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ABSTRACT
We study the problem of electric vehicle route planning,
where an important aspect is computing paths that mini-
mize energy consumption. Thereby, any method must cope
with specific properties, such as recuperation, battery con-
straints (over- and under-charging), and frequently changing
cost functions (e. g., due to weather conditions). This work
presents a practical algorithm that quickly computes energy-
optimal routes for networks of continental scale. Exploiting
multi-level overlay graphs [25, 30], we extend the Customiz-
able Route Planning approach [7] to our scenario in a sound
manner. This includes the efficient computation of profile
queries and the adaption of bidirectional search to battery
constraints. Our experimental study uses detailed consump-
tion data measured from a production vehicle (Peugeot iOn).
It reveals for the network of Europe that a new cost function
can be incorporated in about five seconds, after which we
answer random queries within 0.3ms on average. Additional
evaluation on an artificial but realistic [21, 35] vehicle model
with unlimited range demonstrates the excellent scalability
of our algorithm: Even for long-range queries across Europe
it achieves query times below 5ms on average—fast enough
for interactive applications. Altogether, our algorithm ex-
hibits faster query times than previous approaches, while
improving (metric-dependent) preprocessing time by three
orders of magnitude.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms, network problems; G.2.3 [Discrete Mathemat-
ics]: Applications
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1. INTRODUCTION
Web-based route planning and on-board navigation have

become a commodity for millions of users. A particularly
important problem is the explicit consideration of electric
vehicles that usually employ a rather limited cruising range.
To overcome range anxiety—the fear of getting stranded—
careful guidance of the user is crucial. We, therefore, study
the problem of quickly computing routes that minimize en-
ergy consumption in order to maximize cruising range. This
imposes two nontrivial challenges: Recuperation allows the
vehicle to recharge its battery (e. g., when driving downhill),
and the battery capacity imposes constraints on the range
and the amount of recuperable energy. Modeling energy con-
sumption precisely is thereby important, since it is strongly
influenced by factors, such as the vehicle’s load, auxiliary
consumers, weather condition, driving style, and traffic con-
ditions [34]. While some factors are static, others, such as
weather conditions and vehicle load, are not.

Related Work.
Route planning on road networks in general has seen sub-

stantial algorithmic progress over the past years. While
the problem can be solved by Dijkstra’s algorithm [15], it
is too slow in practice. Therefore, a multitude of speedup
techniques use an offline preprocessing phase to accelerate
queries (see [10, 31] for surveys). Most were developed for
static arc costs representing travel times. A notable exception
is Customizable Route Planning (CRP) by Delling et al. [7].
Based on multilevel overlay graphs [9, 23, 25, 29, 30], it is
explicitly designed to work with arbitrary metrics and is able
to integrate new cost functions in mere seconds. Regarding
electric vehicles, Artmeier at al. [1] observe that using energy
consumption as metric may result in negative cost values
for some arcs (though, physical constraints prohibit negative
cycles). They use a simplistic energy consumption model
and handle negative costs by variants of label-correcting Di-
jkstra [14] and Bellman-Ford [4] algorithms, from which the



latter turns out to be too slow in practice. To get rid of
negative arc costs, one can use a technique called potential
shifting [24]. This re-enables Dijkstra’s algorithm. Using
a (slightly) more realistic physical energy consumption (from
which potentials are directly obtained) [27], Artmeier et al.
combine potential shifting with goal-directed search [20] to
get a factor of three speedup over their (previous) label-
correcting approach. Demestichas et al. [13] use machine
learning to obtain consumption data from real electric ve-
hicles in field tests. However, their work does not focus on
routing algorithms. In contrast, Eisner et al. [17, 33] use a
relatively simple consumption model based on distance and
height difference. For route planning they go beyond poten-
tial shifting, and integrate battery constraints into the arc
costs by modeling them as piecewise linear functions. This
is similar to the time-dependent case [3, 11, 16], however,
function complexity is much lower. Exploiting this similarity,
the authors adapt Contraction Hierarchies (CH) [3, 18] to
the scenario of optimizing energy consumption. To handle
functional arc costs in witness searches [18] during prepro-
cessing, they do not perform profile queries [6, 11]. Instead,
they acquire upper bounds on witness paths by sampling,
in order to improve preprocessing time at the cost of query
speed. Using this approach, query times of 38–45ms are
achieved on country-scale networks after several hours of
preprocessing [33].

Our Contribution.
In this work, we present a practical approach to opti-

mize energy consumption for electric vehicles that is fast
both in (metric-dependent) preprocessing as well as in query
speed, even on continental networks. For that, we carefully
extend the Customizable Route Planning (CRP) method
of Delling et al. [7] to handle recuperation (i. e., negative
costs) and battery capacity constraints. Modeling such con-
straints as a special form of piecewise linear functions enables
us to compute profile queries efficiently—a crucial ingredi-
ent for CRP’s preprocessing in our scenario. Thereby, we
achieve fast (metric-dependent) preprocessing of the whole
network within a few seconds. This enables flexible updates,
e.g., due to hourly weather forecasts, or refinements of the
underlying consumption model (as is necessary when ma-
chine learning approaches are used to improve the model
[13]). Moreover, we present several query algorithms, from
which the most sophisticated variant simultaneously, and in
parallel, employs a backward search (from the destination t)
that helps bound the forward search in order to “guide” it
toward t (similarly to [11, 19]), while considering battery
constraints. In contrast to previous work, our experimental
study is based on highly detailed consumption data measured
from a real production vehicle (Peugeot iOn). It turns out
that this vehicle model is harder for (our) algorithms than
previously considered (simpler) consumption models. On the
continental road network of Europe, we show that using our
approach, energy-optimal routes can be computed in 1.1ms
time, easily enabling interactive applications. Moreover, we
show that our algorithms scale excellently with the available
cruising range, making them robust to future developments
in increasing battery capacities.
This paper is organized as follows. Section 2 sets necessary

notion. Section 3 introduces our approach to electric vehicle
route planning and describes how we compute profile queries.
Section 4 uses these ingredients to carefully extend CRP.

