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Abstract. Contraction hierarchies are a speed-up technique to improve
the performance of shortest-path computations, which works very well
in practice. Despite convincing practical results, there is still a lack of
theoretical explanation for this behavior.

In this paper, we develop a theoretical framework for studying search
space sizes in contraction hierarchies. We prove the first bounds on the
size of search spaces that depend solely on structural parameters of the
input graph, that is, they are independent of the edge lengths. To achieve
this, we establish a connection with the well-studied elimination game.
Our bounds apply to graphs with treewidth k£, and to any minor-closed
class of graphs that admits small separators. For trees, we show that the
maximum search space size can be minimized efficiently, and the average
size can be approximated efficiently within a factor of 2.

We show that, under a worst-case assumption on the edge lengths,
our bounds are comparable to the recent results of Abraham et al. [1],
whose analysis depends also on the edge lengths. As a side result, we
link their notion of highway dimension (a parameter that is conjectured
to be small, but is unknown for all practical instances) with the notion
of pathwidth. This is the first relation of highway dimension with a well-
known graph parameter.

1 Introduction

Contraction hierarchies were introduced by Geisberger et al. [7], who evalu-
ated their performance experimentally. Given a directed graph G = (V, E)
and a vertex v € V, contraction of v means (i) removing v, and (ii) insert-
ing a shortcut ww of length distg(u,w) for each unique shortest path (u,v,w)
in G. Given an order a: V. — {1,...,n} of the vertices of G = (V,E), a
contraction hierarchy G, = (GA,GY) of G is obtained by iteratively contract-
ing the vertices in the order specified by «. Let E’ denote the set of short-
cuts that is created in this process. Then GA = (V,E2) and G) = (V,EY),
where E2) = {uv € EUE’ | a(u) < a(v)} and EY = {uv € EUE' | a(v) < a(u)}.
The correctness of shortest path computation relies on the following proposi-
tion, which is due to Geisberger et al. [7]. It immediately implies that distance
queries can be performed by a bidirectional query, searching G2 and GY.

Proposition 1. distg(s,t) = min,ecy dist;(s,v) + dist& (v, t) for all s,t € V.
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In the following, we refer to such a contraction hierarchy as an algorithmic con-
traction hierarchy. Obviously, the contraction hierarchy depends strongly on the
ordering a. Finding a good node ordering that allows fast shortest-path com-
putations thus is an important problem. Practical implementations, such as the
one by Geisberger et al. [7] employ heuristics for which no provable guarantees
are known. Previous theoretical expositions rather focus on minimizing the size
of the contraction hiearchy [4,11]. In particular, it is known that minimizing
the size of a contraction hierarchy is NP-complete. The only work providing
provable performance guarantees for shortest-path computations in contraction
hierarches, we are aware of, is the work of Abraham et al. [1,2]. They intro-
duce the notion of highway dimension, a parameter that is conjectured to be
small in real-world road networks, and prove sublinear query times under this
assumption. However, the highway dimension of real-world instances is unknown,
and may change as the length function changes. By contrast, we use separator
decompositions and focus on providing bounds that rely on purely structural
parameters of the graph, such as bounded treewidth or excluding a fixed minor.
Our algorithms thus apply to a larger class of graphs, and are not dependent on
the length function.

We note that theoretical results with better query times [17.6] exist, some of
them even using similar techniques. They are, however, far from being practical.
By contrast, our theoretical bounds apply to a widely used speed-up technique. It
is also worth noting that recursive graph separation has been used as a heuristic
in practical approaches [16], although, without providing theoretical guarantees.

Contribution and Outline. We develop a theoretical framework for studying
search-space sizes in contraction hierarchies. The iterative definition of an algo-
rithmic contraction hierarchy is difficult to work with. In Section 2 we derive a
global description of the contraction hierarchy associated with a node ordering.

