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Abstract

Route planning has many applications in the real world. We can use it for computing the
best journey for both road or public transportation networks. In the latter, the journeys
are restricted by a schedule. The traveltime then depends on the departure time. To find
the shortest traveltime for a given departure time is called a time query, to find the short-
est traveltime for all departure times is called a profile query. In this thesis, we develop
and evaluate algorithms that perform such profile queries for a multimodal network. A
multimodal network is a network that consists of several modes of transports.
Some sequences of modes of transports are undesirable. For example, a user might not
want to take a taxi after exiting a train. This can be modeled by assigning labels to all
edges of the subnetwork, and only to consider those paths as valid where the labels of the
edges produce a word of a formal language.
We develop two algorithms, named the Function and the Label Algorithm. We present
improvements to both algorithms and evaluate them on real world data. We achieve a
speedup of up to one order of magnitude to a hypothetical algorithm that knows each
relevant departure time in advance and performs a multimodal, time-dependent general-
ization of Dijkstra’s Algorithm for each of them.

Deutsche Zusammenfassung

Routenplanung hat viele Anwendungen in der realen Welt. Wir können sowohl für Straßen-
netze als auch für öffentliche Verkehrsnetze schnellste Reisewege finden. Bei letzterem
müssen wir einen Zeitplan beachten. Die Reisezeit ist dann vom Abfahrtszeitpunkt ab-
hängig. Die kürzeste Reisezeit für einen gegebenen Abfahrtszeitpunkt zu finden ist eine
Zeitanfrage, sie für alle Abfahrtszeitpunkte zu finden ist eine Profilsuche. In dieser Ar-
beit entwickeln und evaluieren wir Algorithmen, die solche Profilsuchen auf multimodalen
Netzen ausführen. Ein multimodales Netz ist ein Netz, das verschiedene Transportarten
besitzt.
Einige Abfolgen der Transportarten sind unerwünscht. So könnte es sein, dass der Be-
nutzer kein Taxi nehmen will, nachdem er einen Zug verlassen hat. Dies kann dadurch
modelliert werden, dass jeder Kante im Graphen Label zugeordnet werden. Nur Pfade,
bei denen die Label der Kanten ein Wort aus einer formalen Sprache ergeben, werden als
gültig angesehen.
Wir entwickeln zwei Algorithmen, den Function und den Label Algorithmus. Wir entwick-
eln Verbesserungen für beide Algorithmen und testen sie auf realen Daten. Wir erreichen
eine Beschleunigung von bis zu einer Größenordnung gegenüber einem hypothetischen
Algorithmus, der alle relevanten Abfahrtszeitpunkte bereits kennt und für jeden dieser
Zeitpunkte eine multimodale, zeitabhängige Erweiterung von Dijkstra’s Algorithmus aus-
führt.
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1. Introduction

Today it is natural to use technical aids to plan a journey and not just rely on normal
maps. Navigation systems for cars are common, and more and more people do not inform
themselves about rail routes at the counter, but on the Internet. As a matter of fact, route
planning is “one of the showpieces of real-world applications of algorithmics” [DSSW09].

The basic approach for route planning is to first model the real world data as a graph and
then to search a shortest path on it. This can be done with Dijkstra’s Algorithm [Dij59],
or one of its many extensions developed in the last years. For road networks, research
in this field lead to ever faster algorithms. Even on networks like the European road
network queries can be answered in milliseconds [DSSW09], and some techniques not
based on Dijkstra’s Algorithm only need microseconds [ADGW10]. Networks derived
from timetable information, like rail networks, have proven to be structurally different
from road networks [BDW07, Bas09]. In most research, these networks are also modeled
as graphs (albeit there are exceptions [DPW12a]). How to generate graphs from timetables
efficiently was subject of much consideration. In [PSWZ08], Pyrga et al. present the time-
expanded and time-dependent models. Though not part of timetable information, they
also incorporate transfer times when switching between trains into both models, which
is important for feasibility in real world applications. Evaluations there and in [BDW07]
indicate that the time-dependent model is the most promising approach for modeling rail
networks.

All these algorithms are, however, specialized on one type of network respectively. Mul-
timodal route planning, where different kinds of transports may be used, is not possible
using only the aforementioned algorithms. On the one hand, we need to find a combined
model for all the networks. On the other hand, using the networks in any order is not
always feasible in practice [DPW09]: A person can get to the train station by car, but at
the destination it will be no longer available for him when they enter the road network
again.

Modeling such multimodal networks is subject of [Paj09]. The idea is to model each
network independently as a graph. For each of these graphs, a unique label is introduced
and assigned to each edge. After that, the networks are linked. For a path, the labels of
the edges form a word, and only when the word is from a given formal language the path
is considered valid. To search a shortest path under this constraint is called the Label
Constraint Shortest Path Problem. A formal definition of this problem and an extension
of Dijkstra’s Algorithm to solve it efficiently for regular languages are shown in [BJM00].
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2 1. Introduction

There are several improvements to this approach. Query times are improved by access
nodes [DPW09], goal directed techniques are applied [KLPC11, KLC12], and the search
on the road part is accelerated by using Contraction Hierarchies [DPW12b].

Most of these publications focus on computing the earliest arrival time for a fixed departure
time. Such a query is called a time query. However, the traveltime is not the only relevant
optimization criterion. The arrival and departure times themselves are important, too. A
user has to consider whether a considerably shorter traveltime justifies an earlier departure
or a later arrival time. It is hard to define how important each of these criterions are, even
for the user himself. It is therefore useful not to compute only the traveltime for one
departure time, but for all departure times. This is called a profile query. The result is
presented as a function that maps each departure time to its shortest traveltime.

In [Dea99], Dean presents an algorithm for computing profile queries on unimodal net-
works. The algorithm has almost the same structure as Dijkstra’s Algorithm. But instead
of scalar values, functions are stored at the nodes as tentative distances and are used as
edge weights.

In [DKP10] Delling et. al. improve the time-dependent model of the railway network,
resulting in a model with less nodes, the color model. The authors furthermore take a
different approach to compute profile queries on this network. They store tentative arrival
times for all possible departure times from the source station. These arrival times are then
settled successively as in Dijkstra’s algorithm. Unfortunately, we do not have a practical
bound for possible departures from the source, as we also use road networks where one
can start at any time.

Our Contribution. In this work we adapt the algorithm presented in [Dea99] for mul-
timodal networks. We call this the Function Algorithm. We consider drawbacks of this
approach, and develop another algorithm, which we call the Label Algorithm. We achieve
a speedup up to an order of magnitude over a hypothetical algorithm that knows each
relevant departure time in advance and performs a multimodal, time-dependent version of
Dijkstra’s Algorithm for each of them.

Overview. In Chapter 2, we explain the foundations on which the algorithms are based,
as well as the models. In Chapter 3, we present the Function and Label Algorithm. Both
algorithms are evaluated in Chapter 4. We use real world data of New York and Germany
consisting of a railway and a foot network. Finally, we summarize the results of this work
in Chapter 5.
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2. Foundations

In Section 2.1 we describe the most basic concepts and set the notation. In Section 2.2
we describe the graph models. In Section 2.3 we then look at Dijkstra’s Algorithm and
explain profile queries in Section 2.4. As example for algorithms that compute profile
queries in unimodal networks we describe a label-correcting algorithm [Dea99] and a label-
setting algorithm [DKP10]. Finally, we describe how to model restrictions when switching
networks by solving the Label Constraint Shortest Path Problem in section 2.5.

2.1 Preliminaries

We recap some basic concepts that will be used throughout this work: graphs, regular
languages, and finite automata

2.1.1 Graphs

A directed graph is a tuple G = (V,E) where V is a finite set of nodes and E ⊂ V × V a
finite set of edges. An edge e from node v to w is denoted by e = (v, w). Two nodes v, w
are called neighbors when there is an edge (v, w) ∈ E or (w, v) ∈ E. An edge e = (v, w) is
an outgoing edge of v. The node v is then the tail and w the head of e. For a node v ∈ V ,
Γ(v) denotes the set of all neighbors of v. The backward graph G∗ = (V,E∗) is obtained
by flipping all edges, i. e. for every (v, w) ∈ E we insert an edge (w, v) into E∗. A node
coloring is a function c : V → N0, where the elements in N0 are interpreted as colors. A
valid node coloring is then a node coloring where no two neighbored nodes have the same
color, more formally:

∀v ∈ V : ∀w ∈ Γ(v) : c(v) 6= c(w).

An edge weight is a function f assigned to an edge. We write f(e) for the function of
edge e, f(e)(τ) is the value of f(e) when evaluated at τ . When evaluating a constant
function, the notation f(e) is used both for the function of e and its constant value. For
two functions f, g two operations are defined, the link operation f⊕g, denoted f+g if f and
g are constant, and the merge operation min(f, g) (For more details, see Chapter 2.2.1).
Edges with constant functions are called time-independent edges, edges with non-constant
functions time-dependent edges. A graph consisting only of time-independent edges is a
time-independent graph, otherwise it is a time-dependent graph.

A path P in G is a sequence of nodes [v1, v2, ..., vk] so that for each 1 ≤ i < k holds:
(vi, vi+1) ∈ E.

3



4 2. Foundations

The length function len(P ) of a path P = (v1, ..., vk) is defined as

len(P ) :=
k−1∑
i=1

f(vi, vi+1) = f(v1, v2)⊕ f(v2, v3)⊕ . . .⊕ f(vk−1, vk).

For nodes v, w ∈ V , the shortest path function dist(v, w) is defined as

dist(v, w) := min(len(P1), len(P2), . . . , len(Pk))

where P1, P2, . . . Pk are all paths starting with v and ending with w.

2.1.2 Pareto-Optimality

Consider a set S of n-tuples. For each x = (x1, x2, ..., xn) ∈ S and y = (y1, y2, ..., yn) ∈ S
we can compare xi and yi for 1 ≤ i ≤ n. A tuple x = (x1, x2, ..., xn) ∈ S dominates a
tuple y = (y1, y2, ..., yn) ∈ S when for all i with 1 ≤ i ≤ n, xi is better than or equal to yi,
and for at least one j xj is better than yj . Tuples that are not dominated by any other
tuple in S are Pareto-optimal. A set consisting only of Pareto-optimal solutions is called
Pareto-set. In this work we especially consider tuples of departure times τdep and arrival
times τarr of journeys. A journey A then dominates a different journey B if the departure
time of A is later or at the same time than that of B and the arrival time of A is earlier
or at the same time than that of B.