Section 5 contains our experimental study, while Section 6
concludes with interesting open problems.

2. PRELIMINARIES
We model the road network as a (directed) graph G =

(V,A) with n = |V | vertices and m = |A| arcs. Intersec-
tions are represented by vertices v ∈ V , road segments by
arcs (u, v) ∈ A. Vertices have associated height values in
meters (which are relevant to model energy consumption)
given by a function h : V → N. Arcs have associated distance
values in meters (again, relevant for consumption) given by
a function dist : A → N. An s–t path P (in G), sometimes
written Ps,t, is a sequence P = [v1 = s, v2, . . . , vk = t] of
vertices such that (vi, vi+1) ∈ A. If s and t coincide, we
call P a cycle.
To model energy consumption, we assign each arc a = (u, v)

a cost function fa that maps battery state of charge (SoC)
levels b(u) (at vertex u; measured in mWh) to an energy
consumption value (also measured in mWh) which is required
to traverse the arc a. The function fa takes battery con-
straints into account [17], i. e., the maximum charge level—or
capacity—of the battery M , as well as the minimum SoC
required for traversing a. See Figure 1b-1c for an exam-
ple. We, therefore, consider a function space F consisting of
functions of the form f : R ∪ {−∞} → R ∪ {∞}, where ∞
and −∞ are special values to handle insufficient charge. Our
functions (must) fulfill the FIFO property, that is, for any
SoC values x ≤ y it must hold that x− f(x) ≤ y − f(y). In
other words, having lower SoC values never improves energy
consumption. On F we require binary link (composition)
and merge operations. Given two functions f, g ∈ F, the link
operation is defined as link(f, g) := f + g ◦ (id−f), whereas
we define merging f and g by merge(f, g) := min(f, g). Note
that F is closed under both link and merge. The cost func-
tion fP of a path P is defined by iteratively applying the link
function. The cost of an s–t path P with initial SoC b(s) = bs

is fP (b(s)). Finally, an s–t path P with initial SoC bs is
called optimal (wrt. energy consumption), iff fP (bs) is min-
imal among all s–t paths. Note that, by construction, in-
feasible paths, i. e., paths with b(vi) < 0 for any i, have
infinite cost. By f , we denote the lower bound of f , and
by f its finite upper bound, i. e., the largest value of f that
is smaller than infinity (if such a value exist). Finally, we
require designated functions f0(·) = 0 and f∞(·) =∞.
Figure 1 illustrates our cost functions by using a small ex-

ample graph. It shows the resulting functions after applying
link and merge operations. Note that cost functions f ∈ F
are piecewise linear, but not necessarily continuous, with
varying degree of complexity: For single arcs a = (u, v),
functions fa have a simple form: Let ca denote the constant
(i. e., ignoring battery constraints) consumption cost of arc a.
Then, for a positive arc, i. e., for which ca is positive, the arc’s
cost function is fa(b) = ∞ for all SoC values b < ca, and
fa(b) = ca, otherwise. For a negative arc a, i. e., for which
ca < 0, we set fa(b) = max(ca, b −M). Note that f

a
= ca.

When linking a single path P of negative and positive arcs,
the resulting function fP is, unlike in time-dependent route
planning [10], of very limited complexity [17]. However, merg-
ing different paths might also result in functions of O(|A|)
line segments [5] (c. f. Figure 1).
A potential is a function Π: V → R on the vertices. If for

every arc a = (u, v) the condition f
a

+Π(u)−Π(v) ≥ 0 holds,
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Figure 1: An example of link and merge opera-
tions for energy consumption cost functions: (a) the
original graph with constant energy consumption
values; (b) the function induced by the arc with
weight 4, mapping SoC onto consumption; the
shaded area depicts those consumption values that
fulfill the battery constraints; (c) the function in-
duced by the arc with weight −2; (d) the resulting
cost function after linking the black path; (e) the
cost functions of both the red and the black
path; (f) the result after merging—note that this
function also represents the u–v profile.

we call the potential feasible. Any (feasible) potential induces
a graph G′ of non-negative reduced arc costs by shifting the
cost function at every arc a = (u, v), setting f ′a = fa +Π(u)−
Π(v).
A partition of the vertices V is a family C = {C1, . . . , Ck}

of cells Ci ⊆ V , such that each vertex v ∈ V is contained
in exactly one cell Ci. More generally, a nested multilevel
partition of L levels is a family {C1, . . . , CL} of partitions with
nested cells, that is, for each level ` ≤ L and cell C`

i ∈ C`

there must exist a cell C`+1
j ∈ C`+1 on level ` + 1, such

that C`
i ⊆ C`+1

j holds. We call C`+1
j the supercell of C`

i .
For consistency, we define C0 = V and CL+1 = {V }. An
arc (u, v) ∈ A is called a boundary arc on level `, iff u and v
are in different cells of C`. In this case, u and v are called
boundary vertices (of level `). Note that a boundary vertex
of level ` is also a boundary vertex on all lower levels. Many
general graph partitioning algorithms are available, several
of which aim for balanced cells while minimizing the number
of boundary arcs [2]. For road networks, tailored algorithms,
such as PUNCH [8] and BUFFOON [28], exist.
In this work, we study two problems: SoC queries and

profile queries. In an SoC query, one is given source and
target vertices s, t ∈ V , and an initial SoC bs. It asks for
a (single) optimal s–t path departing at s with SoC bs. A
profile query does not take bs as input, but asks for a set of
optimal s–t paths for every value of bs ≤M . (Note that this
corresponds to the s–t consumption function.) It is a required
preprocessing ingredient to many speedup techniques (such
as ours) and helpful for deciding how much to charge the
battery before departing.

