
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 023

Robust Routing in Urban Public
Transportation

Kateina Bhmov, Mat Mihalk, Tobias Prger, Rastislav rmek, Peter Widmayer

September 2013





Robust Routing in Urban Public Transportation:
How to find reliable journeys based on past observations ∗

Kateřina Böhmová, Matúš Mihalák, Tobias Pröger, Rastislav
Šrámek, and Peter Widmayer

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{kboehmov,mmihalak,tproeger,rsramek,widmayer}@inf.ethz.ch

Abstract
We study the problem of robust routing in urban public transportation networks. In order to
propose solutions that are robust for typical delays, we assume that we have past observations of
real traffic situations available. In particular, we assume that we have “daily records” containing
the observed travel times in the whole network for a few past days. We introduce a new concept to
express a solution that is feasible in any record of a given public transportation network. We adapt
the method of Buhmann et al. [4] for optimization under uncertainty, and develop algorithms
that allow its application for finding a robust journey from a given source to a given destination.
The performance of the algorithms and the quality of the predicted journey are evaluated in a
preliminary experimental study. We furthermore introduce a measure of reliability of a given
journey, and develop algorithms for its computation. The robust routing concepts presented in
this work are suited specially for public transportation networks of large cities that lack clear
hierarchical structure and contain services that run with high frequencies.
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1 Introduction

We study the problem of routing in urban public transportation networks, such as tram and
bus networks in large cities, focusing on the omnipresent uncertain situations when (typical)
delays occur. In particular, we search for robust routes that allow reliable yet quick passenger
transportation. We think of a “dense” tram network in a large city containing many tram
lines, where each tram line is a sequence of stops that is served repeatedly during the day,
and where there are several options to get from one location to another. Such a network
usually does not contain clear hierarchical structure (as opposed to train networks), and
each line is served with high frequency. Given two tram stops a and b together with a latest
arrival time tA, our goal is to provide a simple yet robust description of how to travel in the
given network from a to b in order to arrive on time tA even in the presence of typical delays.
We base our robustness concepts on past traffic data in a form of recorded timetables – the
actually observed travel times of all lines in the course of several past days. If no delays
occur, such a recorded timetable corresponds to the scheduled timetable for that day.
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2 Robust Routing in Urban Public Transportation

The standard approach to describe a travel plan from a to b in a given tram network is to
specify, according to a scheduled timetable, the concrete sequence of vehicles together with
transfer stops and departure/arrival times for each transfer stop. Such a travel plan may
look like this: Take the tram 6 at 12:33 from stop a and leave it at 12:47 at transfer stop s;
then take the tram 10 at 12:51 from s and leave it at 12:58 at b. However, such a travel plan
may become infeasible on a concrete day due to delays: Imagine a situation where the tram
6 left a at 12:33, but arrived to s only at 12:53, and the tram 10 leaving s at 12:51 was on
time. Then, the described travel plan would bring the passenger to stop s but it does not
specify how to proceed further in order to arrive to b.

We observe that the standard solution concepts (such as paths in a time-expanded graph)
are not suitable for our setting. We introduce a new concept to express a solution, which we
call a journey, that is feasible in any recorded timetable of a given transportation network
assuming the timetable to be periodic. A journey specifies an initial time tD and then only a
sequence of transportation lines 〈l1(tram), l2(bus), . . . , lk(tram)〉 together with transfer stops
〈s1, . . . , sk−1〉. This travel plan suggests to start waiting at a at time tD, take the first tram
of line l1 that comes and travel to stop s1, then change to the first coming bus of line l2, etc.
Since we assume that the frequency of vehicles serving each line is high, such a travel plan is
not only feasible in our setting but also reasonable, and provides the passenger with all the
necessary information. We provide algorithms to efficiently compute these journeys.

Equipped with the introduced solution concept of a journey, we can easily adapt the
method of Buhmann et al. [4] for optimization under uncertainty, and apply it to identify
robust travel plans. A key ingredient of the method is the ability to count the number of
(possibly exponentially many) “good” solutions. Our solution concept allows us to develop
efficient algorithms to compute the number of all journeys from a to b that depart after the
time tD and arrive before the time tA.

Finally, we suggest an alternative simple measure for reliability of a given journey,
expressed simply as the fraction of recorded timetables where the journey was successful and
allowed to arrive at the destination on time. We provide efficient algorithms for computation
of this measure.

2 Related Work

The problem of finding a fastest journey (according to the planned timetable) using public
transportation has been extensively studied in the literature. Common approaches model
the transportation network as a graph and compute a shortest path in this graph (see [12]
for a survey). Various improvements have been developed, and experimental studies suggest
that these can also be used in practice (see, e.g., [2, 5, 14]). Recent approaches avoid the
construction of a graph and process the timetable directly [6, 7]. For example, Delling et
al. [6] describe an approach which is centered around transportation lines (such as train or
bus lines) and which can be used to find all pareto-optimal journeys when the arrival time
and the number of stops are considered as criteria. Bast et al. [1] observe that for two given
stops, we can find and encode each sequence of intermediate transfer stations (i.e., stations
where we change from one line to another) that can lead to an optimal route. The set of
these sequences of transfers is called transfer pattern. These patterns can be precomputed,
leading to very fast query times. These approaches are similar to our approach in the sense
that they try to explicitly exploit the problem structure (e.g., by considering lines) instead
of implicitly modelling all properties into a graph.