2.1.3 Languages and Automata

Languages. For a finite set of symbols Σ, called an alphabet, a word with length k is
defined as a sequence [σ1, σ2, ..., σk] with σ1, ..., σk ∈ Σ, shortly denoted as σ1σ2...σk. There
is a special word, the empty word ε that has length zero. The concatenation of two words
w1 = σ0...σk w2 = σk+1...σl is defined as w1 · w2 = σ0...σkσk+1...σl, that is, we append w2

on w1. A word w concatenated with ε or ε concatenated with a word w results in the word
w.

A not necessarily finite set L of words over Σ is called a language over Σ. Its i’th power is
recursively defined:

∆(τ1, τ2) =
{
L0 := {ε}, if i = 0
Li := {wv | w ∈ Li−1 and v ∈ L}, otherwise

The Kleene-Closure of a language L is then defined as

L∗ :=
⋃
i≥0

Li.

For two languages L1, L2 ⊆ Σ∗ the concatenated language L1 ·L2 is obtained by L1 ·L2 :=
{vw | v ∈ L1 and w ∈ L2}. Note that this operation is not commutative. A special subset
of languages are the regular languages. A regular language is recursively defined: The
language containing no words is regular. For each σ ∈ Σ the language {σ} is regular. If
L1 and L2 are regular languages, then L1 ∪ L2, L1 · L2 and L∗1 are also regular languages.

Finite Automata. A non-deterministic finite automatonA is a 5-tupleA := (Q,Σ, δ, S, F ),
where Q is a finite set of states, Σ is an alphabet, S ⊆ Q is a set of initial states, F ⊆ Q
is a set of final states, and δ is the transition function Q× {Σ ∪ ε} → P (Q).

This automaton can also be depicted by its transition graph. The nodes of this graphs
are all states in Q. Initial states are marked by an incoming edge-tip and final states are
twin-framed. For two states qi and qj and a symbol σ ∈ Σ an edge (qi, qj) labeled by σ

4



2.2. Models 5

is added if and only if qj ∈ δ(qi, σ). For δ(qi, ε) 6= ∅ an edge labeled ε from qi to every
state qj ∈ δ(qi, ε) is added. These edges are called ε-transitions. An automaton without
any ε-transition is called ε-free.

For a language L ⊆ Σ∗ a word w ∈ L is accepted by A if there is a path in the transition
graph starting at an initial state q0 ∈ S and leading to a final state qf ∈ F , whereby the
subsequent edges on the path are labeled by the subsequent symbols of w. Along the way,
ε-transitions may be taken at any time. If no such path exists, the word is rejected. A
language L is accepted by an automaton A if every w ∈ L is accepted by A.

Two automata A and B are called equivalent if A and B accept the exact same words.

For every regular language L there exists a non-deterministic finite automaton A that
accepts a word w if and only if w ∈ L. On the other hand, all words accepted by an
arbitrary automaton form a regular language [Kle56]. Therefore, regular languages can be
described by finite automata.

2.2 Models

In this Section, we first show how we use piecewise linear functions, then present the
different networks, and finally we show how they are merged into a multimodal network.

2.2.1 Piecewise Linear Functions

We use edges to model segments like streets or railway connections between two different
locations (see Chapter 2.2.2 and 2.2.3 for more details). There are two types of segments
we have to distinguish. Those which can be used at any time (like a street), and those
which can be used only according to a schedule (like a railway connection). For the
latter, both the waiting time for the next transport and the actual traveltime have to be
considered [PSWZ08].

In the context of route planning we can use a time-dependent approach to model the
traveltime in timetable networks. The idea is to have a function f : R+

0 → R+
0 that maps

the departure time to the traveltime. We only consider periodic schedules with a period
time Π. Each journey is exactly the same one period later. We therefore only consider
periodic functions, so for each τ ∈ R+

0 following equation must hold:

f(τ) = f(τ mod Π).

We only want to find Pareto-optimal paths. For our functions, this means that the FIFO-
property holds:

f(τ1) + τ1 < f(τ2) + τ2, τ1, τ2 ∈ R+
0 , τ1 < τ2.

The lower bound f of a function f is defined as f := minτ∈R+
0
f(τ).

The upper bound f of a function f is defined as f := maxτ∈R+
0
f(τ).

A periodic function f : R+
0 → R+

0 is called piecewise linear if it consists of a finite number
of segments of linear functions. In networks restricted by a schedule, a time-dependent
network, the traveltime across a segment consists of the actual time it takes to get to
the end of the segment and the waiting time. The function consists of a finite set of
connection points B. Each connection point p ∈ B consists of its departure time and its
function value, denoted p := (τ, f(τ)). We can then compute f(τ) of an arbitrary time τ
by following formula:

∆(τ1, τ2) =
{
f(τ) = τi − τ + f(τi), if next τi ≥ τ exists
f(τ) = Π− τ + τi + f(τi), otherwise

5



6 2. Foundations

Π Π Πp1 p2 p3 p1 p2

(a) (b) (c)

f(τ)

τ

f(τ) f(τ)

τ τ

Figure 2.1: A constant function (a) and a non-constant function with three connection
points (b) result in a mixed function when merged (c)

A function we can evaluate in this way is called a non-constant function. In time-
independent networks (like road networks), we only use constant functions. Evaluation is
easy then, since we just return the constant value.

There are two important operations to be performed on piecewise linear functions [Dea99].

Link. The link operation between two functions f,g is defined as follows:

f ⊕ g = f + g ◦ (f + id)

with id being the identity. If both functions are constant, this simplifies to f + g. The
formula means that we evaluate each τ ∈ R+

0 with f to get arrival times f(τ) and then
see which traveltime must be added when we evaluate each of this arrival times with g.
Thus, the link operation is useful in computing traveltimes over multiple segments. Note
that this operation is neither commutative nor associative.

Merge. The merge or minimum operation between two functions f,g is defined as:

min(f, g)(τ) = min(f(τ), g(τ)) for each τ ∈ R+
0 .

When computing the merge operation between a constant function c and a non-constant
function h, neither the evaluation rule of the constant nor that of the non-constant
functions can be applied directly to the result function f . Such a function is called a
mixed function, see Figure 2.1. A mixed function f is described by both c and h, and
f(τ) = min(c(τ), h(τ)) for τ ∈ R+

0 . Note that if c ≥ h, f can be described only with h,
and if h ≥ c, f can be described only with c.

For two functions f, g, f < g holds if and only if min(f, g) = f .

2.2.2 Road and Foot Network

Our road and foot networks are modeled as directed graphs. The junctions are modeled as
nodes. Between two nodes v, w there is an edge (v, w) if and only if the junction associated
with w can be reached via the junction associated with v over exactly one segment. Note
that this means that if a segment can be used in both directions, two edges are inserted.
This is needed to adequately model one way streets and streets with separate lanes in both
directions. The weight of an edge is a constant function, as in [DPW09, DPW12b]. The
constant assigned to this function is then the average traveltime on the associated segment,
computed by the average traffic speed on this type of segment times its geographical length.
For a foot network, the average traffic speed is the average speed of a pedestrian.

6



2.2. Models 7

Z1, Z2, Z3

Z1, Z2 Z1, Z2

Z1, Z2

Z3

Z3 Z3

S1 S2 S1 S2

Figure 2.2: The simple model (left) and the same timetable in the realistic model (right).
The stations are denoted by S1, S2, the trains by Z1, Z2, Z3 where they take
an edge [PSWZ08].

2.2.3 Rail Network

The input data of a rail networks is a timetable, which contains the complete schedule of
all trains in the network. More formally, a traffic timetable is a tuple (C,B,Z,Π), where
B is a set of stations, Z is a set of trains, Π is the periodicity of the timetable and C is a
set of elementary connections. An elementary connection c is a tuple c := (z, S1, S2, τ1, τ2)
where z ∈ Z is the train taken by using this connection, S1 ∈ S is the station from where
the train z starts, S2 ∈ S the station where the train z arrives with no stop in between
from S1, τ1 < Π the departure time from S1 and τ2 < Π the arrival time at S2. The
functions z(c), S1(c), S2(c), τ1(c), τ2(c) yields the respective parameter of c. Moreover, the
function transfer(S) returns the transfer time of station S. The traveltime of a connection
∆(τ1, τ2) can be computed by:

∆(τ1, τ2) =
{
τ2 − τ1, if τ2 > τ1
Π− τ1 + τ2, otherwise

In other words, the traveltime is normally computed when the connection starts and ends
in the same period, otherwise the periodicity Π has to be considered. This formula only
applies if there is no elementary connection with a longer traveltime than the periodicity.
In our instances, there are no such elementary connections.

From this timetable, we generate a graph. Moreover, we have to model that transfers
between trains take time. There are different methods to do this as discussed in [PSWZ08],
with the time-dependent approach being the most feasible. This approach can also be used
to model realistic transfers.

When disregarding transfer times the modeling is similar to the construction of the road
network and results in the simple model. Each station is modeled as a node. If there is
at least one elementary connection c := (z, S1, S2, τ1, τ2) connecting the nodes v, w of S1

and S2, an edge (v, w) is inserted. The edge weight is a piecewise linear function (see
Chapter 2.2.1), where we insert one connection point p = (τ1,∆(τ1, τ2)) for each such
connection c.

For a model with realistic transfer times, we do not model these stations with exactly one
node. First, for each station S ∈ B we create a station node. At these nodes we can
change between train routes. The set of train routes is denoted by R. Each train route
r ∈ R is a maximal subset of Z containing only trains following the exact same sequence
of stations [S1, ..., Sk]. For each of these train routes r that follow the sequence of stations
[S1, ..., Sk] a route node ri is inserted for every station Si. Edges are inserted along this
route, more formally for 0 < i < k an edge e = (ri, ri+1) is added. As in the simple
model, the edge weight is a piecewise linear function. For each elementary connection c
with c(z) ∈ r, S1(c) = ri, S2(c) = ri+1 a connection point p(τ1(c),∆(τ1(c), τ2(c))) is added
to the function. Each route node r is then connected with its corresponding station node

7



8 2. Foundations

S in the following way: We insert an edge (r, S) to which we assign the constant weight
0. This way, we do not have a transfer time when we only arrive at S. We also insert
an edge (S, r) that has a constant weight transfer(S). This way, changing a train route
takes exactly transfer(S) time. For a visualization, see Figure 2.2.

