appended. Finally, the obtained feedback is utilized for performing a categorical estimation of the
traffic conditions, which is updated every 6 minutes and it is made freely available to the public
through the company’s website as shown in Figure 3. Specifically, Figure 3 includes a snapshot of
the traffic conditions at the ring road and main arterials of Rome, where the different colouring
corresponds to the respective classes of traffic intensity.

Additionally, OCTOTelematics deploys an heterogeneous scheme for forecasting traffic load at
links of specific interest. The overall scheme comprises of a Pattern Matching and an ANN com-
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Year Proposed Traffic Univariate/ Area of Methodology
Technique Descriptor Multivariate Implementation PM NPM

1999 [56] F UV F/H SUBARIMA
2001 [110] F MV F/H ARIMAX
2001 [13] F, S, O MV F/H ARIMA SOM, ANN
2001 [64] F UV F/H TDNN
2002 [86] F UV F/H SARIMA kNN
2003 [90] F MV UR KF
2003 [124] T UV F/H LR
2003 [122] - UV - ARIMA ANN
2003 [91] O UV F/H LR
2003 [17] F, S, O MV F/H kNN
2003 [112] F UV F/H SARIMA
2004 [81] T UV F/H LR
2004 [113] T, S UV F/H SVR
2004 [42] S MV F/H ANN
2005 [47] F MV UR STARIMA

2005 [26] - UV -
Fuzzy
Logic,
ANN

2005 [41] T UV F/H ANN
2005 [102] F UV, MV UR ANN

2006 [80] F, S MV F/H
Fuzzy
Logic,
ANN

2007 [53] F, S, O MV F/H kNN
2007 [28] F UV F/H SARIMA
2008 [106] F, S UV F/H KF
2008 [19] S MV F/H kNN, ANN
2008 [44] T UV F/H KF

2008 [89] F MV UR
Fuzzy

Logic, KF,
ANN

2009 [29] F MV F/H MST
2009 [12] F, S MV F/H VARMA

2009 [92] F UV F/H
ES, MA,
ARIMA ANN

2009 [9] F UV F/H SVR
2010 [21] F MV UR STARIMA
2010 [82] S UV UR kNN
2010 [69] F MV UR GSTARIMA
2011 [68] F, S MV UR MSTAR
2011 [76] S MV F/H ANN

2011 [59] F UV UR
ES,

ARIMA

Fuzzy
Logic,
ANN

2012 [10] S UV F/H ES ANN

Table 1: Classification of existing traffic prediction techniques
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Figure 3: OCTOTelematics Traffic Monitoring Tool

ponent that operate utterly autonomously. The optimal forecasting module is selected depending
on the format of the source data as well as the requested format of the prediction output. In
particular, the Pattern Matching technique, which is a special variation of the k-Nearest Neighbour
methodology and has been extensively described in Section 1.3.2, is carried out for identifying the
network’s forthcoming states when the travel speeds are categorically processed. On the other
hand, a FFNN with a single hidden layer is utilized when the instantaneous speeds of the vehicles
travelling at each link are provided as input and a respective speed forecast in terms of km/h is
also required. Additionally, multiple FFNNs can be implemented for providing predictions at two
different horizons of 5 and 10 minutes.

Mobile Century and Mobile Millennium Projects

The Mobile Century project as well as its extension, the Mobile Millennium project, are research
projects that aim at designing, developing and deploying in full scale an holistic ATIS capable of
performing in real-time:

• Exhaustive traffic data gathering

• Processing of the acquired information for estimation and short-term forecasting of the traffic
conditions

• Distribution of the estimated and forecasted status of the transportation network back to the
end-users (travelling citizens).

To this end, a public-private partnership has been established with the participation of UC Berkeley,
Nokia Research Center and NAVTEQ, under the sponsorship of the California Department of
Transportation, while the broader area of San Francisco, California, has been chosen for the case
study [2].

The Mobile Century/Millennium system makes virtue of GPS data that are provided by GPS-
enabled smartphones as well as by the GPS devices of the whole fleet of San Francisco taxis. The
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Figure 4: Block Diagram of Mobile Century/Millennium ATIS