For computing robust journeys in public transportation, stochastic networks have been
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Figure 1 The line l1 is a sequence of stops 〈. . . , s0, a, s1, c, d, s2, . . . 〉. The line l4 =
〈. . . , s2, d, c, s1, b, s0, . . . 〉 that goes in the opposite direction to l1 is considered to be a differ-
ent line. In this example, both a / l1 and a / l4 hold, but a / l2 does not. Similarly, s1 / s2 / l1 holds,
but s1 / s2 / l4 does not. The set l1 ∩ l2 of all stops common to l1 and l2 is {s0, s1, s2}. Moreover,
when travelling from a to b using a route 〈l1, l2, l3〉, this network is an example where not every
stop in l1 ∩ l2 is suitable for changing from l1 to l2: We cannot choose s0 as transfer stop since it is
served before a. If s2 was chosen, then l3 can never be reached without travelling back. Thus, the
only valid stop to change the line is s1.

studied [3, 9, 13], where the delays between successive edges are random variables. Dibbelt
et al. [7] study the case when stochastic delays on the vehicles are given. In a situation
when timetables are fixed, Disser et al. [8] used a generalization of Dijkstra’s algorithm to
compute pareto-optimal multi-criteria journeys. They define the reliability of a journey as a
function depending on the minimal time to change between two subsequent trains, and use
it as an additional criterion. Müller-Hannemann and Schnee [11] introduced the concept of a
dependency graph for a prediction of secondary delays caused by some current primary delays,
which are given as input. They also show how to compute a journey that is optimal with
respect to the predicted delays. Goerigk et al. [10] consider a given set of delay scenarios
for every event, and adapt strict robustness to it, i.e. they aim to compute a journey that
arrives on time for every scenario. Furthermore, the concept of light robustness is introduced,
which aims to compute a journey that maximizes the number of scenarios in which the travel
time of this journey lies at most a fixed time above the optimum. Strict robustness requires
a feasible solution for every realization of delays for every event. This is quite conservative,
as in reality not every combination of event delays appears. Our approach tries to avoid this
by learning from the typical delay scenarios as recorded for each individual day.

3 Modeling issues

3.1 Model

Stops and lines Let S be a set of stops, and L ⊂
⋃|S|
i=2 Si be a set of lines (e.g., bus lines,

tram lines or lines of other means of transportation). The following basic definitions are
illustrated in Figure 1. Every line l ∈ L is a sequence of S(l) stops 〈s(l)

1 , . . . , s
(l)
S(l)〉, where,

for every i ∈ {1, . . . , S(l)− 1}, the stop s(l)
i is served directly before s(l)

i+1 by the line l. We
explicitly distinguish two lines that serve the same stops but have opposite directions (these
may be operated under the same identifier in reality). For a stop s ∈ S and a line l ∈ L,
we write s / l if s is a stop on the line l, i.e. if there exists an index i ∈ {1, . . . , S(l)} such
that s = s

(l)
i . Furthermore, for two stops s1, s2 ∈ S and a line l ∈ L we write s1 / s2 / l if

both s1 and s2 are stops on l and s1 is served before s2, i.e. if there exist indices i, j ∈ N,
1 ≤ i ≤ S(l)− 1, i+ 1 ≤ j ≤ S(l) such that s1 = s

(l)
i and s2 = s

(l)
j . For two lines l1, l2 ∈ L,

we define l1 ∩ l2 to be the set of all stops s ∈ S that are served both by l1 and l2.
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Trips and timetables While the only information associated with a line itself are its
consecutive stops, it usually is operated multiple times per day. Each of these concrete
realizations that departs at a given time of the day is called a trip. With every trip τ we
associate a line L(τ) ∈ L. By L−1(l) we denote the set of all trips associated with a line
l ∈ L. For a trip τ and a stop s ∈ S, let A(τ, s) be the arrival time of τ at stop s, if s / L(τ).
Analogously, let D(τ, s) be the departure time of τ at s. In the following, we assume time
to be modelled by integers. For a given trip τ , we require A(τ, s) ≤ D(τ, s) for every stop
s ∈ L(τ). Furthermore we require D(τ, s1) ≤ A(τ, s2) for every two stops s1, s2 ∈ S with
s1 / s2 / L(τ). A set of trips is called a timetable. We distinguish between
1. the planned timetable T . We assume it to be periodic, i.e., every line realized by some

trip τ will be realized by a later trip τ ′ again (probably not on the same day).
2. recorded timetables Ti that describe how various lines were operated during a given time

period (i.e., on a concrete day or during a concrete week). These recorded timetables are
concrete executions of the planned timetable.

In the following, timetable refers both to the planned as well as to a recorded timetable.
Goal In the following, let a, b ∈ S be two stops, m ∈ N0 be the maximal allowed number of
line changes, and tA ∈ N be the latest arrival time. A journey consists of a departure time tD,
a sequence of lines 〈l1, . . . , lk〉, k ≤ m+ 1 and a sequence of transfer stops 〈s(1)

CH, . . . , s
(k−1)
CH 〉.