This approach leads to a lot of route nodes, typically between 5 and 16 per station. To
reduce this number, the color model was introduced in [DKP10]. The main idea is that the
strict separation between the train routes is not really needed in every case. If a train z1
arrives at a Station S and the next train z2 is not missed due to transfer times, the transfer
does not need to be modeled because it makes no difference whether time is lost due to
walking or waiting. The same applies when z2 is missed even without transfer times. Only
when neither the former nor the latter applies for any of the connections containing z1 and
z2 they need to be modeled by different route nodes. If tested for all trains running through
a node s, this induces an undirected conflict graph Gconf (S) = (Vconf (S), Econf (S)). The
node set Vconf (S) ⊆ Z consists of all trains running through S, i. e. for a train z ∈ Z
there exists an elementary connection c ∈ C with Z(c) = z, S1(c) = S or S2(c) = S.
An undirected edge {Zi, Zj} is inserted if and only if Zi and Zj are conflicting. A valid
node coloring (see Chapter 2.1.1) on Gconf (S) then induces a set of route nodes where no
conflicting trains are modeled on the same route node by simply modeling only those trains
that have the same color in Gconf (S) on the same route node. To get a minimal number of
route nodes per station, a minimal valid node coloring has to be computed. Although this
is NP-hard, an approximation algorithm is good enough to reduce the amount of route
nodes by a factor 6 to 12 on some instances [DKP10].

Note that when merging routes, the FIFO-property may not hold anymore. In this case,
the train route has to be split into smaller routes that guarantee that the FIFO-property
holds. Fortunately, this is rarely needed in real rail networks.

2.2.4 The Multimodal Network

The subnetworks have to be linked to a complete multimodal network. First, to identify
them later, we assign labels of an alphabet Σ to the subnetworks. More specifically, we
assign the same label to all nodes and edges of the same subnetwork. We then create link
edges. For each station node of the rail network we search the nearest node in the road
network and add a link edge between them in both directions. We assign a special label
to these link edges. We use these labels in Section 2.5.

2.3 Dijkstra’s Algorithm

Dijkstra’s Algorithm finds a shortest path from a source node s ∈ V to a target node
t ∈ V in a graph that has only constant, non-negative edge weights [Dij59]. The length
of this shortest path is denoted as dist(s, t) (see Chapter 2.1.1). Pseudocode is shown in
Algorithm 1. For each node v a label dists(v) denotes the tentative distance of the shortest
known path from s to v. Its predecessor on one of the known shortest path to the node is
denoted by pre(v). In the beginning all distances are infinite and the nodes do not have
a predecessor. More formally: dists(v) = ∞ and pre(v) = null for each v ∈ V . Only the
source node has a distance 0 to itself, dists(s) = 0. Every node can also be marked, but is
unmarked in the beginning. All marked nodes are called settled nodes. The set of all nodes
settled by the algorithm is called the search space. The invariant of this algorithm is that
for all settled nodes no shorter path can be found. This is called the label-setting property.
This obviously holds in the beginning when there are no settled nodes. Iteratively the
unsettled node v with the smallest distance is chosen with help of a priority queue and
all of its outgoing edges are relaxed. That is, for all outgoing edges (v, w) it is determined

8
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Algorithm 1: Dijkstra’s Algorithm

Data: A unimodal graph G = (V,E), edge weights f(e).
Input: Source node s ∈ V , target node t ∈ V .
Output: OUT, traveltimes and Path from s to t.

// Initialization
1 forall v ∈ V do
2 dists(v)←∞
3 pre(v)← null

4 dists(s)← 0
5 PQ.insert(s, 0)

// Main loop
6 while PQ is not empty do
7 (v)← PQ.deleteMin()
8 mark(v)
9 if StoppingCriterionHolds() then

10 break

11 forall outgoing edges e = (v, w) do
12 dist← dists(v) + f(e)
13 if dist < dists(w) then
14 dists(w)← dist
15 pre(w)← v
16 if PQ.contains(w) then
17 PQ.decreaseKey(w, dists(w))

18 else
19 PQ.insert((w), dists(w))

20 OUT← dists(t)), backtrace predecessors of t, give out in reverse order

whether there is a shorter path to w via v. If this is the case, dists(w) is updated and w is
put in the priority queue and the predecessor of w will be set to v (line 10-18). Now, since
every node with a smaller distance has already been settled and its outgoing edges have
been relaxed (and there are only positive edge weights), there cannot be any better path
to v, so v can be marked. The algorithm stops when the priority queue is empty, which
means there are no nodes left that can be settled. Then, for every v ∈ V it holds that
dists(v) = dist(s, v). We have computed a one-to-all query. Alternatively the algorithm
stops when a stopping-criterion holds. We may stop the search when the target node has
been settled. Then dists(t) = dist(s, t) holds, we have computed a point-to-point query.

There are many extensions of Dijkstra’s Algorithm. If there are multiple source and target
nodes, and we want to find the shortest path between any source and target node, the
algorithm is easily adapted by setting the label of all source nodes to zero and adding
them to the priority queue. We then may stop when the priority queue is empty or the
first target has been settled.

A Pareto-generalization of Dijkstra’s Algorithm is to not only compute the result for one
optimization criterion, but a set of Pareto-optimal solutions for multiple criterions. In this
case, the label is not a single value, but a r-dimensional vector, where r is the number of
optimization criterions. We now store a Pareto-set at the nodes instead of just a single
label. For a node v we denote this set Sv. When relaxing an edge (v, w), we take labels
from w, compute new ones of them and the edge weight, and try to insert the new labels at

9
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w. We call this to propagate the labels over an edge. Trying to insert a label means hereby
that we determine which labels of Sw are dominated. When one of the new labels is not
dominated by any label of Sw, w is updated. There are two approaches to propagate labels.
In the label-correcting approach, a whole Pareto-set Sv is propagated at once. Note that
each node may then be settled multiple times, so the label-setting property does not hold.
In the label-setting approach, we propagate only one label at a time. The label-setting
property then holds, but it may be more costly to determine which labels are dominated
than if we checked this for many labels at once.

2.4 Profile Queries

In a graph with only constant edge weights we search the shortest path between two nodes
s and t, independently from the departure time. In time-dependent networks, the shortest
path found may differ significantly for different departure times. A time query is then a
classical s-t search for a departure time τ . Dijkstra’s Algorithm can be simply adapted
for such a time query: Instead of just taking the constant edge weight f(e) in line 12, we
have to take the value of the time when we arrive at this edge, f(e)(τ + dists(v)).

Just finding the shortest path may not be the users only priority, though. In the time-
independent case the user can deliberately choose the departure time, so the shortest
traveltime is the only optimization criterion. In the time-dependent case, the shortest
traveltime can be different for different departure times. Those departure times and their
corresponding arrival times may be criterions for an optimal path as well, considering
appointments and personal preferences of the user. However, defining mathematically just
how important those criterions are compared to the shortest traveltime is difficult, even for
the user himself. Because of this, we want to compute a function that maps all departure
times to their shortest traveltime, so the user can choose the journey that is optimal for
him. To find such a function is called a profile query, the resulting function is called profile
function. We can compute such a profile query by first finding a Pareto-set of optimal
journeys, i. e. all journeys that are not dominated by other journeys (see Section 2.1.2),
and then using the departure times and traveltimes of these journeys as connection points
of a piecewise linear function (see Section 2.2.1).

In [Dea99], a label-correcting approach for unimodal networks is presented. Instead of
scalar values, whole functions are stored at the nodes, denoted f(v) for a node v. Each of
these functions depicts the shortest tentative traveltime to the node for all departure times.
As key for the priority queue the lower bounds of the functions are used. When relaxing
an edge e = (v, w), instead of adding scalar values, they link functions: f(v)⊕ f(e). If the
resulting function is better than f(w) at only one time point, w is updated in the priority
queue. When finished, the function at the target node depicts the shortest traveltime for
every departure time. This algorithm is the basis for the Function Algorithm presented in
Chapter 3.

In [DKP10], Delling et. al. take a label-setting approach for rail networks. They compute
the shortest traveltimes only for departure times of transports one can take from the source
station. For each node the tentative arrival time for each of these departures is stored.
The tentative arrival times are then successively settled as in Dijkstra’s algorithm. When
one can skip a transport at the source station and still arrive earlier than when he would
have taken it that transport is ignored. The overall traveltime for an arbitrary departure
can then be computed by adding the waiting time for the next transport to the shortest
traveltime at its departure time. Unfortunately, in a multimodal network there can also
be road graphs, where we can start at any time so this approach is not feasible for us.

10
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Note that in the multimodal case, we have both time-dependent and time-independent
subnetworks. Shortest paths that are solely in time-independent networks do not have a
departure time. We have to consider this when developing our algorithms in Chapter 3.

2.5 Label Constraint Shortest Path

Simply performing a profile query on the model introduced in Section 2.2 is not sufficient
for the multimodal case. This is because paths which are undesirable or unrealizable in
practice are computed. It may happen that a small amount of time is saved by extensively
jumping between rail and road networks. This is not only annoying for the user, but may
be impossible since he has to get a new car every time he switches to the road network.
Therefore the possibility to change between networks unlimitedly has to be restricted.
In [DPW09], the authors developed a solution for time queries that can easily be extended
for profile queries. First a unique label for each network is assigned to each node and
edge within this network (see 2.2.4). Then the Label Constraint Shortest Path Problem is
solved on the resulting graph, using regular languages and finite automata (see 2.1.3).

Label Constraint Shortest Path Problem. Given an alphabet Σ, a language L ∈ Σ∗,
a directed graph G = (V,E) with edge weights and Σ-labeled edges, we ask for the shortest
Path P from s to t whereby the sequence of labels of the edges form a word of L. More
formally, for a Path P = [v0, ..., vk] it must hold:

label((v1, v2))label((v2, v3))...label((vk−1, vk)) ∈ L.
Regular languages are sufficient to adequately model the restrictions in our multimodal
network [DPW09]. In [BJM00], Chris Barrett et al. established that the Label Constraint
Shortest Path Problem is solvable in polynomial time for regular languages and present
an algorithm for doing so. The first step is constructing a product network that combines
the graph and a finite automaton A that describes the desired language L.