Afterwards, in Section 3, we establish a connection between contraction
hiearchies and two classical problems that have been widely studied. Namely, so-
called filled graphs, which were introduced by Parter [12] in his analysis of Gaus-
sian elimination, and elimination trees, which were introduced by Schreiber [15]
for Gaussian elimination on sparse matrices. For trees, this implies an efficient
algorithm for minimizing the maximum search space and a 2-approximation for
the average search space. This contrasts hardness results for other speed-up tech-
niques, such as arcflags, where optimal preprocessing for trees is NP-complete [3].

In Section 4, we show that nested dissection, a technique for finding elimina-
tion trees of small height, can be applied to construct orders o with provable
bounds on the maximum search space size. For graphs of treewidth k and for
graphs that admit small separators and exclude a fixed minor, we obtain maxi-
mum search space size O(klogn) and O(y/n), respectively.

Finally, we compare our results with the results of Abraham et al. [1,2] in
Section 5. If the length function is such that the highway dimension is maximal,
then our results are comparable to theirs. However, our approach neither requires
small maximum degree, nor does it depend on the diameter of the graph, and
thus applies to a larger class of graphs.
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2 A Formal Model of Contraction Hierarchies

In this section, we develop a theoretical model of contraction hierarchies that is
simpler to work with than algorithmic contraction hierarchies. Let G = (V, E)
be a directed graph and let a be an ordering of V. Let P,(s,t) = {v € V|
a(v) > min{a(s),a(t)} and dista(s,v) + distg(v,t) = dista(s,t) < oo}, i.e.,
P,(s,t) contains the vertices that lie on a shortest path from s to ¢ and lie above
at least one of s and t. The following theorem provides a global characterization
of the algorithmic contraction hierarchy.

Theorem 1. Let G = (V, A) be a weighted digraph and let a be an order of its
vertices. The arcs AL and AY of GL and G are

)
)

The length of a shortcut uv in G or G is distg(u,v).

AN = {weA|au) <a)}u{w|a
AY = {weA|au)>a)}u{w]a

(v) and P,(u,v) = {u,v}}

(u) < a
(u) > a(v) and Py(u,v) = {u,v}}.

Not only does this theorem shed some light on the structure of algorithmic
contraction hierarchies, but also suggests an alternative definition. Consider an
arc st of G that is no unique shortest path. Then, removing st from G does
not change any distances. If st is a unique shortest path, then P,(s,t) = {s,t}
anyway. Thus the following definition works equally well. For a weighted di-
graph G = (V, E) and an order « of its vertices, we define G, = (G4,GY),
where G, = (V, AL) and G, = (V, AY) by

AL ={wv | a(u) < a(v) and P, (u,v) = {u,v}}
Ay ={w | a(u) > a(v) and Py (u,v) = {u,v}}.

As in Theorem 1, we set leng; (uv) = diste(u, v). We call the pair G, = (G, GY)
a formal contraction hierarchy.

We remark that it immediately follows from this definition that if H is the
digraph obtained from G by reversing all arcs, H) = G and HY = G, hold.
This allows us to prove statements about G, by only considering G2 since the
analogous statement for G, follows by reversing all arcs.

We now carry over several useful concepts from the algorithmic definition. A
shortcut is an arc uw of G, that is not contained in G, or for which leng(uw) >
distg(u, w). Note that the latter type of shortcuts are included only to model
the possible overwriting of arclengths in algorithmic contraction hierarchies.
Given a shortcut uww in A" or AV, we are able to recover the vertex v that
would have caused the insertion of uw in the corresponding algorithmic contrac-
tion hierarchy. Namely, let S = {v € V \ {u,w} | distg(u,v) + distg(v,w) =
distg(u, w)}. Note that S # ), for otherwise ww would be no shortcut. Note
further that a(v) < a(u) and a(v) < a(w) for all v € S since otherwise we
would have v € P, (u,w) = {u,w}. We call the vertex v € S with a(v) maximal
the supporting vertex of uw. It is easy to show that exactly the contraction of v

causes the insertion of uw in the algorithmic contraction hierarchy G,.
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Lemma 1. Let uw be a shortcut of G, and let v be its supporting vertex.
Then G, contains uwv € AY, and vw € AJ.