The intuitive interpretation of such a journey is to start at stop a at time tD, take the first
line l1 (more precisely, the first available trip of the line l1), and for every i ∈ {1, . . . , k − 1},
leave li at stop s(i)

CH and take the next arriving line li+1 immediately. Our goal is to compute
a recommendation to the user in form of one or more (robust) journeys from a to b that will
likely arrive on time (i.e., before time tA) on a day for which the concrete travel times are not
known yet. We formalize the notion of robustness later. We note that for the convenience of
the user, one should handle two different lines l1 and l2 operating between two stops s1 and
s2 as one (virtual) line, and provide recommendations of the form “in s1, take the first line
l1 or l2 to s2, etc.”. For the sake of simplicity we do not pursue this generalization further,
but will consider this in the future.
Routes Let k ∈ {1, . . . ,m + 1} be an integer. A sequence of lines r = 〈l1, . . . , lk〉 ∈ Lk is
called a feasible route from a to b if there exist k + 1 stops s0 := a, s1, . . . , sk−1, sk := b such
that si−1 / si / li for every i ∈ {1, . . . , k}, i.e., if both si−1 and si are stops on line li, and
si−1 is served before si on line li. Notice that on a feasible route r ∈ Lk we need to change
the line at k − 1 transfer stops. Let

Rmab = {r ∈ L ∪ L2 ∪ · · · ∪ Lm+1 | r is a feasible route from a to b} (1)

be the set of all feasible routes from a to b using at most m transfer stops. If a, b and m
are clear from the context, for simplicity we just write R instead of Rmab. Notice that by
definition, a line l may occur multiple times in a route. This is reasonable because there might
be two transfer stops s, s′ on l and one or more intermediate lines that travel faster from s

to s′ than l does. Additionally, notice that a route does not contain any time information.

3.2 Computation of Feasible Routes

Input data In this section we describe an algorithm that, given a set of stops S and a set
of lines L, finds the set R of all feasible routes that allow to travel from a given initial stop a
to a given destination stop b using at most m transfer stops (also called transfers). Notice
that to compute R we only need the network structure, no particular timetable is necessary.
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Figure 2 Lines lj and l′j have common stops s3, s6, s11, s14, and s15. The ordered set Ijj′ =
Q(lj , l′j) consists of the pairs {(s3, s3), (s15, s11), (s6, s6)}. Thus, the last stop in the last interval
of Ijj′ is the stop s6. On the other hand, the ordered set Ij′j = Q(l′j , lj) consists of the pairs
{(s3, s3), (s6, s6), (s11, s15)}. Now, imagine that the current transfer stop sq for a partial path P =
〈l1, . . . , lj〉 is s2, then the stop s3 is the current transfer stop s′

q for a partial path P ′ = 〈l1, . . . , lj , l′j〉.
However, observe that if sq is s12, then s′

q needs to be s6.

Preprocessing the input We preprocess the input data and construct data structures to
allow efficient queries of the following types:
1. Q(l, s): Compute the position of s on l. Given a line l = 〈s1, . . . , s|S(l)|〉, Q(l, s) returns j

if s is the j-th stop on l, i.e., if s = sj , or 0 if s is not served by l.
2. Q(l, si, sj): Determine whether si is served before sj on l. Given a line l and two stops

si, sj , Q(l, si, sj) returns TRUE iff si, sj / l and si / sj / l.
3. Q(li, lj): Determine li ∩ lj (i.e., the stops shared by li and lj) in a compact, ordered

format. Given two lines li, and lj , Q(li, lj) returns the set li ∩ lj of stops shared by these
lines. We encode li ∩ lj into an ordered set Iij of pairs of stops with respect to li in such
a way that (sq, sr) ∈ Iij indicates that li and lj share the stops sq, sr, and all the stops
in between on the line li (independent of their order on lj). Thus, Q(li, lj) outputs the
described sorted set Iij of pairs of stops. The motivation to compress li ∩ lj into Iij is
that, in practice, there may be many stops shared by li and lj , but only a small number
of contiguous intervals of such stops. Notice that Q(li, lj) doesn’t need to be equal to
Q(lj , li), nor the sequence in reverse order; an example is given in Figure 2.

Notice that these queries can be answered in expected constant time if implemented using
suitable arrays or hashing tables.
Graph of line incidences The function Q(li, lj) induces the following directed graph G. The
set V of vertices of G corresponds to the set of lines L. There is an edge from a vertex (line)
li to a vertex lj if and only if Q(li, lj) 6= ∅. Then, Q(li, lj) is represented as a tag of the edge
(li, lj). We construct and represent the graph G as adjacency lists.
Preliminary observations Given two stops a and b, and a number m, we want to find all
routes R that allow to travel from a to b using at most m transfers in the given public
transportation network described by a set of stops S and a set of lines L. Notice that each
such route r = 〈l1, . . . , lk〉 ∈ Lk with 0 < k ≤ m+ 1 has the following properties.
1. Both Q(l1, a) and Q(lk, b) are nonzero (i.e., a / l1, and b / lk).
2. The vertices l1, . . . , lk form a path in G (i.e., li ∩ li+1 6= ∅ for every i = 1, . . . , k − 1).
3. There exists a sequence of stops a = s0, s1, . . . , sk−1, sk = b such that Q(li, si−1, si) is

TRUE (i.e., si−1 / si / li) for every i = 1, . . . , k.
These observations lead to the following algorithm to find the set of routes R.
All routes algorithm For the stop a, determine the set La of all lines passing through a.
Then explore the graph G from the set La of vertices in the following fashion. For each
vertex l1 ∈ La, perform a depth-first search in G up to the depth m, but do not stop when
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finding a vertex that has already been found earlier. In each step, try to extend a partial
path 〈l1, . . . , lj〉 to a neighbor l′j of lj in G. Keep track of the current transfer stop sq. This
is a stop on the currently considered line lj such that sq is the stop with the smallest position
on lj at which it is possible to transfer from lj−1 to lj , considering the partial path from l1 to
lj−1. In other words, sq is the stop on the considered route where the line lj can be boarded.
Each step of the algorithm is characterized by a search state: a partial path P = 〈l1, . . . , lj〉,
and a current transfer stop sq that allowed the transfer to line lj . The initial search state
consists of the partial path P = 〈l1〉 and the current transfer stop a. More specifically, to
process a search state with the partial path P = 〈l1, . . . , lj〉, and the current transfer stop sq,
perform the following tasks:
1. Check whether the line corresponding to the vertex lj contains the stop b and whether

sq is before b on lj . If this is the case (i.e., the query Q(lj , sq, b) returns TRUE), then the
partial path P corresponds to a feasible route and is output as one of the solutions in R.