Product Network. Given a Σ-labeled graphG = (V,E) and a non-deterministic automa-
ton A := (Q,Σ, δ, S, F ), the product network is defined as G× = (V ×, E×), where V × con-
sists of product-nodes (v, q) with v ∈ V and q ∈ Q. A product-edge e× = ((v1, q1), (v2, q2))
is in E× if and only if e = (v1, v2) ∈ E and for σ = label(e) holds: q2 ∈ δ(q1, σ). The
edge weight of e× is the edge weight of e and label (e×) is set to σ. The resulting graph
is unimodal.

The Label Constraint Shortest Path Problem can then be solved by an adaption of Di-
jkstra’s Algorithm. First, the (non-deterministic) finite automaton A := (Q,Σ, δ, S, F )
describing L is constructed. With this automaton, the product network G× is created.
Finally, a query on G× with a multi-source, multi-target version of Dijkstra’s Algorithm
is performed, where source and target node sets are:

S :=
⋃
qs∈S

(s, qs) and T :=
⋃
qf∈F

(s, qf )

The problem with this algorithm is that the product network consumes a lot of space, to
be specific O(|G| · |A|). in [BBH+08] it is proposed to store both structures separately. We
store information for each node/state combination of the original graph. When we relax an
edge e = (v, w) using an information stored in state q, we have to check whether the infor-
mation at any node/state combination (w, q′) has to be updated where q′ ∈ δ(q, label(e)).
This way, we compute the edges of the product network implicitly and save memory space.
In the following, we call this adaption of Dijkstra’s Algorithm LC-Dijkstra.

Both algorithms for profile queries presented later in this work use the Label Constraint
Shortest Path Problem in a very similar way to model restrictions for the sequence of
modes of transports.
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In this chapter we present our two algorithms that compute profile queries on multimodal
networks. Both use a regular language to model restrictions for the sequence of modes
of transports, and both have to deal with the fact that we have both time-dependent
and time-independent subnetworks. First, we present the Function Algorithm, a label-
correcting algorithm. It is based on an augmentation of Dijkstra’s Algorithm, where we
propagate complete functions through the network in place of scalar values [Dea99]. We
show that the loss of the label-setting property in this algorithm can lead to drawbacks.
We then present the Label Algorithm, a label-setting algorithm in which the label-setting
property holds.

3.1 Function Algorithm

The Function Algorithm combines a label-correcting approach to compute profile queries
([Dea99], see Chapter 2.4) and an approach to compute multimodal time queries ([BJM00],
see Chapter 2.5). The former uses a version of Dijkstra’s Algorithm that propagates whole
functions over the network instead of scalar values. The latter implicitly computes a
product network of a graph with Σ labeled edges and a finite automatonA = (Q,Σ, δ, S, F ).
This automaton represents a regular language L that describes the valid sequences of
taken modes of transports. The algorithm then solves the Label Constraint Shortest
Path-Problem (see Chapter 2.5).

Pseudocode for the Function Algorithm is shown in Algorithm 2. Input to our algorithm is
the graph of the multimodal network, the finite automaton, as well as the source node s and
the target node t. First, we augment Dijkstra’s Algorithm to propagate whole functions.
We do not store scalar distances at the nodes. Instead, we store a piecewise linear function
for each node/state tuple (v, q) ∈ V × Q. Note that this function may be mixed, as we
have both time-dependent and time-independent graphs. It contains the tentative shortest
traveltimes from s to v whereby we are in state q when using the labels of the taken edges
as input for the automaton. For a tuple (v, q) ∈ V ×Q this function is denoted f(v, q). As
key for such a tuple we use the lower bound of its function, denoted f(v, q). This choice
of key can lead to issues as discussed later. But there are few other choices of what we
can use to map a function to a scalar value, and this choice of key at least allows for a
reasonable stopping criterion as shown below. The label of an edge is denoted by label(e),
the edge weight of an edge is also a piecewise linear function, denoted by f(e). Instead of
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14 3. Algorithms

Algorithm 2: Function Algorithm

Data: A multimodal graph G = (V,E), edge weights, a finite automaton
A = (Q,Σ, δ, S, F ) representing a regular language L ⊆ Σ∗.

Input: Source node s ∈ V , target node t ∈ V .
Output: f(out), profile function from s to t.

// Initialization
1 forall v ∈ V , q ∈ Q do
2 f(v, q)←∞
3 forall qs ∈ S do
4 f(s, q)← 0
5 PQ.insert((s, q), 0)

// Main loop
6 while PQ is not empty do
7 (v, q)← PQ.deleteMin()
8 if StoppingCriterionHolds() then
9 break

10 forall outgoing edges e = (v, w) do
11 forall states q′ ∈ δ(q, label(e)) do
12 fnew ← f(v, q)⊕ f(e)
13 if not f(w, q′) ≤ fnew then
14 f(w, q′)← min(f(w, q′), fnew)
15 if PQ.contains((w, q′)) then
16 PQ.decreaseKey((w, q′), f(w, q′))

17 else
18 PQ.insert((w, q′), f(w, q′))

19 forall states q ∈ F do
20 f(out)← min(f(t, q), f(out))

14
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summing and comparing scalar values, we use the corresponding operations of piecewise
linear functions (see Chapter 2.2.1).

We initialize the algorithm by adding the source node in combination with all initial states
of the finite automaton to a priority queue PQ. In the main loop, we get the node/state
tuple (v, q) with the smallest key. We then iterate over every edge of the product network.
These transitions are implicitly computed in Line 10 and 11. Here, we see which states we
reach in the automaton from state q for label(e). We then link f(v, q) and f(e), resulting
in a function fdistvia that depicts all tentative shortest travel times over e. If for even
one time point τ it holds that fdistvia(τ) < f(w, q′)(τ) we have to update (w, q′). An
update does not replace the function of (w, q′), instead, fdistvia and f(w, q′) are merged.
By doing so, all not Pareto-optimal connection points of f(w, q′) are deleted. We stop
when a stopping criterion holds or the priority queue is empty. The profile function from
s to t where only valid sequences of taken transports are considered can then be computed
by merging all functions f(t, q), where q is a final state of the automaton.

Stopping Criterion. We may stop as soon as the profile function f(out) can not change
anymore. This is the case when PQ.MIN ≥ f(out) [DW09]. As f(out) is computed by
merging all functions f(t, q) with q ∈ Q, our stopping criterion is:

PQ.MIN ≥ min
q∈F

(f(t, q))

Drawbacks. The label-setting property does not hold as nodes may be settled multiple
times. The key of the node/state tuple we extract does not even always increase after
every iteration of the main loop. For an example, consider two functions f and g of two
node/state combinations (v, q) and (w, q′). The connection points of f are b1 = (0, 0) and
b2 = (1000, 500), the ones of g are c1 = (0, 20) and c2 = (1000, 40). The lower bounds of
f and g are then 0 and 20 respectively. We extract (v, q) before (w, q′). After that, it is
still possible to improve b2, and we would then reinsert (v, q) into the priority queue. The
lower bound of f is still 0, however. The key is not that meaningful in this case, since the
key did not change although b2 was improved.

We present a scenario in which the algorithm is not working well due to the explained
shortcomings. For a visualization, see Figure 3.1. We start at a station in the railway
network. Only two trains Tday and Tnight depart at this station in two different directions.
The train Tday departs at noon, Tnight at midnight. They both take the same time to
reach the foot network, Tday arrives at node a, Tnight at node b. For simplicity, we assume
that the foot network is a regular grid where all edges have the same small constant edge
weights. The nodes a and b are far apart, but because Tday and Tnight depart at very
different times, it is still fastest to travel to b by taking Tday and then walking when
departing at noon, and to travel to a by taking Tnight and then walking when departing
at midnight. This still allows for large distances between a and b. The two connection
points belonging to the two trains are propagated circular in manhattan distance around
their arrival points, leading to two groups of connection points. Until the groups touch
for the first time, no node is settled multiple times. In a label-setting algorithm, the two
groups would now begin to overlap. Instead, the lower bound of the function is used as
key, but the lower bound does not change for any function in this scenario. Thus, the
already settled nodes will be settled again a second time - and all at once. We propagate
functions consisting of not one, but two connection points, even if one of them does not
change anything when propagated. Only after all these nodes are settled the algorithm
continues to settle new nodes. Note that this effect depends on how far apart the arrival
points of the trains are. Also, worse scenarios can be imagined where there are more than
two trains with sufficiently different departure times.
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Figure 3.1: Two trains start at noon and midnight, which leads to the propagation of two
groups of connection points, denoted Day and Night. They travel the same
time and reach the foot network that is assumed to be a uniform grid, all
edges have the same small constant edge weights. From there the groups are
propagated until they touch for the first time, leading to the state depicted in
Subfigure (a). The bright blue nodes are all foot nodes that are settled once.
The two groups start at very different times, so they do not dominate each
other. The nodes around the node where the groups touched are updated. As
key the lower bound of a function is used, so the nodes are settled again at
once with a function double the size. This process repeats itself until all settled
nodes are settled a second time, which is depicted by the dark red color. This
leads to the state depicted in Subfigure (b).

3.2 Label Algorithm

In this section, we present a label-setting algorithm, the Label Algorithm, in which we try
to overcome the shortcomings of the Function Algorithm. We propagate single labels, so
that the label-setting property holds. Therefore we first introduce some data structures
and definitions we need in order to explain the algorithm. We then present the algorithm
in detail.
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3.2.1 Data Structures

A single label is a tuple sl := (τdep, τtra,marked) where τdep < Π is the departure time
of a journey, τtra its current traveltime at this point and marked signaling whether the
single label has been settled yet. The arrival time is τarr = τdep + τtra. Note that the
arrival time may be bigger than Π, since the arrival can be in one of the following peri-
ods. The values τdep and τarr may be undefined, denoted ⊥, if they are not applicable.
This is the case with journeys that take place solely in time-independent networks where
there are no scheduled departures. Hence we call this kind of labels pure independent
labels. The function isPure(sl) returns true if and only if sl is a pure independent label,
τtra(sl),τdep(sl), τarr(sl) and marked(sl) return the respective parameter of the single la-
bel. Two single labels A and B are considered equivalent if and only if τdep(A) = τdep(B)
and τtra(A) = τtra(B). We define domination between single labels. This is almost as
defined in Chapter 2.1.2, but we have to consider pure independent labels. For two single
labels A and B we have to differ between four cases:

1. The single labels A and B are pure independent labels. Then A dominates B if and
only if τtra(A) < τtra(B).

2. The single labels A and B are both not pure independent labels. Then we have two
cases:

a) It holds that τdep(A) ≥ τdep(B). Then A dominates B if and only if A and B
are not equivalent and τarr(A) ≤ τarr(B).

b) It holds that τdep(A) < τdep(B). This indicates that the journey described by A
begins earlier than B. However, A can still dominate B if B ends after A, but
in another period. More precisely, A dominates B if τarr(B) > τarr(A) + Π.