We call the arcs, whose existence is guaranteed by Lemma 1, the supporting
arcs of uw, and write sup(uw) = (uv,vw). Observe that if uv is a support-
ing arc of uw, then a(v) < a(w), and thus chains of supporting arcs in G,
and G are acyclic and do not descend indefinitely. This allows us to perform
induction on the depth of the nested shortcuts below a given arc uw. We define
the shortcut depth scd(uw) of an arc of G, by scd(uw) = 1 if ww is no short-
cut, and by scd(uw) = scd(uv) + sed(vw) if uw is a shortcut with sup(uw) =
(uv,vw). It is readily seen that, for a shortcut ww with sup(uw) = (uv,vw),
we have leng,(uw) = leng(uv) + leng;(vw). Hence G, still possesses the most
essential properties of the algorithmic contraction hierarchy G,,.

A close look at the proof of Proposition 1 in Section 1 reveals that it merely
depends on the fact that each arc ww with P,(u,w) = {u,w} is contained in
G, and has length lend (uw) = distg(u, w). Thus Proposition 1 also holds for
formal contraction hierarchies, implying that a bidirectional variant of Dijkstra’s
algorithm on the contraction hierarchy G, can be used to compute shortest paths
in G.

To measure the performance of such computations, we define the search space
of a query as S(s,GA) = {u € V | dist}(s,u) < oo} and R(t,GY) = {u € V |
disty(u,t) < oo}. Clearly, the shortest-path query from s to ¢ in G, settles at
most the vertices in S(s, G4)U R(¢t,GY). To maximize the performance of query
algorithms, one is interested in an ordering o that minimizes max; v |S(s, GL)|+
|R(t,G2)|. To simplify the analysis, we rather concentrate on minimizing the
mazimum search space size Smax(Go) = max{|S(v,G4)|, |R(v,GY)|}. Note that 2-
Smax(Gea) is an upper bound on the number of vertices that is settled in any
query, and thus bounding Spax(Go) gives a guarantee on the query performance
in terms of the number of settled nodes. We denote the minimum maximum
search space size by Smax(G) = ming Smax(Ge ). Similarly, we define the average
search space size Savg(Ga) =1/ - 37, v 1S(s,GR)| + |R(t, Gy)I.

There is still one downside of formal contraction hierarchies: Practical imple-
mentations of contraction hierarchies do not compute an actual formal (or even
algorithmic) contraction hierarchy. Instead of inserting a shortcut only when it
is strictly necessary, fast heuristics are used to quickly exclude the necessity of
a shortcut in many cases. In some cases, this results in the addition of shortcuts
that are not necessary. Thus bounding Spax(Go) may not have any practical
implications since the additional shortcuts might increase the search space ar-
bitrarily. To overcome this downside, we introduce one final type of contraction
hierarchies, which also allows for additional shortcuts, yet preserve the properties
that have turned out to be key to contraction hierarchies.

A weak contraction hierarchy H, of a weighted digraph G = (V, A) is a
pair (HY,HY) of digraphs H) = (V,B2) and HY = (V,BY), such that the
following conditions are satisfied.

(wl) G, C H,
(w2) a(u) < a(v) for each uv € B) and each vu € BY
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(w3) If ww is an arc of H, that is not contained in G, then there is at least one
pair of arcs uwv € B and vw € B).

In the remainder of this section, we indicate how to extend our previous findings
for contraction hierarchies to weak contraction hierarchies and investigate the
relationship between different weak contraction hierarchies for the same order-
ing a. For this purpose, we fix a weighted digraph G and an ordering « of its
vertices. As usual, we denote its formal contraction hierarchy by G, = (G2, GY).
Additionally, we fix a weak contraction hierarchy H, = (H., HY), whose arcs
we denote by B2 and B, as above.