2. If the partial path P contains at most m− 1 edges (thus the corresponding route has at
most m− 1 transfers, and can be extended), then for each neighbor l′j of lj check whether
extending P by l′j is possible (and if so, update the current transfer stop) as follows. Let
Ijj′ = Q(lj , l′j) be the set of pairs of stops sorted as described in the previous section.
Recall that each pair (su, sv) ∈ Ijj′ encodes an interval of one or several consecutive stops
on lj that are also stops on the line l′j . Let sz be the last stop in the last interval of Ijj′ .
Similarly, let Ij′j = Q(l′j , lj). If Q(lj , sq, sz) is TRUE, then sq / sz / lj , and the path P can
be extended to l′j .
a. We determine the current transfer stop s′q for l′j by considering the pairs/intervals of
Ij′j in ascending order and deciding whether the position of sq on the line lj is before
one of the endpoints of the currently considered interval. We refer to Figure 2 for a
nontrivial case of computing of the current transfer stop.

b. Perform the depth search with the search state consisting of the partial path P ′ =
〈l1, . . . , lj , l′j〉 and the current transfer stop s′q.

Otherwise, if Q(lj , sq, sz) is FALSE, it is not possible to extend P to l′j .
The theoretical running time of the algorithm is O(∆m), where ∆ is the maximum degree
of G. However, we believe that in practice the actual running time will rather linearly
correspond to the size of the output O(m|R|). On real-world data, the algorithm performs
reasonably fast (see section 6 for details).

3.3 Computing the earliest arriving journey

Recursive computation As previously stated, let a ∈ S be the initial stop, b ∈ S be the
destination stop, ε(s, l, l′) be the minimum time to change from line l to line l′ at station
s, and tA ∈ N be the latest arrival time. In the previous section we showed how the set R
of all feasible routes from a to b can be computed. However, instead of presenting just a
route r ∈ R to the user, our final goal is to compute a departure time t0 and a journey
that arrives at b before time tA. For the following considerations, we assume the underlying
timetable (either the planned or a recorded timetable) to be fixed. Given a, b ∈ S, an initial
departure time t0 ∈ N, and a route r = 〈l1, . . . , lk〉 ∈ R, a journey along r that arrives as
early as possible can be computed as follows. We start at a at time t0 and take the first line
l1 that arrives. Then we compute an appropriate transfer stop s ∈ l1 ∩ l2 (that is served both
by l1 as well as by l2) and the arrival time t1 at s, leave l1 there and compute recursively
the earliest arrival time when departing from s at time at least t1 + ε(s, l1, l2), following
the route 〈l2, . . . , lk〉. Notice that the selection of an appropriate transfer stop s is the only
non-trivial part due to mainly two reasons:
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1. The lines l1 and l2 may operate with different speeds (e.g., because l1 is a fast tram while
l2 is a slow bus), or l1 and l2 separate at a stop s1 and join later again at a stop s2 but
the overall travel times of l1 and l2 differ between s1 and s2. Depending on the situation,
it may be better to leave l1 as soon or as late as possible, or anywhere inbetween.

2. The lines l1 and l2 may separate at a stop s1 and join later again at a stop s2. If all
transfer stops in l2 ∩ l3 are served by l2 before s2, then leaving l1 at s2 is not an option
since l3 is not reachable anymore. See Figure 1 for a visualization.

The idea now is to find the earliest trip of line l1 that departs from a at time t0 or later,
iterate over all stops s ∈ l1 ∩ l2, and compute recursively the earliest arrival time when
continuing the journey from s having a changing time of at least ε(s, l1, l2). Finally, we
return the smallest arrival time that was found in one of the recursive calls.

Issues and improvement of the recursive algorithm An issue with this naïve implementa-
tion is the running time, which might be exponential in k in the worst-case (if |li ∩ li+1| > 1
for Ω(k) many i ∈ {1, . . . , k − 1}). Let τ and τ ′ be two trips with L(τ) = L(τ ′). If τ leaves
before τ ′ at some stop s, we assume that it will never arrive later than τ ′ at any subsequent
stop s′, s / s′ / L(τ), i.e. consecutive trips of the same line do not overtake. For a line l ∈ L
and a set of trips Tl ⊆ L−1(l), it follows that taking the earliest trip in Tl never results in a
later arrival at b than taking any other trip from Tl. Furthermore, a trip τ ∈ Tl is operated
earlier than a trip τ ′ ∈ Tl iff A(τ, s) < A(τ ′, s) for any stop s / l.

Thus, we can iterate over some appropriate stops in l1 ∩ l2 to find the earliest reachable
trip associated with l2. We just need to ignore those stops where changing to l3 is no longer
possible (see Figure 1 for an example).