data gathering architecture is based upon the innovative notion of Virtual Trip Lines (VTLs) [37],
which is considered as a major advancements in the field of traffic monitoring infrastructures. Each
VTL corresponds to a single location (point) of the transportation network (node/link) and hence
it is completely identified by its coordinates. The rational behind the application of VTLs lies
within the need for enhancing the data acquisition procedure by performing spatial sampling of the
GPS data. In this respect, an adequate software, containing all the coordinates of all the VTLs, is
developed and installed to the users’ GPS devices (smartphones, navigators etc.), so as, whenever
the vehicle crosses in proximity of a VTL, the GPS information to be transmitted to the data
collection center through the mobile communications network. According to the VTL approach, a
speed trace is not identified based on the device of origin but based on the index of the crossing VTL
and hence the system refrains from maintaining historical information that could probably allow
for the recreation of a vehicle’s trajectory. Hence, besides the avoidance of the overhead that would
be caused by the map-matching procedure, the introduction of VTLs holds the great advantage of
guaranteeing the users’ privacy, through achieving the data anonymization. A draft description of
the Mobile Century/Millennium ATIS is provided by the Block Diagram in Figure 4.

Similarly to the case of the OCTOTelematics system, the researchers of the Mobile Cen-
tury/Millennium project also implement both a discrete and a continuous traffic prediction method-
ology. In more detail, logistic regression is applied for the first time in vehicular traffic forecasting
for performing the traffic estimation on the basis of clustering the traffic conditions onto a set
of discrete congestion states. Additionally, STARMA is utilized for forecasting continuous travel
times. The STARMA model is further exploited for predictions at a multi-step horizon, by using
the single-step output of the model as input for forecasting at the subsequent step. Furthermore, in
order to maximally exploit the potentials of the huge dataset of GPS observations, the authors in
[38] address the issue of incorporating the GPS speed information into existing traffic flow models.

IBM Traffic Prediction Tool and Smarter Traveller Research Initiative

In cooperation with the Singapore Land Transport Authority, IBM carried out the implementation
of its novel traffic prediction tool at the the pilot site of the Singapore’s central business district
[1]. The IBM tool is based on the deployment of a spatiotemporal analysis of the transportation
network, according to the MSTAR model, which allows for incorporating the impact of neighbouring
road segments into the calculations of a single location’s conditions [68]. The system utilizes real-
time data from loop detectors and is capable of performing traffic forecasting at multiple horizons
of 10, 15, 30, 45 and 60 minutes.

Furthermore, upon the solid basis of the IBM traffic prediction tool and the Mobile Cen-
tury/Millennium project, the Smarter Traveller Research Initiative is established in 2011 between
IBM and two key partners of the Mobile Century/Millennium consortium, i.e. California Depart-
ment of Transportation and UC Berkeley [3]. The goal of this common action is to develop a system
that shall be capable of adaptively defining a commuters profile per citizen, so as to allow for de-
termining the optimal as well as alternative routes in a manner of preventive traffic management.
To this aim, data from GPS-enabled devices as well as feedback from classical traffic monitoring
infrastructures is envisioned to be exploited.
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1.5 Conclusions

Throughout the present Section, there has been provided an exhaustive presentation of the tech-
niques that have been so far presented in the existing literature for carrying out the crucial as well
as challenging task of vehicular traffic prediction. The primary axes for classifying the available
traffic prediction approaches are:

• Traffic Descriptor. The quantitative metric that is selected for numerically representing the
intensity of traffic load.

• Methodology. The exact algorithm that is implemented for calculating the forthcoming traffic
conditions (values of the traffic descriptors) as a function of the present and past observations.

Moreover, a series of hybrid techniques has also been examined, so as to assess the merits from com-
bining heterogeneous perspectives towards the ultimate goal of increasing the prediction’s accuracy.
Finally, a summary of the most modern real-world implementation has been provided, in order to
acquire a concrete view of the issues and solutions that are addressed for the actual deployment of
a theoretical approach into a fully functional system.

The common conclusion that is safely deduced from the analysis of all the proposed traffic
prediction methods as well as from the available comparative studies is that there is no technique
that can be safely regarded as the prevailing one in the general case or even in the majority of the
possible scenarios. On the contrary, it becomes more than evident that different algorithms may
present optimal performance under different traffic conditions and configuration of the transporta-
tion network.

Nevertheless, despite this grave dependency of each method’s performance upon the overall
system environment, there can be still identified approaches that impose significant enhancements
to the evolution of the traffic forecasting. Specifically, particular emphasis must be laid upon
the incorporation of spatial correlations into the calculation of a location’s anticipated behaviour.
The multivariate analysis of traffic conditions in terms of the spatial interrelations among neigh-
bouring links is generally proven to offer advanced forecasting capabilities, since the impact from
upstream/downstream links is mapped ahead of time. Therefore, a major issue that prominently
rises within the research community is the development of suitable methods capable of promptly
and accurately capturing the dynamic interdependencies among the network’s segments as well as
the efficient incorporation of these observations into the forecasting algorithm.
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