The notions of shortcuts and shortcut depth carry over literally to H,. It
follows immediately from (wl) and (w3) that for each shortcut uw in H,, there
is a pair of supporting arcs uv € By and vw € Bj. Although distances and
arc lengths are only of secondary importance in the remaining sections, we still
want to point out that it is not hard to give a “correct” definition of arc lengths
on H, such that the following lemma holds true.

Lemma 2. Let H, be a weak contraction hierarchy.
(a) leng; (uw) > distg(u, w) for all arcs uvw of Hy,.
(b) leny; (uw) = distg(u, w) for all arcs uw of Hy with Py(u,w) = {u,w}.

As indicated above, the proof of Proposition 1 relies on exactly the containment
of G, and the properties guaranteed by Lemma 2, and it thus holds also for
any weak contraction hierarchy. In particular, the same shortest-path algorithm
works for weak contraction hierarchies.

In view of property (wl) it is clear that G, is the smallest weak contraction
hierarchy. Moreover, if H, and K, are weak contraction hierarchies, then (H. U
K, HY U KY) is a weak contraction hierarchy. Thus, there exists a unique
maximal weak contraction hierarchy, which we denote by M,. It is not difficult
to see that S(u,G%) C S(u, HY) C S(u, M2), and symmetrically R(u,GY) C
R(u,HY) C R(u,MY) for all weak contraction hierarchies H,. In particular,
this shows that Spax(Ga) < Smax(Ha) < Smax(My) for all weak contraction
hierarchies H,,. Thus, we will concentrate on bounding Spax (M, ) in the following
sections. Before we do so, we give a more explicit description of M.

Lemma 3. A weak contraction hierarchy H, is maximal if and only if H, sat-
isfies the following properties.

(i) Each arc of G is contained in H,.

(i1) For any two arcs uv € BY and vw € B, H, also contains uw.

Note that this immediately implies an efficient way to construct the arcs of M,
by inserting shortcuts between each pair of neighbors during the contraction. In
particular, the structure of M, is independent of the weights on G.

Finally, we note that the query performance does not solely depend on the
number of vertices in the search space, but also on the number of arcs. For a
search space S(u, M), this number is certainly bounded by |S(u, M,)|?. More-
over, the size |M,| has a crude upper bound in terms of Spax(My)-

Lemma 4. For any n-vertex directed graph with an ordering o of its vertices,
we have |My| < 2n - Spax(My).
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3 Contraction Hierarchies and Filled Graphs

In this section, we establish a link between contraction hierarchies and the
more well-studied graph elimination game, which was introduced by Parter [12].
Let G = (V, E) be an undirected graph and let o be an ordering of its vertices.
We consider the so-called elimination game played on G. Beginning at G = G,
one removes in each step i = 1,...,n the vertex v; = a~!(¢) and its incident
edges from G*. Afterwards, the graph G**! is obtained from G* by inserting fill
edges, such that the neighbors of v; form a clique. Denote by F* the set of edges
inserted in step ¢, and let F' = U?:l F;. The filled graph G is now commonly de-
fined to be the undirected graph with edge set EUF'. For our purposes it is more
convenient to define the filled graph as the according directed graph with all arcs
pointing upwards with respect to «. That is, the filled graph G* = (V, A%) is
defined by A% = {uv | {u,v} € FUF and a(u) < a(v)}. Note that the only
difference from the construction of M, is that M, is constructed from a digraph,
whereas the elimination game is played on an undirected graph. In what follows,
we denote for a digraph G by *G the underlying undirected graph. The following
theorem immediately follows from the construction of M, and G¢.

Theorem 2. Let G be a directed graph with an ordering o of its vertices. Let
«— —
further MY denote M) with reversed arcs. Then M2, M C “G“. Moreover,

if G contains for each arc uv also the opposite arc vu, then M2 = ]\7X = "G*.

Theorem 2 has many far-reaching consequences, and we will only explore a few
of them in this paper. It turns out that the definition of M, is nothing essentially
new, and has indeed already been defined and studied by Rose and Tarjan [13].
However, much of the work on filled graphs is primarily concerned with the prob-
lem of minimizing the number of arcs in G%; see the survey by Heggernes [10].
Minimizing the fill-in corresponds to minimizing the number of shortcuts in a
contraction hierarchy, and hence its space requirements. We rather focus on the
implications of Theorem 2 regarding search spaces and their size.