3. The single label A is a pure independent label, B is not. Then A dominates B if and
only if τtra(A) < τtra(B). This is because the journey of A can start at any time,
also at τdep(B). Then this case can be reduced to case 2.

4. The single label A is not a pure independent label, B is. In this case we define that A
cannot dominate B. We could define that A dominates B when Π+τtra(A) > τtra(B)
where Π is the maximal possible waiting time, the whole period. However, this case
is very rare and costs computing time.

For the key of a single label sl, denoted key(sl), the possible candidates are τdep, τarr and
τtra. While taking the arrival key may have its merits, as shown in [DKP10], the traveltime
is the only value that is guaranteed to exist in every single label, so key(sl) := τtra(sl).

For a traveltime τtra and an arrival time τarr the function dep(τtra, τarr) computes the
departure time τdep < Π by the following formula:

dep(τtra, τarr) =
{
τarr − τtra, if τarr ≥ τtra
Π− (τarr − τtra), otherwise

A node label is a data structure that manages all single labels belonging to a specific node
v ∈ V . For each state q ∈ Q it has a Pareto-set of single labels, the labelset. When referring
to a node label at node v or a labelset at node v and state q, we write nodelabel(v) and
labelset(v, q) respectively. As we break ties arbitrarily, we do not allow two identical single
labels in a labelset. This implies that there can be at most one pure independent single
label for each labelset. We can convert a labelset into a piecewise linear function if needed.
We assign the traveltime of the pure independent single label to a constant function g.
All other single labels sl1, ..., slk are ordered increasingly by departure time and used as
connection points, with pi := (τdep(sli), τtra(sli)), yielding a function h. The complete
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function f is then f = min(g, h). We write f(v, q) for the function converted from the
labelset at node v with state q.

There are some operations the node label must support.

Representant. Finds the labelset that contains the unmarked single label sl with the
lowest key. It then returns its state q and sl in a tuple (sl, q). We write representant(v)
to get the representant at node v.

Insert. Inserts a single label for a state q into the respective labelset and returns whether
it is successfully inserted. The single label may only be inserted if it is not dominated
or equaled by any single label, and all single labels it dominates have to be deleted. We
write insert(v, q, sl) for inserting a single label into the labelset of node v with state q.
For convenience, when we create a new single label and insert it at a node v with state q,
we write insert(v, q, τdep, τtra) for departure time τdep and traveltime τtra.

Settle. In some of the presented implementations of representant and insert, it is not
enough to mark a single label when it is settled at node v. Additional operations are then
performed by settle(v).

3.2.2 The Algorithm

We now present the Label Algorithm in detail. We propagate single labels, which have a
simple key. As in the Function Algorithm, our input is the graph of a multimodal network,
a finite automaton A = (Q,Σ, δ, S, F ) describing a language L ∈ Σ∗ and the source and
target nodes s and t. For each initial state of the automaton a pure independent label
with traveltime 0 is inserted into the node label belonging to s. The priority queue PQ
stores nodes, the key of a node is the key of its representant. In the main loop we get the
unmarked single label with the smallest key at a node v. As it is the single label with the
smallest traveltime, it can not be dominated by any unmarked single label, and all marked
single labels have already been propagated. So the label-setting property holds and we
mark this single label. The node v may have another representant now, if so we have to
update v in the priority queue. The old single label is then propagated over each outgoing
edge e = ((v, q), (w, q′)) of the product network. We compute these edges implicitly as in
the Function Algorithm (see Section 3.1). We have to differ between two cases then. If
either our edge weight is a constant function or the single label is not pure independent
we do this straightforward. We create a new single label with the same departure time as
the old one and add the traveltime for taking the edge when we arrive there. The second
case is when the single label is pure independent and the edge weight is a non-constant
function. This means the journey described by the single label only used time-independent
edges up to this point, and has no single departure time. This is the first time where one
taking this journey has to wait for a transport. So we create a new single label sl for each
connection point p = (τ, f(e)(τ)) of the edge weight. These connection points represent
departures. To arrive in time we have to start the journey at dep(τtra(sl), τ), so this is the
new single label’s departure time. We then take the transport directly at its departure
time, so the overall traveltime is τtra(sl) + f(e)(τ). Note that this propagation of multiple
single labels can happen only once per edge, as there can be only one pure independent
single label at each node, and this single label is settled during this operation.
In both cases, all newly created labels are then inserted into the labelset l at node w with
the state q′. Each one is only inserted if there is no single label in l that dominates or is
equivalent to the created one. If a single label was successfully inserted, we update the
queue, i. e. we insert w if it was not inserted before, otherwise its key is decreased. As in
the Function Algorithm, we may stop if either the queue is empty or a stopping criterion
holds. The profile function can be computed by converting all labelsets at t with a final
state of the automaton into a function and then merging them.
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Algorithm 3: Label Algorithm

Data: A multimodal graph G = (V,E), edge weights, a finite automaton
A = (Q,Σ, δ, S, F ) representing a regular language L ⊆ Σ∗.

Input: Source node s ∈ V , target node t ∈ V .
Output: f(out), Function of traveltimes from s to t.

// Initialization
1 forall v ∈ V , q ∈ Q do
2 labelset(v, q).clear

3 forall qs ∈ Q do
4 insert(s, q,⊥, 0)
5 PQ.insert(v, 0)

// Main loop
6 while PQ is not empty do
7 v ← PQ.deleteMin()
8 (sl, q)← representant(v)
9 settle(v)

10 if Another representant(v) exists then
11 PQ.decreaseKey(v, key(representant(v)))

12 if StoppingCriterionHolds() then
13 stop

14 forall outgoing edges e = (v, w) do
15 forall states q′ ∈ δ(q, label(e)) do
16 if isPure(sl) and f(e) is not constant then
17 wasInserted ← false
18 forall Connection points p = (τ, f(τ)) of f(e) do
19 wasInserted ← wasInserted or

insert(w, q′, dep(τtra(sl), τ), τtra(sl) + f(e)(τ))
20 if wasInserted then
21 PQ.update(w, key(representant(w)))

22 else
23 wasInserted ← insert(w, q′, τdep(sl), τtra(sl) + f(e)(τarr(sl)))
24 if wasInserted then
25 PQ.update(w, key(representant(w)))

26 forall states q ∈ F do
27 f(out)← min(f(t, q), f(out))
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Stopping Criterion. As in the Function Algorithm, we may stop only if no time point
of the profile function f(out) can be improved. The profile function is computed as in
the Function Algorithm, all edge weights are positive and the label-setting property holds,
leading to the same Stopping Criterion as in the Function Algorithm:

PQ.MIN ≥ min
q∈F

(f(t, q))

Note that the upper bound can be easily computed by converting the labelset into a
function, and this has to be done only for the target node.

A drawback of the Label Algorithm is that we have to perform the extract operation of the
priority queue very often, as there are much more single labels in the Label Algorithm than
there are functions in the Function Algorithm. Moreover, the running time depends highly
on how the methods representant(v) and insert(v, q, sl) are implemented. We therefore
show the approaches we have explored for implementing them.

Implementation of representant(v)

The representant method is called three times in the main loop. First when settling a
single label, then when reinserting the node after settling the single label, and finally every
time we update a node after relaxation. Therefore implementing this method is vital to
the performance of the algorithm. The simplest method is using an unsorted labelset and
performing a linear search through each labelset when searching a representant, though
this is time expensive.

Tracking the representant. The first option is to track the representant whenever
possible and only to perform a linear search if absolutely necessary. Keeping tracking up
to date is no problem when inserting a single label in a labelset. We have to check whether
the inserted single label has a smaller traveltime than the current representant. The only
operation when we change a labelset without inserting is by calling the settle method. Here
our current representant is marked and can therefore not be used as representant anymore.
This is the only occurrence where a linear search through the labelset is unavoidable to
find the new representant, but this is only necessary once in the main loop.

Sorting the labelset. The second option is to keep the labelset sorted non-decreasingly
by traveltime. Since the label-setting property holds, all marked single labels are then
at the beginning of the labelset, and the first unmarked single label is the representant.
If we store the position of marked single labels, this operation takes only constant time.
However, the insert method needs to be modified to keep the labelset sorted, which takes
time.

Implementation of insert(v)

The insert method is another frequently called operation. Though mentioned only once in
the algorithm, it is in the main loop and is called for every relaxed edge there. The näıve
implementation of this method is to compare the inserted single label with every other
single label to determine which ones are dominated. Another approach is again to sort the
labelset. Sorting by traveltime achieves little, since traveltime is only a necessary criterion
for domination and we have to check both whether the inserted single label dominates
anything or is dominated. It is better to sort increasing by departure time. We observe
that when the labelset is sorted by departure time, it is sorted by arrival time as well.
Consider two single labels sl1 and sl2 with τdep(sl1) ≥ τdep(sl2). If τarr(sl1) < τarr(sl2),
sl1 dominates sl2, therefore sl2 cannot be in the labelset. Note that a pure independent
label has no departure time. Fortunately there is at most one of them in the labelset, so
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we treat it as a special case, and check the domination relation with it at the beginning.
When inserting a pure independent label that is not dominated by the pure independent
label of the labelset, we still have to do a linear search. But this case is rare and if it
occurs, the single independent label has a good chance of dominating many single labels
of the labelset. In all other cases, we proceed as follows:

We can determine the position POSdep that the inserted single label sl would have if we
inserted it in the labelset so that the labelset is still sorted by departure time. More
precisely, we try to insert it at the first position so that the departure time of sl is strictly
bigger than its predecessors. To find this position we do not just do a linear search. We
can assume that the departure times in the labelsets are more evenly distributed over
the period the more single labels it contains. We therefore assume that the single labels
are evenly distributed and interpolate a position that is likely near POSdep. From there,
we can search up or down to find the exact POSdep. From this point, we can search
the position where we would insert sl so that the labelset is still ordered by arrival time,
POSarr. We then have three cases:

1. For a single label sl, POSarr is not at the beginning or the end of the labelset.
As defined in Section 3.2.1, there are two rules for checking domination. The second rule,
which handles journeys extending into another period cannot apply here, or either the
first or last single label in the labelset would have been dominated already. According
to the first rule however, only those single labels with a departure time bigger or even
τdep(sl) can dominate sl, which means only single labels with a position p ≥ POSdep, or
the predecessor of POSdep, can dominate sl. Likewise, sl can dominate only single labels
at position q < POSdep. Analogously, only single labels at position p < POSarr can
dominate sl, and sl can dominate only single labels at a position q ≥ POSarr or at the
predecessor of POSarr.