Computing appropriate transfer stops The problem to find these appropriate stops can be
solved by first sorting l1∩ l2 = {s1, . . . , sn} such that sj /sj+1 / l1 for every j ∈ {1, . . . , n−1}.
Obviously, all stops that appear before a on line l1 cannot be used for changing to l2. This
problem can easily be solved by considering only those stops sj where a/sj /l1. Unfortunately,
the last m ≥ 0 stops sn−m+1, . . . , sn might also not be suitable for changing to l2 because
they may prevent us later to change to some line lj (e.g., if all stops of l2 ∩ l3 are served
before sn−g+1, . . . , sn on l2, then changing to l3 is no longer possible). We solve this problem
by precomputing (the index of) the last stop sj where all later lines are still reachable. This
can be done backwards: we start at b, order the elements of lk ∩ lk−1 as they appear on
line lk, and find the last stop that is served before b on lk. We recursively continue with
l1, . . . , lk−1 and use the stop previously computed as the stop that still needs to be reachable.

Iterative algorithm The improved algorithm first iterates over i ∈ {1, . . . , k − 1}, and uses
the aforementioned algorithm to precompute the index last[i] of the last stop where changing
from li to li+1 is still possible (with respect to the route 〈l1, . . . , lk〉). After that, for every
i ∈ {1, . . . , k − 1}, we iterate over the appropriate transfer stops s ∈ li ∩ li+1 where changing
to li+1 is possible, and find among those the stop s(i)

CH where the earliest trip τi+1 associated
with line li+1 departs. Finally we obtain a sequence of trips τ1, . . . , τk along with transfer
stops s(0)

CH := a, s
(1)
CH, . . . , s

(k)
CH to change lines. Since we gradually compute the earliest trips

τi for each of the lines li, the earliest time to arrive at b is simply A(τk, b).
Let n = max{|li ∩ li+1|}. Given a line l ∈ L, a station s ∈ S and a time t0 ∈ N, let f be

the time to find the earliest trip τ with L(τ) = l und D(τ, s) ≥ t0 (this time depends on the
concrete implementation of the timetable). It is easy to see that the running time of the
above algorithm is bounded by O(kn(logn+ f)).
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EarliestArrival(a, b, t0, 〈l1, . . . , lk〉)

1 last[k]← b

2 for i← k, . . . , 2 do
3 Order the elements of li ∩ li−1 = {s1, . . . , sn} s.t. sj / sj+1 / li−1 ∀j ∈ {1, . . . , n− 1}.
4 last[i− 1]← max{j ∈ {1, . . . , n} | sj / last[i] / li}
5 τ1 ← arg minτ∈L−1(l1){D(τ, a) | D(τ, a) ≥ t0}; s

(0)
CH ← a

6 for i← 1, . . . , k − 1 do
7 Order the elements of li ∩ li+1 = {s1, . . . , sn} s.t. sj / sj+1 / li ∀j ∈ {1, . . . , n− 1}.
8 τi+1 ← null; s

(i)
CH ← null; A

(i+1)
sn ←∞

9 for j ← 1, . . . , last[i] do
10 if s(i−1)

CH / sj / li and sj / last[i+ 1] / li+1 then
11 τ ′ ← arg minτ∈L−1(li+1){D(τ, sj) | D(τ, sj) ≥ A(τi, sj) + ε(sj , li, li+1)}
12 if A(τ ′, sn) < A

(i+1)
sn then τi+1 ← τ ′; s

(i)
CH ← sj ; A

(i+1)
sn ← A(τ ′, sn)

13 return A(τk, b)

4 Maximizing the Unexpected Similarity

Computing the optimum journey for a fixed timetable Given two stops a, b ∈ S and a
departure time t0 ∈ N, we can already compute the earliest arrival of a journey from a to b
starting at time t0. From now on, we aim to compute the latest departure time at a when
the latest arrival time tA at b is given. For this purpose we present an algorithm that sweeps
backwards in time and uses the previous algorithm Earliest-Arrival. This sweepline
algorithm will later be extended to count journeys (instead of computing a single one) and
can be used for finding robust journeys, i.e. journeys that are likely to arrive on time.

The sweepline algorithm works as follows. We consider the trips departing at stop a

before time tA, sorted in reverse chronological order. Everytime we find a trip τ of any line
departing at some time t0, we check whether there exists a route r = 〈L(τ), l2, . . . , lk〉 ∈ R
that starts with the line L(τ). If yes, then we use the previous algorithm to compute the
earliest arrival time at b when we depart at a at time t0 and follow the route r. If the
time computed is not later than tA, we found the optimal solution and stop the algorithm.
Otherwise we continue with the previous trip departing from a.
Finding robust journeys We will now describe how to compute robust journeys using the
approach of Buhmann et al. [4]. We stress up front that this is “learning”-style algorithm
and that it, in particular, does not specifically aims at optimizing some “robustness” criterion
(such as the fraction of successes in the recorded timetables). Let a, b ∈ S be the departure
and the target stop of the journey, tA be the latest arrival time at b, and T be a set of
recorded timetables for comparable time periods (e.g., daily recordings for the past Mondays).
For a timetable T ∈ T and a value γ, the approximation set Aγ(T ) contains a route r ∈ R
iff there exists a journey along the route r that starts at a at time tA − γ or later and arrives
at b at time tA or earlier (both times refer to timetable T ). The major advantage of this
definition over classical approximation definitions (such as multiplicative approximation) is
that we can consider multiple recorded timetables at the same time, and that the parameter
γ still has a direct interpretation as the time that we depart before tA. Especially, if we
consider approximation sets Aγ(T1), . . . , Aγ(Tk) for T1, . . . , Tk ∈ T , every set contains only
routes that appear in the same time period and are therefore comparable among different
approximation sets.
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Figure 3 An example with five lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 (solid) and r2 = 〈4, 5〉
(dotted). The x-axis illustrates the stops {a, s1, s2, s3, b}, whereas the y-axis the time. If a trip
leaves a stop sd at time td and arrives at a stop sa at time ta, it is indicated by a line segment from
(sd, td) to (sa, ta). We have µTγ (r1) = 3 and µTγ (r2) = 1.