Corollary 1. Let G = (V, A) be a weighted digraph with vertex ordering a.
Then S(u, ML), R(u, MY) C S(u,"G%). In particular Smax(Ga) < Smax("GY).

An analogous statement holds for the average search space size Spyg. Our next
goal is an alternative description of Shax("G*) known as the height of the elim-
ination tree of *G®. For this purpose consider again an undirected graph G and
a filled graph G®. Associated with G® is the so-called elimination tree T(G®)
of G. The elimination tree T'(G®) has vertex set V' but contains for each u € V
only the arc uv of G* with minimal a(v). Again the usual definition of T'(G?) is
undirected, but it is natural to choose a~!(n) as the root. With this choice the
usual definition coincides with our definition. The height of T'(G*) with respect
to this root is the elimination tree height, denoted by ht(G?%). The following
lemmas relate the search space size in G¢ with ht(G?).

Lemma 5. Let G be a connected graph, o an order of V and let T = T(G?).
Then Smax(T) = 1 + ht(G?).
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Proof. Let r denote the root of T', and denote by p(u) the vertices lying on the
path from w to 7. Then ht(G®*) = maxy,ecy |p(u)| — 1 and it therefore suffices to
show S(u,T) = p(u) for all w € V. This is trivially satisfied, since due to the
connectivity of GG, each vertex u € V distinct from r is the source of precisely
one arc uv. O

The crucial property of T'(G®) is that if u and v are two vertices connected by
a path in p in the filled graph G of G, then there is a path p’ from u to v
in T(G?). It obviously suffices to prove this statement when p is an arc, as the
general case then follows by induction.

Lemma 6. If uv is an arc of the filled graph G, then there exists a path with
source u and target v in T(G?).

Proof. Denote by p(u) the unique path in T'(G®) from u to the root r. We show
by descending induction on a(u) that we have p(v) C p(u) for all arcs uv of G*.
Note that this implies our claim, for it then follows that p(u) = ¢ - p(v), where ¢
is a path from u to v.

If a(u) =n — 1, then a(v) = n, and hence v = r. The claim holds trivially.

If a(u) < n—1, let uw be the unique arc of T(G®) with source u. By the
definition of T'(G®), we have a(w) < a(v), and p(u) = uw-p(w). If v = w, we are
done. Otherwise, G* contains the arc wv as both v and w are neighbors of u at
the time of its removal during the elimination game. The induction hypothesis
therefore implies p(v) C p(w), and hence p(v) C p(u). 0

This allows us to finally relate search spaces in G* and T'(G?).

Corollary 2. Let G = (V, E) be a graph, o an order on V and T = T(G?) the
corresponding elimination tree. Then S(u,T) = S(u,G) for allu € V.

Corollary 1 and 2 immediately imply the following.

Corollary 3. For any connected weighted digraph G with vertex ordering «,
Smax(My) < ht("G*) + 1.

Despite its innocent appearance, the above corollary is central to our analysis
of search spaces in contraction hierarchies, for it enables us to translate upper
bounds on ht(*G?%) into upper bounds on Sy.x(G). Upper bounds from the lit-
erature are not seldomly accompanied by algorithms to determine orders a so
that ht("G?) is at most the upper bound at hand. Without any further mod-
ifications these algorithms may be used to compute contraction orders a with
good upper bounds on Spax(G%).