This leads to following rules:

1. If POSdep < POSarr, sl is dominated by at least one single label.

2. If POSdep = POSarr, sl can dominate and can be dominated only by the label
POSdep − 1, or equal it.

3. If POSdep > POSarr, sl dominates all single labels with positions in [POSarr, POSdep).
If the arrival time of the single label at POSarr − 1 is the same as τarr(sl), the label
at POSarr − 1 is also deleted.

Note that after we have found POSdep, we only need to check as much labels as we delete,
and only one if we are dominated, plus the label at POSdep − 1 if needed. We also have
to delete only a contiguous area of memory which is more efficient on data structures like
arrays than deleting several single entries. For examples, see Figure 3.2.

2. For a single label sl, POSarr is at the end of the labelset. The single label sl
cannot dominate any other single labels, except possibly the one at POSarr − 1 if POSdep
is also at the end. If POSdep < POSarr, sl is dominated as in the former case. However,
even if POSarr = POSdep, sl is possibly dominated by the first entry of the labelset. For
an example, see Figure 3.5.

3. For a single label sl, POSarr is at the beginning of the labelset. The single
label sl cannot be dominated by any other single label. The single labels at positions in
[POSarr, POSdep) are dominated. However, it is still possible for sl to dominate further
single labels. We check what happens when the journeys belonging to all other single
labels begin during the previous period. This means that Π is subtracted from their
arrival times, or, equivalently but more efficiently, Π is added to the arrival time of sl.
We can then search for the position of this new arrival time POSarrnew, beginning at the
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pos τdep τarr
1 00.00 02.00
2 11.00 13.00
3 14.00 16.00
4 15.30 20.00
5 22.00 25.00

Insert: 10.00 - 14.00

pos τdep τarr
1 00.00 02.00
2 11.00 15.40
3 14.00 16.00
4 15.30 20.00
5 22.00 25.00

pos τdep τarr
1 00.00 02.00
2 11.00 13.00
3 14.00 16.00
4 15.30 20.00
5 22.00 25.00

Insert: 15.35 - 15.40

Insert: 15.35 - 15.40

pos τdep τarr
1 00.00 02.00
2 11.00 15.40
3 14.00 16.00
4 15.30 20.00
5 22.00 25.00

Insert: 11.01 - 15.40
Insert: 11.01 - 15.41

Insert: 11.00 - 15.40

(a) (b)

(c) (d)

Figure 3.2: Subfigures (a)-(d) show labelsets, with the position, departure time τdep and
arrival time τarr, as well single labels that should be inserted. An arrowhead
marks POSdep on the left hand side and POSarr on the right hand side. The
red line marks which single labels may be dominated, the blue dotted line
which single labels may dominate the inserted one, according to POSdep and
POSarr respectively. In Subfigure (a), the inserted label is dominated since
the blue lines overlap in more than one single label. In Subfigure (b), the red
line overlaps for single labels 2-4 which are dominated. Subfigure (c) shows hat
the predecessor of min(POSdep, POSarr) has to be checked as a special case.
This case is almost like (b), but single label 2 is not dominated. Subfigure (d)
demonstrates this even better, as the three inserted single labels produce the
same POSdep and POSarr, but the first is not inserted because it equals single
label 1, the second dominates it, and the third is inserted without changing
anything.

end of the labelset. The single label sl then dominates each single label at the positions
p ≥ POSarrnew. Again, sl might dominate the single label at POSarrnew − 1. We again
have to check only as many single labels as we delete, plus the one at POSarrnew − 1 and
have to delete two contiguous areas of memory. Note that we never have to go back two
periods in time, because then sl dominates every single label even after going back only
one period and we can stop. For an example, see Figure 3.5.

Implementing Both Representant and Insert

Preliminary results showed that implementing representant by sorting the labelsets by
traveltime results in a higher speedup than just tracking the representant. Unfortunately,
this is not compatible with the non-näıve implementation of insert. We clearly achieve
the highest speedup when we combine implementing insert by sorting the labelsets by
departure time and tracking the representant, so we focus on this approach in the rest of
the work.

3.3 Improvements

Both algorithms use ideas similar to those used to solve the Label Constraint Shortest
Path-Problem Problem (see Chapter 2.5). In practice, there are some instances where this
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pos τdep τarr
1 -03.00 21.00
2 -02.00 22.00
3 -01.00 23.00
1 21.00 45.00
2 22.00 46.00
3 23.00 47.00

Insert: 19.00-20.00

pos τdep τarr
1 00.00 01.00
2 01.00 02.00
3 02.00 03.00
1 24.00 25.00
2 25.00 26.00
3 26.00 27.00

Insert: 23.00-25.30

(a) (b)

Figure 3.3: The notation is as in Figure 3.2. Single labels set in red are single labels of the
labelset that are set into another period. Subfigure (a) shows how single labels
are dominated when set into a former period. Subfigure (c) shows how a single
label in a later period dominates the single label that should be inserted.

approach can be optimized. First, we see that the automata themselves can be optimized,
then we improve the running time by using a special backward search in some cases.

3.3.1 Domination Between States

Both the Label and Function Algorithm only eliminate single labels and connection points
that dominate each other in the same state. In general, this is necessary for correctness,
because being in a certain state means that only certain modes of transport may be used
in the future. However, this is not always the case. Consider the automaton in Figure 3.4,
where a journey begins in the foot network, goes over the rail network and finally returns
into the foot network, and every state is final. In the last state, one can only use foot
edges. However, this would also lead to valid paths when one was in the first state. Hence,
when a single label or connection point of the first state dominates one in the last state,
the single label or connection point in the last state can be deleted. We can generalize
this: If a part of a journey begins in state B, and all valid paths from this point on are
also valid when the same part of the journey began in state A, then single labels and
connection points in state A may dominate those in state B. We say, state A dominates
state B. More formally:

Definition 1. Given an Automaton A = {Q,Σ, δ, S, F} and two states p, q ∈ Q, consider
the two automata B = {Q,Σ, δ, p, F} and C = {Q,Σ, δ, q, F}. Then p dominates q if and
only if every word w ∈ Σ∗ that is accepted by C is also accepted by B.

This can be implemented by simply adjusting the automaton. When A dominates B,
adding an ε-transition from A to B results in an equivalent automaton A = {Q,Σ, δ, S, F}.
When performing the Label or Function Algorithm, each single label or connection point
that is inserted in state A is also inserted in B. Since we cannot compute δ by a
simple lookup when using ε-transitions, we construct yet another equivalent automaton
B = {Q′,Σ, δ′, S′, F ′} that also incorporates domination with the following algorithm:

• Q′ = Q.

• δ′ is constructed as follows: Every not-ε-transition in δ is in δ′. Moreover, when
there is a transition from a state qi to a state qj and a state qk which is reachable
from qj only over ε-transitions, a transition from qi to qk is added.

• S′ = S ∪ T where T is every state which can be reached from a state s ∈ S only via
ε-transitions.

• F ′ = F .

For an example, see Figure 3.4.
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l
F1

l
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(a)
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F1
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R F2
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Figure 3.4: The state F1 in the automaton in Subfigure (a) dominates the state F2. There-
fore, we can add an ε-transition from F1 to F2 as shown in Subfigure (b). We
then construct an equivalent ε-free automaton, shown in Subfigure (c).

l
A B

r f f,r,l

C

Figure 3.5: Illustration of end-states. State A is no end state because it has transitions to
state B. State C is no end state because it has transitions for multiple labels.
Only B is an end-state with regard to label f

3.3.2 Backward Search

Propagating whole functions across the network is costly. It seems especially wasteful
when propagating them over a time-independent subnetwork, where every single label
or function propagated over the same edge increases with the exact same constant. If
the target node is in a time-independent subnetwork and the automaton does not allow
switching into another subnetwork again, we can accelerate this process. We call such a
state that does not allow switching from a subnetwork with label l into another subnetwork
an end-state with regard to label l. See Figure 3.5 for examples. More formally:

Definition 2. Given an automaton A = {Q,Σ, δ, S, F}, a state q ∈ A is an end-state
with regard to a label l ∈ Σ∗ if and only if δ(q, l) = q, and for every m ∈ Σ∗ with l 6= m,
δ(q,m) = ∅ holds.

If the target node t is in a time-independent subnetwork, we perform a one-to-all query
from t to all other nodes on the backward graph of that subnetwork, and store distt(v)
for each node v. Whenever we relax an edge e = ((w, q′), (v, q)) of the product network
where v is in the same subnetwork as t and q is an end-state with regard to the label of
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the subnetwork, we add distt(v) to the label we try to insert at v. We then try to insert
this label at t instead. Since we can never leave the subnetwork and t is our target, we do
not put t into the priority queue. When applicable, this saves propagating whole functions
over this last time-independent subnetwork.
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4. Evaluation

We conducted experiments on one core of an Intel Xeon E5430 processor running SUSE
Linux 11.1. It has 32 GiB of RAM, a 12 MiB of L2 cache. We compiled the program with
GCC 4.5, using optimization level 3. The code is written in C++ and we use the STL.
The priority queue is a 4-ary heap.