3. BASIC APPROACH
Our baseline algorithm to compute SoC queries is a (label-

correcting) variant of Dijkstra’s algorithm, called LC. For
every vertex v, it maintains a label lbl(v), initially set to ∞,
except lbl(s), which is set to 0 (consumption). A priority
queue Q is initialized with source vertex s and key lbl(s). The
main loop scans the vertex u of minimum key minKey(Q) by
extracting it from the queue. Then, for each arc a = (u, v),
the algorithm evaluates its cost function fa for SoC b(u) =
bs − lbl(u). If lbl(u) + fa(b(u)) < lbl(v), it relaxes the arc
by decreasing lbl(v) and updating the queue, accordingly.
The algorithm stops as soon as the queue runs empty. Then,
for each vertex v, lbl(v) provably holds the minimum energy
consumption necessary to reach v when starting at s with
SoC bs. Note that correctness follows from [16].
If arc costs are negative, the algorithm is label-correcting:

It may scan vertices more than once, if their labels are
improved via sub-paths of negative length. It is well-known
that this might trigger (exponentially many) rescans over
large parts of the graph. However, this is only the case
if negative shortest paths have a large positive prefix (in
relation to the graph diameter), which is unlikely in our
scenario. Also note that our inputs do not contain negative
cycles due to physical constraints.
To get rid of negative costs completely, we also consider

three potential shifting methods, which re-enable (label-
setting) Dijkstra’s algorithm. The first variant, Dij-PV,
uses a potential induced by an arbitrary fixed vertex v∗.
It takes v∗ to set Π(v) = f

P
, where P is a minimum cost

v∗–v path. To compute these values, we run LC (once)
evaluating the lower bound f

a
of arc costs. The second



variant, Dij-PS, runs multi-source LC to obtain potentials.
Unlike Dij-PV, it initially sets vertex labels to 0, and adds
all vertices to the priority queue that have incident arcs
with negative cost (similarly to [24]). Finally, Dij-PH uses a
height-induced potential Π(v) = γ · h(v). Unlike [27], who
use a specific physical energy consumption model to define γ,
we determine γ by a single linear scan over all arcs a = (u, v),
maintaining a lower bound γ and an upper bound γ. Since
f

a
+ γh(u)− γh(v) ≥ 0 must hold, downhill arcs update γ,

which is set to γ = max(γ, f
a
/(h(v) − h(u))). Uphill arcs

update γ = min(γ, f
a
/(h(v)− h(u))). If, in the end, γ ≤ γ

holds, γ yields a feasible potential (which is always the case
for our experiments).
We apply the following stopping criteria: Dij-x stops,

if the algorithm scans the target vertex t. For LC, since
it is label-correcting, this cannot be applied. However, by
precomputing the minimum shortest (possibly negative) path
length π, it now checks minKey(Q) + π > lbl(t). One could
compute π by connecting a super source s′ and sink t′ with
all vertices of G that have incident arcs with negative cost,
and then run an LC s′–t′ query. However, in practice, the
following method turned out to be faster (by factor 2–3). For
every vertex, it runs an LC query that uses f

a
as arc cost.

It minimizes the minimum shortest path length whenever
it scans a vertex. Arcs a = (u, v) are only relaxed if they
improve the head label lbl(v) to a negative value. We stop
each query if minKey(Q) ≥ 0 (the minimum negative path
cannot have a positive prefix). We do not reinitialize vertex
labels between queries, since a search can be pruned if a path
with shorter prefix was found by a previous query.

3.1 Profile Queries
Although computationally more expensive, profile search

is conceptually easy using cost functions: Following [5], the
algorithm maintains, for each vertex v, a label fv that repre-
sents an s–v consumption profile (taking the form of a cost
function; recall Figure 1). It initializes fv = f∞ for all v ∈ V ,
except fs = f0, and adds s to the priority queue Q with
key(s) = 0. In the main loop, the algorithm scans the ver-
tex u of minimum key by extracting it from Q and scans its
incidents arcs a = (u, v); It computes fnew

v = link(fu, fa) and
sets fv = merge(fv, f

new
v ), updating key(v) if necessary. As

key we use the lower bound of a vertex label, i. e., key(v) = f
v
.

Note that this approach is label-correcting (even after ap-
plying potential shifting) and that its performance depends
on the complexity of the cost functions [5]. We apply the
following target pruning rule: Given any cost function f ,
let bf ∈ [0,M ] denote the smallest SoC value, for which f(bf )
is finite. Then, whenever the algorithm scans a vertex v, it
checks if both bfv

≥ bft
and f

v
≥ f t hold. If that is the case,

the algorithm prunes the search at vertex v, i. e., it does not
scan any outgoing arcs of v.