As a first application of the above result let us consider contraction hierar-
chies of undirected trees T'. In this case, shortest paths are unique and each
possible shortcut is thus present in the contraction hierarchy T,. Hence, T,,
the maximal weak contraction hierarchy M, and the filled graph T'* coincide.
Moreover, Schiffer [14] has given a linear-time algorithm to compute optimal
elimination orders for trees, and we may thus conclude that the problem of min-
imizing Smax(7Ta) is solvable in linear time. The techniques of the next section
can also be used to obtain a 2-approximation for Suye (7, ); we omit the details.
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4 Contraction Orders from Nested Dissection

Next we show how to compute orders that yield small search spaces for several
classes of graphs. The main idea is to exploit Corollary 3, which relates search
space sizes and elimination tree heights. One way to construct orderings that
give guarantees on the elimination tree height is the use of nested dissection,
which goes back to George [8].

Let 0 < b < 1 and let f(n) be a monotonically increasing function. A (b,f)-
balanced separator decomposition of an undirected n-vertex graph G = (V, E) is
a rooted tree 7 = (X, €) whose nodes X € X are disjoint subsets of V' and that
is recursively defined as follows. If n < ng for some fixed constant ng, then 7°
consists of a single node X = V. If n > ng, then a (b, f)-balanced separator
decomposition of G consists of a root X C V of size at most f(n) whose removal
separates G into at least two subgraphs G, . .., G4 with at most bn vertices, each.
The children of X in 7 are the roots of (b, f)-balanced separator decompositions
of G1,...,Gy. For clarity, we will always refer to the vertices of 7 as nodes. We
use 7x to denote the subtree of 7 rooted at a node X, and by G x the connected
subgraph of G induced by the vertices contained in 7x. For a vertex u € V,
we denote the unique node X of 7 with v € X by X,. A node X of 7 has
level level(X) = i if the unique simple path from X to the root of 7 has length s.

Remark 1. Let G be an undirected graph and let 7 be a (b, f)-balanced separator
decomposition of G. If {u, v} is an edge of G with level(X,,) > level(X,), then X,
is an ancestor of X,,.

Proof. Consider the lowest common ancestor X of X, and X, in 7. If X # X,
then X, and X, lie in distinct subtrees of 7x. However, by construction of 7,
this means that X separates X, from X,, contradicting the existence of the
edge {u,v}. 0

Given a (b, f)-balanced separator decomposition of G, we determine an asso-
ciated (b, f)-balanced nested dissection order o = «(7) on the vertices of G
by performing a post-order traversal of 7, where the vertices of each node are
visited in an arbitrary order. It follows immediately from Remark 1 and the
construction of « that for any edge {u, v} of G with a(u) < a(v) the node X, is
an ancestor of X,,. This property remains valid also for the corresponding filled
graph G¢.

Lemma 7. Let G = (V, E) be an undirected graph and o = (7T ) a nested dis-
section order associated with a given (b, f)-balanced separator decomposition T =
(X,€) of G. Then X, is an ancestor of X, for any arc uv of the filled graph G
with a(u) < a(v).

Proof. 1t suffices to that that X, is an ancestor of X, for each edge {u,v}
with a(u) < a(v) of G¥, where G? is the graph before the ith step in the elimina-
tion game. Observe that the above discussion establishes exactly this property
for G = G'. We show that G**! satisfies the property if G* does.
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Consider the vertex v; = a~1(7) that is removed in the ith step of the elimi-
nation game. Let {u,v} be a fill-edge with a(u) < «a(v) that is inserted in this
step. Then G* contains edges {v;,u} and {v;,v}. By the induction hypothesis,
we have that both X, and X, are ancestors of X,, in 7 since «a(v;) is minimal
among the vertices in G*. Note that this implies that either X, is an ancestor
of X, or vice versa. Our assumption a(u) < a(v) and the construction of «
imply that X, is an ancestor of X,. This finishes the proof. O

To simplify notation, we denote by 7 (u) the union of all nodes that lie on the
unique simple path from X, to the root of 7. The above lemma has immedi-
ate implications in terms of search spaces and elimination tree height. An easy
induction over the length of a path in G¢ yields the following.

Corollary 4. Let G = (V, E) be an undirected graph, T = (X,€) an (b, f)-
balanced separator decomposition of G, and let o = a(7T) be an associated nested

dissection order. Then (i) S(u,G*) C T (u), and (i) ht(G*) < |7 (u)].
In particular, Corollary 1 and 4 together imply the following theorem.