Input Networks. The networks are those used in [DPW12b], but with the color model
applied to the rail networks [DKP10]. More specifically, we perform tests on the ny-road-
rail and de-road-rail instances. The ny-road-rail instance consists of New York’s
foot network and the public transit network operated by MTA. Together, they contain
607 502 nodes, 579 849 for the foot network and 27 203 for the public transit network. The
de-road-rail instance is made up of the pedestrian and railway networks of Germany. It
contains both long and short distance trains. Together, they have 5 075 681 nodes, 5 655 680
for the foot network and 20 001 for the railway networks. Note that public transit network
of the ny-road-rail instance is much bigger in comparison to its foot network. On the
other hand, trains in the de-road-rail instance can be much faster, and are therefore
more likely a part of a shortest path if we pick source and target at random. We assign
the label f to edges of the foot subnetworks, r to edges of the rail subnetworks and l to
the link edges.

Input Automata. As automata we use the automata shown in Figure 4.1. In the
road and rail automata only the foot or rail network may be used respectively. In the
road/rail automaton the rail network may be entered only once or be omitted entirely. In
the road�rail and rail�road automata the network may be switched exactly once. For
all these automatons their states are denoted by F1 (first foot state), R (rail state) and F2

(second foot state), as can also be seen in Figure 4.1. There are no restrictions when using
the everything automaton. Moreover we use the road/rail [dom] automaton to allow
domination between states for the road/rail automaton. The automaton road/rail
[dom] is the same as the one depicted in Figure 3.4(c).

Methodology. We first perform one-to-all queries, then point-to-point queries and finally
point-to-point queries with a backward search for the Function and Label Algorithm where
applicable. We compare the Function and Label Algorithm with an LC-Dijkstra (see
Chapter 2.5) in the following way: For each departure time of the connection points of
the function that the Label and Function Algorithm compute, we perform a time query
using an LC-Dijkstra for that departure time. If the function is constant, we run one time
query with an arbitrary departure time. This is like performing an algorithm that knows all
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l
F1

l
R F2

f r f

(a) The road/rail automaton and its subautomata

f,r,l

(b) The everything
automaton

Figure 4.1: Subfigure (a) shows the road/rail automaton, divided in its subautomata.
The road�rail automaton is confined by the blue dashed lines, the
rail�road automaton by the red dotted lines. The road automaton con-
sists only of F1, and the rail automaton only of R. In Subfigure (b) we see
the everything automaton that allows all paths.

relevant departure times in advance, and computes the shortest path for each of them. We
call this hypothetical algorithm the PLCD-algorithm (Profile-Label-Constrained-Dijkstra).
Note that when we use the road/rail [dom] automaton, we compare this to a PLCD-
algorithm using the road/rail automaton. This is because we use this automaton only
to achieve a speedup for the Function and Label Algorithm, but the automaton leads
to a slowdown for normal time queries as we may settle node/state combinations (v, F2)
unnecessarily. For each type of query and each automaton we run 100 queries with each
algorithm. When we perform a backward search (this is only applicable for road/rail and
rail�road), we denote this by the suffix [back]. When using the everything automaton,
source and target node are picked uniformly random. For all other automatons, we choose
the source and target node as follows: If the initial state of the automaton is F1, we pick
a random node in the foot network as source node. Otherwise, the initial state of the
automaton is R, and we pick a random node in the rail network as source node. With
exception of the everything automaton, each automaton has exactly one end-state with
regard to a label. If this label is f , we pick a random node of the foot network as target
node. If the label is r, we pick a random node from the rail network as target node. We
measure the query time in milliseconds. Furthermore we measure the number of connection
points that have been settled. For the PLCD-algorithm this is the amount of settled nodes,
for the Function Algorithm the number of settled nodes times the size of their functions,
denoted by settled conns, and for the Label Algorithm the amount of settled single labels
denoted simply by settled labels. The size of the computed profile function is denoted by
St. We show the speedup of the Function and Label Algorithm over the PLCD-algorithm,
denoted by Sp. up. For the Function Algorithm we furthermore measure the amount of
settled nodes and how often each node that is settled at least once in a state is settled on
average in this state. For the Label Algorithm we additionally measure the maximal size
of a labelset in one run, denoted by average max labelset size, and the maximal labelset
size in all runs, denoted by max labelset size.

In the following we first analyze the query performance and then look at more detailed
statistics for the Function and the Label algorithm.
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Table 4.1: Query performance on the ny-road-rail instance. We present one-to-all
queries and point-to-point queries. The column denoted |St| shows the average
size of the computed profile functions. The PLCD column shows the average
query time of the hypothetical PLCD-algorithm and its average search space.
The Function and Label Algorithm columns show the average query time and
amount of settled connections or single labels, respectively. We also report for
both these algorithms the speedup in comparison to the PLCD-algorithm.

PLCD Function Algorithm Label Algorithm
Settled Time Settled Time Sp. Settled Time Sp.

Automaton |St| Labels [ms] Conns [ms] up Labels [ms] up

ny-road-rail one-to-all

road 1 580 k 282 580 k 496 0.6 580 k 521 0.5
rail 68 1 803 k 898 6 267 k 822 1.1 1 818 k 2 326 0.4
road/rail 14 15 513 k 8 733 72 880 k 13 736 0.6 11 962 k 19 952 0.4
road�rail 33 19 468 k 11 181 3 797 k 1 056 10.6 1 491 k 1 805 6.2
rail�road 31 18 222 k 9 221 134 612 k 19 910 0.5 21 922 k 38 998 0.2
everything 16 9 215 k 5 305 54 099 k 10 229 0.5 10 594 k 20 079 0.3

ny-road-rail point-to-point

road 1 289 k 137 289 k 251 0.5 289 k 263 0.5
rail 68 766 k 345 6 210 k 810 0.4 1 775 k 2 277 0.2
road/rail 14 5 926 k 3 288 57 428 k 9 661 0.3 6 675 k 13 012 0.3
road�rail 33 4 513 k 2 520 3 330 k 669 3.8 1 056 k 1 287 2.0
rail�road 31 8 249 k 4 201 126 731 k 18 109 0.2 15 538 k 33 115 0.1
everything 16 4 464 k 2 556 41 848 k 7 140 0.4 6 492 k 14 188 0.2

Query Performance

In Table 4.1 and 4.2 we present the query performance of the hypothetical PLCD-algorithm,
the Function and the Label Algorithm.

When we perform a query only on the foot network, our algorithms effectively become
an LC-Dijkstra. In this case, the additional data structures of our algorithms cause a
speeddown. The speeddown of the Label algorithm is a bit higher, but not significantly.
The number of settled nodes by the Function Algorithms times their function size is always
about an order of magnitude higher than the number of settled single labels by the Label
Algorithm. The Label Algorithm is faster when using the rail or road/rail automaton
on the de-road-rail instance. In all other cases, however, the Function Algorithm is
considerably faster than the Label Algorithm. This means that the additional costs for
finding the representant and inserting single labels at a node are too high. Moreover, the
spatial locality in memory when propagating a whole function is better than extracting
each single label individually. The nodes are not settled often enough by the Function
Algorithm to outweigh this.

Using a stopping criterion (i. e. performing point-to-point queries) is nowhere as effective
for our algorithms as for the PLCD-algorithm. When comparing query times of one-to-all
queries with point-to-point queries, the speedup is barely noticeable in some instances.
The reason is that we want to compute a Pareto-set of results, and there are a lot more
possibilities to improve such a set than just a single value (see Chapter 3.1). There still
are significant speedups in some instances, though. When using the road automaton, they
have the same speedup as the PLCD-algorithm. When using the road�rail automaton
the speedup is also considerable. The reason is that using trains is faster than walking.
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Table 4.2: Query performance on the de-road-rail instance. We present one-to-all
queries and point-to-point queries. The column denoted |St| shows the average
size of the computed profile functions. The PLCD column shows the average
query time of the hypothetical PLCD-algorithm and its average search space.
The Function and Label Algorithm columns show the average query time and
amount of settled connections or single labels, respectively. We also report for
both these algorithms the speedup in comparison to the PLCD-algorithm.

PLCD Function Algorithm Label Algorithm
Settled Time Settled Time Sp. Settled Time Sp.

Automaton |St| Labels [ms] Conns [ms] up Labels [ms] up

de-road-rail one-to-all

road 1 5 056 k 2 961 5 056 k 5 083 0.6 5 056 k 5 918 0.5
rail 14 267 k 145 944 k 340 0.4 276 k 266 0.5
road/rail 18 174 462 k 130 559 453 985 k 118 134 1.1 96 558 k 234 929 0.6
road�rail 15 73 293 k 50 019 6 188 k 6 212 8.1 5 374 k 7 051 7.1
rail�road 16 78 570 k 61 688 405 989 k 100 438 0.6 85 233 k 206 214 0.3
everything 18 86 185 k 74 934 438 238 k 108 719 0.7 93 483 k 240 226 0.3

de-road-rail point-to-point

road 1 2 448 k 1 368 2 448 k 2 436 0.6 2 448 k 2 821 0.5
rail 14 109 k 52 941 k 337 0.2 267 k 260 0.2
road/rail 18 40 212 k 30 074 425 337 k 106 504 0.3 78 709 k 197 189 0.2
road�rail 15 1 134 k 692 1 343 k 649 1.1 513 k 634 1.1
rail�road 16 36 672 k 27 246 400 822 k 99 669 0.3 76 403 k 184 822 0.1
everything 18 38 679 k 31 897 418 001 k 102 945 0.3 81 883 k 212 736 0.1

Since we end in the rail network, we always can reach the destination by train and do
not have to walk after that. This is often much faster than walking, so that the stopping
criterion holds early relative to the size of the foot network.

Query times can differ significantly for different source/target network combinations. It
is striking that in every case where it is likely to enter the foot network after being in the
railway network, the query time is higher by an order of magnitude. In case of de-road-
rail, even two orders of magnitude. This is because we propagate whole functions over
the normally time-independent foot network. We can use domination between states and
a backward search to avoid this.

In Table 4.3 we present the performance of our improvements. When using an automa-
ton that incorporates domination between states we achieve a speedup over the PLCD-
algorithm, though not a significant one. In the de-road-rail instance, where trains are
much faster in comparison to the ny-road-rail instance, the effect is barely noticeable.
Still, we only have to adapt the input automaton slightly to achieve this speedup.

When using the road�rail automaton or backward searches, our algorithms achieve a
considerable speedup over the PLCD-algorithm. This is because in these cases the PLCD-
algorithm searches on the time-independent foot network for each departure time, whereas
our algorithms do this only once. In the de-road-rail instance, we achieve a speedup up
to an order of magnitude over the PLCD-algorithm when using backward searches.