3.2 Implementation Details
In order to achieve best performance in practice, an effi-

cient implementation of piecewise linear functions is crucial.
Because of their specific form (discontinuous; slope in {0, 1}),
we implement cost functions by storing pairs of point and
slope. Since, in practice, our functions f consist of few inter-
polation points on average, it is best to evaluate f(b) by a
linear scan. As an optimization we use a compressed function
representation. It stores a single 32-bit integer for functions
that have simple form (explicitly checking for battery con-

straints in the algorithm). Following [11], we implement link
and merge by linear scans in general. However, for com-
pressed functions these operations are much simpler: They
basically reduce to scalar additions/minimums, and some
border cases. To improve spatial locality of the profile search,
we store vertex labels fv1 , . . . , fvn as a dynamic adjacency
array. For each label, it uses a flag to indicate if fv is a
compressed function, storing the (compressed) value directly
at the label. If not, it stores (bit-compressed) indices to an
interpolation point array. Note that the number of interpo-
lation points of fv may vary during the algorithm. We mark
empty slots in the array in order to make efficient (re-)use
of space. Our implementation for the experiments includes
all of the improvements.

4. OVERLAYS
This section introduces our acceleration technique, which

extends the Customizable Route Planning (CRP) approach,
introduced by Delling et al. [7], exploiting ideas from [9, 23,
25, 29, 30]. It uses three phases: A (potentially costly) offline
metric-independent preprocessing phase, a metric-dependent
preprocessing phase, called customization phase, and, finally,
the (online) query phase. Its main strength is that customiza-
tion is very quick: A new metric can be incorporated in a
few seconds, even on continental networks, while a single arc
cost can be updated in only a few microseconds [7]. This
is particularly important in our context, since energy con-
sumption of electric vehicles may vary with, for example,
vehicle load and changing weather conditions, or due to newly
learned consumption data [13]. In the following, we recap
the CRP algorithm, describing our extensions along the way.

Preprocessing.
The preprocessing phase of CRP computes a multilevel

overlay [25, 30] of the input graph G = (V,A). An overlay
is a graph G′ = (V ′ ⊆ V,A′), such that distances between
vertices of G′ are the same as in G. They are obtained from
a nested multilevel partition (C1, . . . , CL), as follows. For a
fixed level `, the overlay graph of level ` consists of exactly the
boundary vertices of C`. Besides boundary arcs of G (with re-
spect to C`), it also contains for each cell C ∈ C` and all pairs
of boundary vertices u, v ∈ C an arc (u, v). This results in a
full clique of arcs over the cell’s boundary vertices. Similarly
to [7], we use a compact representation to store the overlays:
Instead of keeping separate graphs, we store a common ver-
tex set for all levels (which is equivalent to the boundary
vertices of C1). Only clique arcs are kept in a separate data
structure per level, and they are organized as matrices of
preallocated contiguous memory. (Note that boundary arcs
are already present in the input graph.) In contrast to [7],
we reorder the vertices of G, such that overlay vertices are
pushed to the front (order by descending level), breaking ties
by cell. Non-overlay vertices are ordered by their level-1 cells.
This improves spatial locality for customization and query,
and simplifies mapping between overlay and original vertices.
Preprocessing must only be rerun if the topology of the input
changes (significantly). Since this happens infrequently in
practice, somewhat higher preprocessing times are not an
issue.

Customization.
The customization phase uses the output of the prepro-



cessing phase to compute the metric of the overlays, i. e.,
for each clique arc it must compute its cost function. It
proceeds in a bottom-up fashion, starting with the lowest
level. Within level `, each cell C ∈ C` is processed indepen-
dently. A cell C is processed by running, for each boundary
vertex u ∈ C, a profile search (cf. Section 3.1) from u. The
search is, thereby, restricted to cell C, i. e., it does not relax
any arcs pointing outside C. At every boundary vertex v ∈ C,
this results in a cost function fv, which is assigned to the
clique arc (u, v) of cell C. Customization can be parallelized
by distributing different cells (on a level) among processors.
In contrast to [7], the complexity of the cost functions is not
known in advance. In fact, our overlay uses a (single) dy-
namic adjacency array to store interpolation points of clique
arcs. Updates to this data structure must be synchronized.
A common approach is using locks, which is costly. Instead,
each thread locally maintains a log of the clique arc func-
tions it has computed. These logs are sequentially merged
at the end of processing level `. However, preliminary exper-
iments indicate that more than 80% of the cost functions
can be compressed. Only for the remaining cases a thread
uses its log; compressed functions are written to the overlay
directly. Unlike the preprocessing phase, customization is
much faster, taking mere seconds in practice (cf. Section 5).
Note that, like [7], when processing level `+1, we make use of
the (already computed) overlay of level `, which significantly
improves customization time.

SoC Query.
For vertices s, t, and initial SoC bs, the query operates on

a search graph consisting of, (a), the overlay graph of the
topmost level L, (b), all cells from the overlay that contain s
or t, and (c), the subgraph of the original graph induced by
the level-one cells that contain s or t. Then, any algorithm
from Section 3 can be run on this search graph to get provably
optimal solutions. Also, potentials computed for the original
graph naturally carry over to the overlays. From now on, we
assume that potentials are always available, and refer to the
algorithm as Unidirectional Multi-Level-Dijkstra (Uni-MLD).
Note that we do not need to explicitly extract the search
graph. Instead, the level and cell on which Uni-MLD scans
arcs are determined implicitly from the partition data [7].
To obtain the full path description, clique arcs a on level `
can be unpacked, by (recursively) running a local query on
the overlay of level `− 1, restricted to the cell of a [7].