Theorem 3. Let G = (V,E) be a weighted digraph and o = o(7T) a nested
dissection order of a (b, f)-balanced separator decomposition of *G. Then we
have |S(u, M), |R(u, My)| < T (u)].

In order to find upper bounds on Spyax(M, ), it remains to bound |7 (u)|. This
issue cannot be handled simultaneously for all families of graphs, but needs
special treatment depending on the properties of G. We will first study a rather
general setting, and afterwards specialize to graphs that exclude a fixed minor.

It is not hard to see that |7 (u)| < mng + h - f(n), where h is the height of 7.
Further, it follows from the balance of the decomposition that h < log,/, n. In
particular, for graphs with treewidth at most k, the (1/2,1)-balanced separator
decomposition for trees facilitates a (1/2, k+1)-balanced separator decomposition
with ng = k + 1. We have the following theorem.

Theorem 4. Let G be a weighted digraph of treewidth at most k. There exists an
order «, such that Smax(Ma) < (k+1)(1+logn) and |My| < 2n(k+1)(1+logn).

If the separator size is not fixed, but depends on the graph size, better bounds
can be achieved. For example for minor-closed graph classes that admit (b, ay/n)-
balanced separators, we have ht(G®) < ng+3.0, aVbin = no+a/(1—vb)y/n =
O(y/n). According to Lemma 4, this yields a contraction hierarchy of size O(n?®/?).
However, a more sophisticated analysis due to Gilbert and Tarjan [9] proves that
the number of fill arcs is O(nlogn). The next theorem summarizes this discus-
sion.

Theorem 5. Let C be a minor-closed graph class with balanced O(\/n)-separators.
Any G € C admits an order o with Spax(My) = O(/n) and | M| = O(nlogn).
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5 Comparison with Highway Dimension

In this section, we compare our bounds with the ones obtained by Abraham et
al. [1,2]. Their results employ the highway dimension, a notion that, unlike the
graph parameters we use, also depends on the edge lengths. We show that their
bounds are comparable to ours if the edge lengths are sufficiently ill-behaved.

First, we briefly recall the definition of highway dimension. Let G = (V| E)
be a weighted undirected graph. Given a vertex u € V, the set of vertices v of
distance at most ¢ from w is called the ball of radius € around u, and is denoted
by Be(u). We say that a vertex u covers a shortest path p if p contains u. The
highway dimension hd(G) of G is the smallest integer d, such that all the shortest
paths p in G of length e < len(p) < 2e that intersect a given ball of radius 2¢ can
be covered by at most d vertices. Abraham et al. [1] prove that for a n-vertex
weighted graph G with highway dimension d and diameter D and maximum
degree A, there exists an ordering «, such that the size of G* is O(ndlog D),
and such that distance queries can be answered in time O((A+dlog D)-dlog D).

In the remainder of this section, we proceed as follows. We consider the edge
lengths of G that maximize hd(G). For this particular choice of lengths, we con-
struct a (2/3,hd(k))-balanced separator decomposition of G, which then provides
the link to nested dissection orders. We note that the same proof can be adapted
to the slightly different definition of highway dimension in [2].

Lemma 8. Let G = (V, E) be a connected graph, let k be the maximum highway
dimension over all possible edge lengths on G, and let H C G be a connected
subgraph with |V(H)| > 2k + 2. Then H can be separated into at least two
connected components of size at most [|V(H)|/2] by removing at most k vertices.

Proof. Let H be a connected subgraph of G with h vertices and let H; C H be
a connected subgraph with |h/2] vertices. Denote the vertex sets of H and H;
by Vi and Vi, respectively. Define lengths len: £ — R™ by setting the length
of an edge to 1 if it has exactly one endpoint in Vi, and to ¢ = 3/h, otherwise.
Observe that the length of a simple path in H; is at most he/2 < 3/2.