Function Algorithm Statistics

In Table 4.4 we present more detailed statistics for the Function Algorithm.
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Table 4.3: Query performance on ny-road-rail and de-road-rail with improve-
ments enabled. The column denoted |St| shows the average size of the com-
puted profile functions. The Function and Label Algorithm columns show the
average query time and amount of settled connections or single labels, respec-
tively. We also report for both these algorithms the speedup in comparison to
the PLCD-algorithm.

Function Algorithm Label Algorithm
Settled Time Sp. Settled Time Sp.

Automaton [Improv.] |St| Conns [ms] up Labels [ms] up

Improvements ny-road-rail

road/rail 14 57 428 k 9 661 0.3 6 675 k 13 012 0.3
road/rail [dom] 14 57 052 k 9 641 0.3 6 642 k 12 913 0.3
road/rail [back] 14 2 888 k 950 3.4 917 k 1 464 2.2
rail�road 31 126 731 k 18 109 0.2 15 538 k 33 115 0.1
rail�road [back] 31 6 218 k 1 319 3.2 1 798 k 2 874 1.5

Improvements de-road-rail

road/rail 18 425 337 k 106 504 0.3 78 709 k 197 189 0.2
road/rail [dom] 18 424 809 k 106 167 0.3 78 605 k 196 145 0.2
road/rail [back] 18 1 233 k 2 965 10.1 425 k 2 903 10.3
rail�road 16 400 822 k 99 669 0.3 76 403 k 184 822 0.1
rail�road [back] 16 940 k 2 748 9.8 269 k 2 646 10.2

As mentioned in the section above, the number of settled connections of the Function
Algorithm is most times significantly higher than the amount of settled single labels of
the Label Algorithm. However, the amount of settled nodes of the Function Algorithm is
significantly lower than both. When we look at how many times the settled nodes were
settled on average, we see that this number increases whenever a new state is entered. In
F1, wherever applicable, all functions are constant and every node that is settled is only
settled once. Nodes are settled multiple times when entering the railway network, as this
network has non-constant functions. It is remarkable however, that nodes are settled even
more often in state F2. A possible explanation are effects as described in our scenario
presented in Figure 3.1. This means the backward search is even more important, since
it eliminates the network where nodes are settled the most times. Even so, the nodes are
not settled often enough to outweigh the additional costs of the operations performed by
the Label Algorithm.

Label Algorithm Statistics

When storing the single labels in a Pareto-set at a node, we would like to reserve memory at
the beginning so we do not allocate it at runtime, similar to [DKP10]. In that publication,
the number of labels is bound by the number of departures from the source station. In our
scenario, this is not the case, as there are no scheduled departures in time-independent
networks. In Table 4.5 we depict additional data for the Label Algorithm. The average
output size is not large, but we see that the maximal number of labels in a labelset is much
higher. While it is feasible to reserve that much memory space for the rail network, the
number of nodes in our foot networks are orders of magnitudes higher, and in the worst
case we have to store labels for each node/state combination. This is the case when using
the everything automaton
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Table 4.4: Function Algorithm. We report a detailed performance analysis of the Func-
tion Algorithm for different automatons and our improvements. We show both
the amount of settled nodes and settled connections and give a per state break-
down of the search space: For every state of the query automaton we report
how often a node is settled on average in that state (over every node settled in
that state). For comparison we present the amount of single labels settled by
the Label Algorithm in the column Settled Labels. We put the only state of the
everything automaton into the column of state F1.

Average Average Average
Settled Settled Settled Settled Settled

Settled Nodes Conns per Node per Node per Node
Automaton [Improv.] Labels Function Function in F1 in R in F2

ny-road-rail point-to-point

road 289 k 289 k 289 k 1.0 — —
rail 1 775 k 89 k 6 210 k — 2.9 —
road/rail 6 675 k 1 746 k 57 428 k 1.0 2.0 5.0
road/rail [dom] 6 642 k 1 862 k 57 052 k 1.0 2.0 4.5
road/rail [back] 917 k 306 k 2 888 k 1.0 2.0 0.0
road�rail 1 056 k 279 k 3 330 k 1.0 2.6 —
rail�road 15 538 k 2 374 k 126 731 k — 2.9 7.3
rail�road [back] 1 798 k 89 k 6 218 k — 2.9 0.0
everything 6 492 k 1 340 k 41 848 k 3.5 — —

de-road-rail point-to-point

road 2 448 k 2 448 k 2 448 k 1.0 — —
rail 267 k 64 k 941 k — 2.8 —
road/rail 78 709 k 24 105 k 425 337 k 1.0 3.1 4.5
road/rail [dom] 78 605 k 24 100 k 424 809 k 1.0 3.1 4.5
road/rail [back] 425 k 213 k 1 233 k 1.0 3.1 0.0
road�rail 513 k 299 k 1 343 k 1.0 3.1 —
rail�road 76 403 k 23 929 k 400 822 k — 2.8 4.3
rail�road [back] 269 k 64 k 940 k — 2.8 0.0
everything 81 254 k 23 143 k 418 001 k 4.2 — —

Summary

The Function Algorithm is faster than the Label Algorithm in almost every case. Single
labels are only settled once in the Label Algorithm, but the nodes are not settled often
enough by the Function Algorithm to outweigh the costs of propagating each single label
individually. The biggest problem for both algorithms is that functions or many single
labels are propagated over the time-independent foot network, although for a function or
group of single labels the traveltimes increase by the same amount over a time-independent
edge. This leads to higher query times in order of magnitudes. Where applicable, this
can be reversed by a backward search, so we even achieve a speedup over the hypothetical
PLCD-algorithm up to an order of magnitude.

32



33

Table 4.5: Label Algorithm. For each automaton and our improvements we present the
average number of single labels settled per query. We analyze how these labels
are distributed in detail: We report the average size of the profile function at
the target node (|St|), the average maximum size of a labelset during one query,
and the maximal size of a labelset measured over all queries.

Settled Average Max Max
Automaton [Improv.] Labels |St| Labelset Size Labelset Size

ny-road-rail point-to-point

road 289 k 1 1 1
rail 1 775 k 68 175 370
road/rail 6 675 k 14 134 704
road/rail [dom] 6 642 k 14 133 677
road/rail [back] 917 k 14 114 469
road�rail 1 056 k 33 87 469
rail�road 15 538 k 31 209 699
rail�road [back] 1 798 k 31 175 370
everything 6 492 k 16 88 1 151

de-road-rail point-to-point

road 2 448 k 1 1 1
rail 267 k 14 49 161
road/rail 78 709 k 18 67 327
road/rail [dom] 78 605 k 18 64 306
road/rail [back] 425 k 18 55 306
road�rail 513 k 15 56 306
rail�road 76 403 k 16 64 255
rail�road [back] 269 k 16 49 161
everything 81 254 k 18 68 432
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5. Conclusion

We developed, implemented and evaluated two algorithms that compute profile queries on
multimodal networks.

The first one is the Function Algorithm, which is label-correcting. It is an adaption of
an algorithm that computes profile queries in unimodal networks by propagating whole
functions instead of scalar values. We combine this with an approach to search a shortest
path in a product network. This product network connects a graph and a finite automaton,
which is used to ensure that only admissible paths are computed. As key for the functions
we use the lower bound of the functions. This allows for a reasonable stopping criterion.
The label-setting property, however, does not hold. Connection points are propagated
multiple times, which seems wasteful in some scenarios (see Figure 3.1).

We then developed the Label Algorithm, which uses similar techniques as the Function
Algorithm, but is a label-setting algorithm that propagates single labels. A single label
consists of the departure and traveltime of a journey. When using the traveltime of a single
label as key, the label-setting property holds so each single label is only settled once. We
store Pareto-sets of single labels for each combination of a state of the finite automaton
and a node of the graph. On these sets we need to perform several operations to manage
the single labels. Implementing those operations efficiently is vital to the running time
of the Label Algorithm. We therefore explored different techniques like sorting the single
labels by departure or traveltime, or tracking the single label with the smallest key in
a Pareto-set. Combining tracking the single label with the smallest key and sorting by
departure times is the most promising approach.

We applied further improvements to both algorithms. We developed a method that in
certain cases allows comparison of paths between different states, so that not Pareto-
optimal solutions can be deleted earlier. Moreover, we saw that propagating functions over
time-independent subnetworks leads to a slowdown in orders of magnitudes. Performing
a backward search in the time-independent part countermands this. To compare this to
Dijkstra’s Algorithm, we perform an LC-Dijkstra for each relevant departure time. Our
algorithms then achieve a speedup of up to an order of magnitude.

Our experimental evaluation showed that the number of settled nodes times their function
size in the Function Algorithm is significantly higher than the number of settled single
labels in the Label Algorithm. Nevertheless, the Function Algorithm is faster than the
Label Algorithm in almost every instance. The additional costs for the Label Algorithm
to find the representant and to insert a single label are too high. Moreover, the spatial
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locality in memory when propagating whole function is better than extracting each single
label individually from the priority queue. The nodes are not reinserted often enough by
the Function Algorithm to outweigh this.

Outlook. The propagation of non-scalar values over time-independent subnetworks leads
to a high slowdown. Therefore, the next step is to minimize this. Our backward search
does not work in all cases, an implementation of Contraction Hierarchies for the time-
independent part as in [DPW12b] certainly will improve the running time of the algo-
rithms.

For automatons where we visit subnetworks successively, likethe road/rail automaton (see
Figure 4.1), exploring a multi-phase approach could be worthwhile. We could perform
a complete one-to-all query for a subnetwork, and only then continue onto the following
subnetwork. This would mean that we could use different keys for each subnetwork, so
advanced techniques like self-pruning [DKP10] could be applied. Until the last subnetwork
we would not be able to use a stopping criterion, but our experiments show that applying
the stopping criterion does not result in a high speedup in most instances anyway.

Finally, we chose the lower bound of a function f as a key. The lower bound of f is
determined by the connection point with the smallest departure time. However, when
f was settled once, this connection point does not change during the remainder of the
algorithm, and does not contribute to further improvements. Since we settle nodes far
less often than there are connection points, the same must also be true for a number of
other connection points. We could try to identify as many of those connection points as
possible, and neglect them when computing the key for the function. If this is possible,
we might overcome problematic scenarios as presented in Figure 3.1.
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