Bidirectional Search.
A common technique to accelerate queries is bidirectional

search. Basically, it simultaneously runs a forward search
from s and a backward search from t until a stopping condition
is met. Thereby, the algorithm minimizes a tentative dis-
tance value µ (initialized to infinity), whenever the searches
meet at a vertex m. After stopping, the shortest path of
length µ is obtained by concatenating Ps,m with Pm,t. Unfor-
tunately, the final SoC at t is not known in advance, which
prevents running a regular SoC backward search. There-
fore, we present two approaches that augment [11] the back-
ward search: Bidirectional Profile-Evaluating Multi-Level-
Dijkstra (BPE-MLD) and Bidirectional Distance-Bounding
Multi-Level-Dijkstra (BDB-MLD). Both use a regular SoC
forward search.
The first (straightforward) approach, BPE-MLD, runs

a backward profile search (cf. Section 3.1) from t, which

does not require an initial SoC value, computing v–t pro-
files fv as vertex labels. Whenever either search scans an
arc toward a vertex v that has already been touched by
the opposite search, it evaluates the profile fv (obtained
from the backward search) at SoC b(v) (obtained from the
forward search as b(v) := bs − lbl(v)), thereby, minimiz-
ing µ := fv(b(v)). The algorithm may stop as soon as any
path it may still find has cost either exceeding µ or the
battery capacity M . Recall from Section 3.1 that the (back-
ward) profile search uses lower bounds (of its vertex labels)
as keys in its priority queue QB . Hence, we stop the search
as soon as minKey(QF ) + minKey(QB) > min(µ,M) holds.
Unfortunately, running a backward profile search can be

costly. Therefore, the second (more sophisticated) approach,
BDB-MLD, runs a (cheaper) backward search that bounds
the forward search in order to “guide” it toward t. Note
that this is similar to [19]. However, we have to carefully
account for battery constraints. To do so, the backward
search maintains, for every vertex v, three labels: Lower and
upper bounds on the cost from v to t, denoted c(v) and c(v),
and a minimum battery SoC to reach t, denoted b(v). We
define c(v) consistently with b(v): An SoC of b(v) implies
that t can be reached from v with cost at most c(v). Labels
are initially set to infinity, except at t, for which they are
set to c(t) = c(t) = b(t) = 0. The backward search is then
running Dijkstra on c. When scanning an arc a = (u, v),
it uses f

a
as metric. Simultaneously (during the same arc

scan), c and b are computed as follows. Let b ∈ [0,M ] be
the minimum SoC that is necessary to traverse a, i. e., the
smallest value for which fa is finite. Then the minimum
SoC b(u) to travel from u to t is determined by the minimum
of b itself and the cost fa(b) of traversing a with SoC b plus
b(v) (the minimum SoC to get from v to t). On the other
hand, the maximum cost at u is determined by c(v) + fa.
Summarizing, whenever the algorithm scans arc a = (u, v),
it checks max(b(v) + fa(b), b) ≤ b(u) and c(v) + fa ≤ c(u),
updating b(u) and c(u), if necessary. The forward search now
minimizes an upper bound µ on the cost of the shortest s–
t path. Whenever it scans a vertex v with SoC level b(v), it
checks if b(v) ≥ b(v). Only in this case, it tries to update µ
by setting µ = min(µ, b(v) + c(v)). Moreover, it (indepen-
dently from the previous check) prunes the search at v (i. e.,
it does not scan outgoing arcs from v), if either v was settled
by the backward search and b(v) + c(v) ≥ min(µ,M), or
minKey(QF ) + minKey(QB) ≥ min(µ,M) holds. The algo-
rithm stops when the forward search reaches t and determines
the cost b(t).

Parallelization.
To get additional speedup, we propose parallelizing the

query in a multicore scenario. We assign different processors
to forward and backward search, where they run indepen-
dently. To minimize µ, each search must access vertex labels
of the opposite search, potentially involving a race condi-
tion. However, as long as reads to vertex labels are atomic,
race conditions can be safely ignored: The correct value µ
will always be determined by the opposite search (at a later
point). Unfortunately, the backward search of BPE-MLD
maintains non-atomic functions as vertex labels. Updating µ
is, therefore, restricted to the backward search (accesses to
labels of the forward search are still atomic). To ensure
correctness, the forward search checks, whenever it scans
a vertex v, if v has already been touched by the backward



search (which is an atomic read). If so, it adds v to a list.
At the end, this list is processed sequentially, checking if any
vertex improves µ. Note that this list is small in practice.

Reachability Flags.
To accelerate long-range queries for which the target is

unreachable, we may additionally precompute reachability
flags: For the topmost level L of the partition, we keep a bit
matrix, whose entry i, j is set iff cell Cj is reachable from cell
Ci. More precisely, we run, for each cell Ci (in parallel), a
Dijkstra on the level-L overlay from all boundary vertices of
cell Ci. It uses lower bounds f

a
as costs. It sets all flags i, j

of the matrix for which there exists a boundary vertex of
cell Cj at distance at most M . During a query we first check
the flag for the pair of cells containing s and t. If it is not
set, we may stop immediately. In practice, storing these bits
requires little additional space.

5. EXPERIMENTS
We implemented all algorithms in C++ using g++ 4.5.1

(flag -O3) as compiler. Experiments were conducted on a
dual 8-core Intel Xeon E5-2670 clocked at 2.6GHz, with
64GiB of DDR3-1600 RAM, 20MiB of L3 and 256KiB of L2
cache. Unless otherwise noted, we ran our implementation
sequentially.