Consider a ball B with radius 3/2 around any vertex u of Hy. Then V; C B.
By our choice of k, and the definition of highway dimension, there exists a set S
of at most k vertices, such that each shortest path in G that intersects H; and
has length between 3/4 and 3/2 contains at least one element of S. We claim that
the removal of SN Vy separates H into at least two connected components with
at most [h/2] vertices, each.

Consider any path with source s € V; and target ¢ € V \ Vj. This path
necessarily contains an edge {u,v} with w € V; and v € V'\ V;. By the choice of
edge lengths, this edge is a shortest path of length 1, and thus one of its endpoints
is in S. Hence S separates H; from H \Vj. It remains to verify that the connected
components of H \ S contain at most [h/2] vertices, each, and that there are
at least two such components. The former claim follows immediately from our
choice of H;. For the latter claim, note that |Vi| > k+ 1 and |Vg \ V1| > k+ 1
imply [Vi\ S| > |Vi|—k>1and Vg \ (VL US)| > Ve \ V1| —k > 1. O



Search-Space Size in Contraction Hierarchies 103

This lemma allows us to separate each subgraph of n’ > 2k + 2 vertices into at
least two connected components with at most [n//2] < Zn/ vertices by removing

3
at most k vertices. We have the following corollary.

Corollary 5. Let G = (V, E) be a connected undirected graph with mazimum
highway dimension k. Then G admits a (2/3, k)-balanced separator decomposition,
whose leaves have size at most 2k + 1.

A simple calculation shows that ht(G) < 2k +1+k-logg 5 n. It is known for the
pathwidth pw(G) that pw(G) < ht(G) [5].

Theorem 6. Let G be a weighted undirected graph. There exist edge lengths
on G, such that hd(G) > (pw(G) — 1)/(logg /o + 2).

To our knowledge, this is a novel and unanticipated relation between highway
dimension and more commonly used graph parameters. Moreover, Corollary 5
allows a comparison of our results with those of Abraham et al. [1].

Theorem 7. Let G be an undirected graph with diameter D and mazximum de-

gree A. Let 3 denote the order constructed by Abraham et al. [1]. There exist

edge lengths on G and a nested dissection order «, such that

(a) |My| < O(logn/logD)|Ggs|, and

(b) the worst-case running time of distance queries in M, is at most a factor
of O(log*(n)/log?(D)) greater than that in Gg.

Proof. Choose the edge lengths such that G attains its maximum highway di-
mension k. Recall from [1], that their optimal order ( results in a contraction
hierarchy G that has mg = O(nklog(D)) arcs and on which a distance query
has worst-case running time T(fuery =O((A+klogD) - klog D).

By virtue of Theorem 4 and Corollary 5, there exists a nested-dissection order-
ing «, such that Spax(My) = O(2k + 1+ klogn) = O(klogn). Using Lemma 4,
we have |M,| = O(nklogn), which immediately implies (a). For (b), we use that
Dijkstra’s algorithm relaxes at most Spyay(My)? edges. 0

We note that, for graphs that bear some resemblance to road networks, it seems
quite likely that ©(logn) = ©(log D). It is remarkable that the results are so
close, given that Abraham et al. bound both the vertices and arcs in the search
space, while our crude bound on the number of arcs is simply the square of
the number of vertices in the search space. Any improvement on this bound
would immediately imply faster query times. It is moreover worth noting that
our machinery neither requires small maximum degree nor small diameter.

Conclusion. We have developed a theoretical framework for studying search
spaces in contraction hierarchies. Our main contributions are a global descrip-
tion of contraction hierarchies and the connection to elimination games. Us-
ing nested dissection, we are able to compute contraction orders with sublinear
search spaces for large classes of graphs. Under a worst-case assumption on
the highway dimension, our results, even though our constructions ignore edge
lengths, are comparable to those of Abraham et al. [1]. Our main open questions
are: (i) Are there stronger bounds on the number of arcs in search spaces? (ii) Is
there an efficient approximation for the maximum or average search space size?
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