To identify robust routes when only two timetables T1, T2 ∈ T are given, we consider
Aγ(T1) ∩Aγ(T2): the only chance to find a route that is likely to be good in the future is a
route that was good in the past for both recorded timetables. The parameter γ determines
the size of the intersection: if γ is too small, the intersection will be empty. If γ is too large,
the intersection contains many (and maybe all) routes from a to b, and not all of them will
be a good choice. Assuming that we knew the optimal parameter γOPT, we could pick a
route from AγOPT(T1) ∩ AγOPT(T2) at random. Buhmann et al. [4] suggest to set γOPT to
the value γ that maximizes the so-called similarity

Sγ = |Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)| . (2)

Notice that up to now we did not consider how often a route is realized by a journey in a
recorded timetable. This is undesirable from a practical point of view: when we pick a route
from AγOPT(T1) ∩ AγOPT(T2) at random, the probability to obtain a route should depend
on how frequently it is realized. Therefore we change the definition of Aγ(T ) to a multiset
of routes, and Aγ(T ) contains a route r as often as it is realized by a journey starting at
time tA − γ or later, and arriving at time tA or earlier. Figure 3 shows an example with five
lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 and r2 = 〈4, 5〉. We have µTγ (r1) = 3: taking
the second 1 and the second 2 (from above) as well as taking the third 1 and the second 2
are counted as different journeys since the departure times at a differ. On the other hand,
by our definition of journey we have to take the first occurence of a line that arrives, thus
taking the first 1 and waiting for the second 2 is not counted.

Now the approximation set Aγ(T ) can be represented by a function µTγ : R → N0, where
for a route r ∈ R, µTγ (r) is the number of journeys starting at time tA − γ or later, arriving
at time tA or earlier and following the route r. Thus, we have |Aγ(T )| =

∑
r∈R µ

T
γ (r), and

for two recorded timetables T1, T2, we need to compute

γOPT = arg max
γ

∑
r∈Rmin(µT1

γ (r), µT2
γ (r))(∑

r∈R µ
T1
γ (r)

)
·
(∑

r∈R µ
T2
γ (r)

) . (3)

After computing the value γOPT, we pick a route r from AγOPT(T1) ∩AγOPT(T2) at random
according to the probability distribution defined by

pr :=
min(µT1

γOPT(r), µT2
γOPT(r))∑

r∈Rmin(µT1
γOPT(r), µT2

γOPT(r))
, (4)
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and search in the planned timetable for a journey from a to b that departs at time tA− γOPT
or earlier, and that arrives at time tA or earlier.
Computing the similarity For i ∈ {1, 2}, we represent the function µTiγ by an |R|-dimensional
vector µi such that µi[r] = µTiγ (r) for every r ∈ R. We can compute the value γOPT by a
simple extension of the aforementioned sweepline algorithm. The modified algorithm again
starts at time tA, and considers all trips in T1 and T2 in reverse chronological order. The
sweepline stops at every time when one or more trips in T1 or in T2 depart. Assume that
the sweepline stops at time tA − γ, and assume that it stopped at time tA − γ′ > tA − γ in
the previous step. Of course, we have µTiγ (r) ≥ µTiγ′ (r) for every r ∈ R and i ∈ {1, 2}. Let
τ1, . . . , τk be the trips that depart in T1 or T2 at time tA − γ. The idea is to compute the
values of µi (representing µTiγ ) from the values computed in the previous step (representing
µTiγ′ ). This can be done as follows: for every trip τj occuring in Ti and departing at time
tA−γ, we check whether there exists a route r ∈ R starting with L(τj). If yes, we distinguish
two cases:
1. If µi[r] = 0, then µTiγ′ (r) = 0, thus r 6∈ Aγ′(Ti). If there exists a journey from a to b along

r departing at time tA−γ or later, and arriving at time tA or earlier, then Aγ(Ti) contains
r exactly once. Thus, if Earliest-Arrival(a, b, tA − γ, r) ≤ tA, we set µi[r]← 1.

2. If µi[r] > 0, then µTiγ′ (r) > 0, thus Aγ′(Ti) contains r at least once. Thus, there exists a
journey from a to b along r departing at time tA − γ′ or later, and arriving at time tA or
earlier. Since τi is the only possibility to depart at a between time tA − γ and tA − γ′, τi
is the first trip on a journey we never found before. Therefore it is sufficient to simply
increase µi[r] by 1.

Up to now, we did not define when the algorithm terminates. In fact we stop if γ exceeds a
value γMAX. Let tA − γi be the starting time of an optimal journey in Ti. Of course, γMAX
has to be larger than max{γ1, γ2}. In our experimental evaluation, we set γMAX to be one
hour before tA; good choices for γMAX will be investigated in further experiments.