Input Data and Methodology.
Our main test instances are based on the road network of

Europe, kindly provided by PTV AG. Road segments have
associated average speeds and road categories. We obtained
height information for the vertices from the freely available
NASA Shuttle Radar Topography Mission1 (SRTM) data. It
covers large parts of the world with a horizontal resolution
of approximately 90 meters. We filled (rarely) missing data
points by interpolating from neighbors.
Our energy consumption data stems from PHEM (Passen-

ger Car and Heavy Duty Emission Model), developed by the
Graz University of Technology [21]. PHEM is a micro scale
emission model based on backwards longitudinal dynamics
simulation. Beside other applications, PHEM is used to
calculate emissions for passenger cars, heavy and light duty
vehicles for the Handbook Emission Factors (HBEFA) [22].
The HBEFA driving cycles cover a large variety of road cat-
egories, speed limits, traffic situations and slopes. These
cycles were calculated using different EV configurations and
vehicle types to generate average energy consumption values
for all available driving situations. We carefully mapped
them to our network by a heuristic that measures the sim-
ilarity between road segments of the PTV data and the
parameters of PHEM. Finally, we removed all vertices from
the graph where either no height data is available (not even
via sensible interpolation), or which cannot be mapped to
a PHEM road category (such as “private” roads). We ex-
tracted the largest strongly connected component of the
European network (22 198 628 vertices, 51 088 095 arcs).
For our experiments, we use two instances of the PHEM

data. The first, Europe PG-16, is based on a Peugeot iOn
with a battery capacity of 16 kWh, applied to the European
network. The second, Europe EV-85, is an artificial electric
vehicle model [35], for which we assume a larger battery
capacity of 85 kWh (similar to that of the current high-end
1http://www2.jpl.nasa.gov/srtm/

Tesla model). To get the best possible cruising range, we
disabled auxiliary consumers in both instances. Besides ex-
tending the range, this also increases the amount of road
segments where the vehicle is able to recuperate (making
the instances only “harder” for our algorithms): The result-
ing amount of arcs with negative cost is 11.8% and 15.2%
for Europe PG-16 and Europe EV-85, respectively.
As partitioning tool we used PUNCH [8], which is explicitly

developed for road networks and aims at minimizing the num-
ber of boundary arcs. For Europe, we use a 4-level partition
with maximum cell sizes of 26, 210, 214, 218 vertices (val-
ues determined by preliminary experiments). Computing
the partition took 24 minutes. Considering that the road
topology changes rarely (i. e., the partition needs be updated
only when roads are built or (permanently) closed), this is
sufficiently fast in practice. For a detailed evaluation of the
tradeoff between partitioning speed and quality, see [8].

Evaluating Algorithms.
Table 1 reports figures for our algorithms on both Eu-

rope PG-16 and Europe EV-85. Note that since the range of
the electric vehicles PG-16 and EV-85 is restricted, evaluating
random queries (as it is common) would not be meaningful:
For most queries the target vertex would be unreachable.
Instead, we generate queries by first picking a random source
vertex s from which we run a preliminary query with ini-
tial SoC set to 110% of the vehicle’s battery capacity (to
still generate some out-of-range queries). The target ver-
tex t is then picked randomly from the search space of that
query. Accordingly, we do not use reachability flags for the
experiments of Table 1.
We ran 10 000 queries for the MLD algorithms, and 1 000 (a

subset) for LC, Dijkstra and the profile query. SoC queries
assume full battery capacity at s. Less capacity would only
result in faster query times. We report the number of ver-
tex (re)scans and the query time (in milliseconds). Cus-
tomization time (in seconds) depicts, for the label-correcting
algorithm LC, the time to compute the minimum path dis-
tance used to enable the stopping criterion (sc.); for all
Dijkstra-based variants, the time to compute potentials; and
for the MLD variants, the time for both metric customiza-
tion and computing potentials. Finally, we report the total
amount of (metric-dependent) space overhead in bytes per
vertex (B/n).

It is not surprising that the label-correcting approach is the
slowest on both instances. Although the number of vertex
rescans is comparatively low (less than 10%; not shown in
the table), the rather weak stopping criterion, which has
to add an offset to the tentative distance, induces a larger
search space size. However, by comparing the LC variants, we
observe that computing this offset already amortizes after 23
queries on average for EV-85.
The different variants of vertex potentials yield similar

query times. Somewhat surprisingly, Dij-PV has the best
query times, however, with higher variance (available from Fig-
ure 2; the lower average value is mostly induced by long-range
queries, see below for a detailed discussion). Since Dij-PH
has by far the smallest customization time, we use height-
induced potentials for the profile query and all MLD variants.
Profile queries admit—in contrast to time-dependent route
planning [11]—practical running times in our scenario: We
observe a slow down by a factor of less than two over LC.
Regarding MLD, all variants provide query times of below



Table 1: Evaluating our algorithms on both vehicle instances: A Peugeot iOn with a 16 kWh battery (Eu-
rope PG-16) and an artificial vehicle with a 85 kWh battery (Europe EV-85). The column “sc.” indicates
whether a stopping criterion or target pruning rule is applied (•) or not (◦). We also report figures on an
instance from [33]: It uses the geographical distance and height difference of the arcs to model consumption
and assumes unlimited capacity.

Europe PG-16 Europe EV-85 Japan DH-∞
CUSTOMIZING QUERIES CUSTOMIZING QUERIES CUSTOMIZING QUERIES
space time vertex time space time vertex time space time vertex time

Algorithm sc. [B/n] [s] scans [ms] [B/n] [s] scans [ms] [B/n] [s] scans [ms]
LC ◦ — — 393 833 54.5 — — 4471 230 709.6 — — 26 078 917 3 761.8
LC • 0.0 3.86 333 272 46.9 0.0 5.20 3 001 014 486.6 0.0 3.70 13 133 641 1 939.0
Dij-PH • 4.0 0.69 213 765 29.4 4.0 0.70 2 359 140 380.6 4.0 — 12 933 517 1 933.0
Dij-PV • 4.0 3.84 221 368 25.5 4.0 3.91 2 361 997 288.0 4.0 3.89 13 048 081 994.4
Dij-PS • 4.0 8.37 214 666 30.4 4.0 11.01 2 360 646 379.6 4.0 3.01 12 933 031 1 984.8
Prof-PH • 4.0 0.69 260 540 56.6 4.0 0.70 2 904 764 741.2 4.0 — 16 208 904 3 203
Uni-MLD-PH • 13.6 4.32 941 0.5 14.5 5.12 2 410 1.9 7.7 2.06 2 205 1.0
BPE-MLD-PH • 13.6 4.32 929 0.3 14.5 5.12 2 266 1.4 7.7 2.06 2 198 0.8
BDB-MLD-PH • 13.6 4.32 1 203 0.3 14.5 5.12 2 917 1.1 7.7 2.06 2 711 0.7
Dij-PH [33] • — — — — — — — — 4.0 — 14 431 809 6492.6
EVCH [33] • — — — — — — — — 23.0 14 329.87 10 024 44.9
EVCH (scaled) • — — — — — — — — 23.0 8 791.33 10 024 13.4

two milliseconds on both European instances. Customization
only takes about five seconds (when parallelized), enabling
very frequent metric updates for the whole network in a server
scenario; Customization of a single cell (e. g., when only
local updates are required) is much faster and takes about
100ms (not shown in the table). Bidirectional search yields
another, yet small, speedup. We observe that BDB-MLD
slightly outperforms BPE-MLD (by about 15% on average).
Note that depending on the application, bidirectional search
might not pay off: It is run on two cores but the speedup
achieved is less than two. Also note that customization times
of Europe EV-85 are higher than on Europe PG-16. We
attribute this to the larger number of negative arcs in the
former instance. Space consumption is dominated by storing
interpolation points. One can reduce it by removing the
lowest level of the partition for queries (keeping it only to
accelerate customization) [7]: On both European instances
this saves space by a factor of two, while queries are slowed
down by only about 10% on average (not reported in the
table). Furthermore, note that for all x-PH variants, we
include 4B/n space overhead for storing the height-induced
potential Π(v) = γ · h(v) at each vertex. If height values are
assumed to be already available as part of the input, we could
just store the single value γ, and compute Π(v) on-demand
in the algorithm. This would reduce customization space to
about 10B/n on both European instances.

Evaluating Scalability.
Figure 2 analyzes the scalability of our algorithms on

the Europe EV-x instance using the Dijkstra rank method [10].
Because of negative arc costs, we use the label-correcting algo-
rithm for computing ranks: It orders the vertices by the time
they were last extracted from the priority queue, from which
ranks are determined. Moreover, to get meaningful results,
we increase battery capacity from 85 to 1 000 kWh (which
corresponds to a cruising range of roughly 5 000 km, enough

to make all our random queries in-range). We report Dij-
PH, Dij-PV, Uni-MLD-PH, and BDB-MLD-PH. Values for
each rank are obtained from 1 000 random queries. We
observe that our MLD-based algorithms are consistently
faster than Dijkstra’s algorithm. Except for very local
queries (below rank 28), bidirectional search always pays
off. Interestingly, Dij-PV has much higher variance com-
pared to Dij-PH, and significantly lower query times for
long-range queries. Recall that potentials of Dij-PV are
determined by distances from a single vertex, which seems
to result in a highly distorted search space. We conclude
that using our most sophisticated method, BDB-MLD-PH,
we achieve average (respective maximal) query times of un-
der 4.2ms (6.9ms), for any rank value, while Uni-MLD-PH
still stays below 7.9ms (10.7ms).
Figure 3 shows running times subject to Dijkstra rank

for the instance Europe PG-16. In contrast to Table 1 and
Figure 2, we enable reachability flags, keep battery capacity
at 16 kWh, and do not constrain query distance. Hence, the
plot shows the effect of the flags on long-distance queries
for MLD variants. Starting with rank 219, query times
drop gradually. Above rank 222, the target is almost never
reachable, yielding query times of under 0.01ms on average.
The topmost level of our partition contains 99 cells, hence,
reachability flags require 992 bits (less than 10 kb) of space
in total. Computing them took less than 100ms. Similarly
to Figure 2, Dij-PV is consistently slower and has a higher
variance than Dij-PH in most cases, except for high ranks.