5 Journey Reliability

Success rate as reliability Having several recorded timetables at our disposal, and a journey
from a to b, a natural approach to assess its reliability with respect to the given latest arrival
time tA is to check how many times in the past the journey finished before tA. Normalized
by the total number of recorded timetables, we call this success rate the coupled reliability.
This is the least information about robustness one would wish to obtain from online routing
services when being presented, upon a query to the system, with a set of routes from a to b.
Few recorded timetables The generalizing expressiveness of coupled reliability is limited
(and biased towards outliers in the samples) if the number of recorded timetables is small.
If lines in the considered transportation network suffer from delays (mostly) independently,
we can heuristically extract from each of the m given recorded timetables T1, . . . , Tm an
individual timetable T (i, l) for every line l (storing just the travelled times of the specific line
l in timetable Ti), and then evaluate the considered journey on every relevant combination
of these individual decoupled timetables. This enlarges the number of evaluations of the
journey and thus has a chance to better generalize/express the observed travel times as
typical situation.
Decoupling the timetables We can formally describe this process as follows. We consider m
recorded timetables T1, . . . , Tm, and we consider a journey J from stop a to stop b, specified
by a departure time tD, by a sequence of lines 〈l1, . . . , lk〉, and by a sequence of transfer
stops 〈s(1)

CH, . . . , s
(k−1)
CH 〉.
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We say that journey J is realizable in 〈T (i1, l1), T (i2, l2), . . . , T (ik, lk)〉, i1, . . . , ik ∈
{1, . . . ,m}, with respect to a given latest arrival time tA, if for every line lj there exists a
trip tj (of the line lj) in T (ij , lj) such that
1. The departure time of trip t1 from stop a is after tD,
2. the arrival time of trip tk at stop b is before tA, and
3. for every j = 1, . . . , k − 1, the arrival time of trip tj at stop s(j)

CH is before the departure
time of trip tj+1 at the same stop.

Decoupled reliability Clearly, there are mk ways to create a k-tuple 〈T (i1, l1), . . . , T (ik, lk)〉.
Let M denote the number of those k-tuples in which journey J is realizable with respect to
a given tA. We call the ratio M

mk
the decoupled reliability of journey J with respect to the

latest arrival time tA.

Computational issues Computing the coupled reliability is very easy: For every timetable
Ti ∈ {T1, . . . , Tm} we need to check whether the journey in question finished before time tA or
not. This can be done by a simple linear time algorithm that simply “simulates” the journey
in the timetable Ti, and checks whether the arrival time of the journey lies before or after tA.
The computation of decoupled reliability is not so trivial anymore, as the straightforward
approach would require to enumerate all mk k-tuples 〈T (i1, l1), . . . , T (ik, lk)〉, and thus an
exponential time. In the following section, we present an algorithm that avoids such an
exponential enumeration.

Computing decoupled reliability We can reduce the enumeration of all k-tuples 〈T (i1, l1),
T (i2, l2), . . . , T (ik, lk)〉 by observing that the linear order of the lines in journey J allows to
use dynamic-programming. Let us denote for simplicity the boarding, transfer, and arrival
stops of journey J as s0, s1, . . . , sk, where s0 = a, sk = b, and sj = s

(j)
CH for j = 1, . . . , k − 1.

For every stop sj−1, j = 1, . . . , k, we store for every time event t of a departing trip τ of
line lj (in any of the timetables T1, . . . , Tm) a “success rate” of the journey J : the fraction
SR[sj−1, t] of all tuples 〈T (ij , lj), . . . , T (ik, lk)〉 in which the sub-journey of J from sj−1 to
sk starting at time t is realizable. For time t not being a departure event, we extend the
definition and set SR[sj−1, t] := SR[sj−1, t

′], where t′ is the nearest time in the future for
which a departing event exists. Having this information for every j, the decoupled reliability
of J is then simply SR[s0, tD].

We can compute SR[sj−1, t] in the order of decreasing values of j. We initially set
SR[sk, tA] = 1 (denoting that the fraction of successful sub-journeys arriving in sk is 1, if
the sub-journey starts in sk and before tA). The dynamic-programming like fashion for
computing SR[sj−1, t] at any time t then follows from the following recurrence:

SR[sj−1, t] = 1
m

m∑
i=1

SR[sj , ti], (5)

where ti is the earliest arrival time of line lj at stop sj if the line uses timetable Ti and does
not depart before time t from sj−1.

When implementing the algorithm, we can save the (otherwise linear) time computation
of the values of ti from the recurrence by simply storing this value and updating if needed.
Figure 4 illustrates the algorithm, and the resulting decoupled reliability of 6/9. The running
time of a naive implementation is O(k · (m+ e log e)), where e is the maximum number of
considered tram departing events at any station sj .
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Figure 4 A journey with two lines l1 and l2 and three timetables (solid black, dotted red, dashed
blue). The fractions denote the stored values of SR[sj , t].

6 Small Experimental Evaluation

In this section we describe and comment on a small experimental evaluation of the proposed
approach to robust routing in public transportation networks. We first describe few observa-
tions/properties of our approach that serve as a kind of “mental” experiment. We have also
implemented the proposed algorithms, and we report on our preliminary experiments with
real public networks and artificially generated delays.
Properties of the approach Let T1 and T2 be two recorded timetables (from which we
want to learn how to travel from stop a to stop b and arrive there before tA). Consider
the situation where the best journey J to travel from a to b in timetable T1 is the same as
the best journey to travel from a to b in timetable T2. Assuming that T1 and T2 represent
typical delays, common sense dictates to use the very same journey J also in the future.
This is exactly what our approach does as well. Recall that Sγ ≤ 1. Let r be the route that
corresponds to the journey J . In our case, setting γ so that Aγ(T1) = Aγ(T2) = {r}, we get
that Sγ = |Aγ(T1)∩Aγ(T2)|

|Aγ(T1)||Aγ(T2)| = 1, and thus our approach computes the very same γ and returns
the journey J as the recommendation to the user. These considerations can be generalized to
the cases such as the one where Aγ(T1) = {r}, r ∈ Aγ(T2), in which again J will be returned
as the recommendation to the user.

If only a reliable journey is required, and the travel time is not an issue, then suggesting to
depart few days before tA is certainly sufficient. We now demonstrate that our approach does
not work along these lines, and that it in fact reasonably balances the two goals robustness
and travel time. We consider the symmetric situation where both |Aγ(T1)| and |Aγ(T2)| grow
with γ in the same way, i.e., for every γ, |Aγ(T1)| = |Aγ(T2)|. Let us only consider discrete
values of γ, and let γ1 be the largest γ for which Aγ1(T1) ∩Aγ1(T2) = ∅. Let x = |Aγ1(T1)|.
Then, for every γ > γ1, Sγ = ∆γ

(x+∆γ)2 for some values of ∆γ . Simple calculation shows that
Sγ is maximized for ∆γ = x. We can interpret x as the number of failed routes (that would
otherwise make it if no delays appear). Then, Sγ is maximized at the point that allows for
another ∆γ = x routes to joint the approximation sets Aγ(Ti). Thus, the more disturbed
the timetables are, the more “backward” in time we need to search for a robust route.
Experimental evaluation We implemented the algorithms presented in the sections 2, 3
and 4 in Java 7. The experiments were performed on one core of an Intel Core i5-3470 CPU
clocked at 3.2 GHz with 4 GB of RAM running Debian Linux 7.0. We used the combined
tram and bus network of Zurich as input. It has 611 stops and 90 different line IDs. In
our experiments, the actual number of lines itself is much higher (471), since multiple lines
may operate under the same ID (e.g., lines in opposite directions, or lines coming from or
returning to the depot). The planned timetable T that we used is the official one for the
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Table 1 Comparison of the described methods over 100 test cases.

on time less than less than avg arrival avg earlier depart.
5 min late 10 min late time than Opt in T3

Unexpected Similarity, pick u.a.r. 88% 95% 97% 7:54 3.14
Unexp. Sim., pick max. # occurences 89% 94% 97% 7:54 3.22
Optimum in T 31% 48% 60% 8:07 -7.9
2nd Optimum in T 49% 64% 76% 7:57 2.14
Opt. in T + end buffer time 41% 57% 70% 8:03 -3.26
Buffer time 3 min 55% 71% 83% 7:59 0.02
Buffer time 5 min 66% 81% 88% 7:56 4.43

Zurich network. However, trips departing before 6 a.m. or after 10 p.m. were ignored (since
the timetable is only valid for 24 hours, trips starting before and ending after midnight are
virtually interrupted at midnight, leading to a large number of lines).

We set the latest arrival time tA to 8 a.m., and carefully chose a small set of problematic
stops S′ where delays usually occur. Then we generated 100 pairs of stops (a, b) uniformly
at random. For each pair, we generated three timetables T1, T2 and T3 from T by delaying
every trip τ in T between 0 and 3 minutes at every station s ∈ S′ (if s occurs on τ). These
delays are 0 or 3 minutes with probability 1/8, and 1 or 2 minutes with probability 3/8. T1
and T2 are used as input to the algorithm, and the arrival time of the computed journey is
measured in T3. We use the following methods for computing the journey.
1. Maximizing the Unexpected Similarity Compute a route using the approach described

in section 4. We consider two ways to pick a route from the intersection: 1) choose
uniformly at random; 2) Choose the one with the maximum number of occurrences.

2. Optimum in T Find the best or the second best journey according to the planned
timetable T . Compute also the latest journey arriving in T five minutes before tA.

3. Buffer time for transfers Consider the latest journey from a to b that arrives on time
in T such that at each transfer stop it have to wait for an additional “buffer time”. We
experiment with buffer times of 1 – 5 minutes.

For each of these statistics, we computed the following numbers (see Table 1): Percentage of
the experiments where the proposed journey arrives on time, how often it arrives at most
5 minutes late, and how often it arrives at most 10 minutes late. We also computed the
average arrival time of the journeys proposed by each method as well as the average difference
between the departure time of the proposed journey to the optimal journey in T3.

The average time for computing the optimum solution is 127ms, the time to compute a
robust journey by using Unexpected Similarity is 262ms. We observed that our algorithm
produces journeys that are on time in high percentage of cases, and on average we propose to
depart only around 3 minutes earlier than the optimum in T3, thus the cost we pay for this
robustness is quite low. In comparison, the other considered approaches achieve much lower
success rates. Even the generous buffer time of 5 minutes turns out not to be enough to beat
our approach, which is rather surprising given the small delays in the considered timetables.

7 Discussion

We presented a novel framework for robust routing in frequent and dense urban public
transportation networks based on observations of past traffic data. We introduced a new
concept to describe a travel plan, a journey, that is not only well suited for our robustness
issues, but also represents a natural and convenient description for the traveler. We also
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provided a bag of algorithmic tools to handle this concept, tailored towards the proposed
robustness measures. We described a simple way to assess the reliability of a given journey.
We also used a different approach to robustness and described how to find a robust journey
according to it. We are preparing further experiments to confirm efficiency of the presented
algorithms and to evaluate the quality of the computed robust journeys.

Future work is to examine how the described methods can be extended to support a fully
multi-modal scenario, e.g., how to integrate walking. We believe that the modelling itself is
easy, while the performance of the algorithms will decrease significantly unless we develop
special techniques. Also considering and exploring different robustness concepts for journeys
may be worthwhile.
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