Comparison to Contraction Hierarchies.
At the time of writing, the fastest available approach

that computes energy-optimal routes for electric vehicles is
based on Contraction Hierarchies [17, 33]. To compare our
algorithms with that method, we also ran experiments on the
largest instance used in [33], which was kindly given to us
by the authors. In the following, we refer to their approach



25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1
10

10
0

1
10

10
0

0.
01

0.
1

0.
1

0.
01Dij-PH

Dij-PV
Uni-MLD
BDB-MLD

Rank

R
un

ni
ng

Ti
m

e
[m

s]

Figure 2: Running times subject to Dijkstra rank for our algorithms on the Europe EV-1000 instance. Smaller
ranks indicate more local queries. Reachability flags for the MLD algorithms are disabled and battery capacity
is increased to the point where it does not constrain vehicle range.

as EVCH (as in Electric Vehicle Contraction Hierarchies)
and to their instance by Japan DH-∞. It is based on an
OpenStreetMap (OSM) export of the Japan road network,
augmented with SRTM data. It has 25 970 678 vertices
and 54 141 580 arcs. Note that these figures are slightly higher
than for our European instance, however, OSM networks
are notorious for having exceptionally many vertices of low
degree that (only) model geometry. To account for that, we
use a 4-level partition with increased maximum cell sizes of
27, 211, 215, 219 vertices. Using PUNCH [8], computing the
partition took less than half an hour.
Instead of detailed realistic vehicle data the instance uses

a simple consumption model: Given an arc a = (u, v), its
cost is assumed to depend on horizontal distance and vertical
heights, only. More precisely, ca = κ·dist(a)+λ·(h(v)−h(u)),
if h(v)−h(u) ≥ 0; ca = κ·dist(a)+α·(h(v)−h(u)), otherwise.
According to [33], we set κ = 0.02, λ = 1, α = 0.25, and
assume very large battery capacity. As a result, all queries are
in-range, and reachability flags are disabled in our algorithm.
The amount of arcs with negative weight is 9.0%, which
is less than for Europe (even though Japan is comparably
mountainous). The reason for this is the simpler consumption
model, given above parameters. Note that, when applying
this model to the European network, we observe that the
amount of negative arcs also drops from 15.2% for EV-85 to
only 4.4%.
Table 1 also reports results on Japan DH-∞. It shows

figures for the Dijkstra and EVCH implementations reported
in [33], where a height-induced potential follows from the
model (i. e., γ = α). Therefore, it does not require any
customization time. Since these results were obtained on
slower machines, we report scaled timings (the bottom row
of the table). We know of two typical approaches to scale
running times between machines: (a) Using running times
of a common baseline algorithm, and (b), having access to
the same hardware for scaling experiments. Unfortunately,
the authors of [17, 33] use more than one machine (an AMD
Opteron 6172 with 2.1GHz for preprocessing, and an In-
tel i3-2310M with 2.1GHz for queries) without reporting

scaling factors themselves. Therefore, we have to resort to
both scaling approaches. For EVCH’s query time, we scale
very conservatively based on their and our Dij-PH imple-
mentation (assuming that both implementations are equally
well engineered). This maintains their reported speedup.
Since we have an Opteron 6172 available, scaling EVCH’s
preprocessing time is done by our own scaling experiment.
Although not specifically mentioned in [17, 33], we infer that
their Dijkstra implementation uses a stopping criterion: The
search space reported in [33] is about 56% of the graph size.
At first glance, Japan DH-∞ seems to be harder than

Europe: All LC and Dij-x variants scan more vertices and
have higher query times (Dij-PV still being consistently
faster), which is due to the larger graph size and larger range
of (random) queries. However, we observe that the MLD
variants all consistently perform better on Japan DH-∞
than on Europe. Recall that OSM modeling overhead has
an impact only for the lowest level of the partition.
In comparison to EVCH, our query is faster by an order of

magnitude, while having a factor of 4–5 smaller search space
size. At the same time, our (metric-dependent) preprocess-
ing (customization) is faster by more than a factor of 4 000,
while requiring a third of the space. Even when run on a
single core, which still only requires 20.98 s, customization of
MLD is more than 400 times as fast as EVCH preprocessing.
Note that customizing a single arc only requires 18.7ms for
our approach (not reported in the table).
Clearly, some of these performance differences might be

due to differently tuned implementations. Yet, our findings
add to previous observations that separator-based approaches
are more robust for non-traveltime metrics than Contraction
Hierarchies [7].

6. FINAL REMARKS
In this paper we studied computing energy-optimal routes

for electric vehicles, for which key challenges include nega-
tive costs (recuperation), battery capacity constraints, and
frequently changing metrics. Based on the Customizable
Route Planning (CRP) approach, our presented algorithms
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Figure 3: Running times subject to Dijkstra rank for our algorithms on the Europe PG-16 instance. We
enable reachability flags for the MLD algorithms. As in Figure 2, smaller ranks indicate more local queries.

handle these challenges in a sound manner. In particular,
we introduced an algorithm to compute profile queries (a
necessary ingredient to CRP), and a nontrivial adaption of
bidirectional search. Experiments using real world consump-
tion data on the continental network of Europe indicate that
our approach incorporates new metrics within seconds, after
which queries can be answered in 1.1ms or less, on average—
making it the fastest available technique for electric vehicle
route planning.
Future work includes integrating turn costs (in terms of

energy consumption) and recent ideas from [12] into our
algorithm. Also, building on results from [32], we are inter-
ested in adding more criteria, such as travel time, to our
approach (e. g., via Pareto-optimization) to trade off speed
and energy consumption (electric vehicles consume less en-
ergy when driven slower). We are also interested in adapting
to mobile dynamic scenarios [18]. Furthermore, re-applying
ideas from this work to EVCH might be worthwhile.
Finally, we thank Raphael Luz for providing the consump-

tion data [22, 35], Renato Werneck for running PUNCH [8],
and Moritz Kobitzsch for interesting discussions. We also
thank Christian Schulz and Dennis Luxen for providing BUF-
FOON [28] and OSRM [26], respectively, which we used in
our preliminary experiments. We thank Sabine Storandt for
making Japan DH-∞ available to us, and Konstantinos De-
mestichas for providing sample data on energy consumption
of electric vehicles.
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