
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 016

Approximate counting of approximate
solutions

Mat Mihalk, Rastislav rmek, and Peter Widmayer

December 2016





Approximate counting of approximate solutions
(WIP)

Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer

Department of Computer Science, ETH Zurich, Zurich, Switzerland,
e-mail: {mmihalak,rsramek,widmayer}@inf.ethz.ch

Abstract. We present a fully polynomial-time approximation scheme
for counting paths shorter than some threshold on a directed, acyclic
graph.

1 Introduction

For a long time, people have been interested in counting solutions of com-
binatorial optimization problems. Most of the past work was focused on
either calculating the number of optimal solutions of a problem, for in-
stance the number of shortest s–t paths, or the total number of possible
solutions, for instance the number of perfect matchings in a graph. Less
thought has been given to the question of counting the number of approx-
imate solutions of a problem, that is, solutions that have cost at most ρ
times larger than the cost of the optimal solution, for some constant ρ.
We will look at the latter problem in the setting of three combinatorial
optimization problems.

Our primary motivation stems from our previous work [1], in which we
introduced a problem-based measure of instance similarity and a method
for predicting robust solutions of an optimization problem. In it we sup-
pose that we are given an optimization problem that admits several, not
necessarily optimal, “feasible” solutions. If the problem is, for instance, to
find a shortest s–t path in a concrete graph, the feasible solutions would
be all the paths from s to t. In order to be able to find a robust solu-
tions to the optimization problem, we have to be able to determine, for a
given ρ, the number of feasible solutions that ρ-approximate the optimal
solution. That is, they have cost that is at most ρ times higher than the
cost of the optimal solution. Additionally, when given two instances with
identical sets of feasible solutions, we want to find the number of solutions
that ρ-approximate both instances at the same time.

Counting solutions that approximate the optimum within some factor
is related to a number of previously studied problems. The most immediate



one is the enumeration of problem solutions in the order of increasing cost.
For instance, a number of previous works deals with enumerating s-t paths
in a graph by cost [], focusing on the minimization of the time and space
needed to produce the next solution in the procedure. In many cases,
however, the number of solutions to a problem is exponential and these
enumeration techniques are too slow to be useful for us. We want to count
without explicitly listing each solution.

We will briefly introduce the three combinatorial optimization prob-
lems which we want to study in this context.

1.1 Counting small sums in X1 + X2 + . . . + Xn

Let X1,. . . ,Xn be sets of integers. Given a value S, we are interested in
the number of ways one can choose (x1, x2, . . . , xn) ∈ X1×X2× . . .×Xn

such that
∑

i xi < S. This is a variant of a problem that was introduced
by Mizoguchi and Johnson [2]. They asked for the element with K-th
smallest sum from X1 +X2 + . . . +Xn and showed that this problem is
NP-complete.

Having an efficient algorithm would allow us to combine pre-computed
parts of different optimization problems. For instance, consider a graph
with two articulations a1 and a2. If s and t are such that any s-t path
must go through both a1 and a2, one can pre-compute lengths of all s-a1

paths, a1-a2 paths and a2-t paths, consider the pre-computed values as
sets X1, X2, X3, and get the resulting approximation set sizes by solving
the X1 +X2 + . . .+Xn problem.

TODO:Look around for papers where people use it.

1.2 Shortest paths on DAGs

The second problem we look at is the shortest s-t path problem, where
the underlying graph is directed and acyclic. The problem has a large
number of applications in many areas, the ones that specifically interest
us arise in the context of analysis of biological data. For instance de novo
peptide sequencing [3], [4], or sequence alignment [5]. Naor and Brutlag
[5] have asked how one can efficiently count sub-optimal paths in order
to learn more about DNA sequence alignments. Our work should be a
comprehensive answer to this question.

1.3 NP-completeness reduction

We show the unsurprising fact that counting the number of approximate
solutions for all three problems is NP-Complete. In 1978, Johnson and



Mizoguchi showed that finding the K-th smallest of the sums
∑n

i xi when
for all i, xi ∈ Xi, is NP-complete for n larger than 2. Reduction to this
problem does not seem straight-forward, since it requires identifying the
concrete elements x1, . . . , xn, but we can do a similar reduction to the
partition problem.

Consider the decision version of the partition problem: for a given set
of positive integers S = s1, . . . , sn, is there a partition of S into sets S1

and S2 such that the sums of integers in both sets are equal? We will
show that if we can count the number of selections xi ∈ Xi such that
x1 + x2 + . . .+ xn < S for any S, we can solve the decision version of the
subset sum problem.

Let Xi = {−si, si}. The corresponding subset sum problem has a
solution, if we can achieve a choice of xi ∈ Xi such that the sum of xi
is equal to 0. If we can efficiently count sums in X1 +X2 + . . .+Xn, we
can count the number of solutions when the value of S is 0 and 1. If these
two counts are not equal, there must exist a solution with the sum of 0
and the answer to the partition problem is “yes”. Otherwise the answer is
“no”. Since the partition problem is known to be weakly NP-Complete [],
the X1 +X2 + . . .+Xn problem is weakly NP-hard.

1.4 Reduction for shortest paths

We will consider a graph with n+1 vertices, a1 to an+1. For each element
xi ∈ Xj we will add an edge between vertices aj and aj+1 with weight xi.
If we denote s := a1 and t := an+1, the number of X1 + X2 + . . . + Xn

sums within a factor ρ of the smallest sum is equal to the number of s to
t paths shorter than ρ times the length of the shortest path. Note that
the existence of parallel edges is not necessary for the reduction, we could
bisect each parallel edge creating a auxiliary vertex to form a graph of
equivalent function but without parallel edges.

2 Directed acyclic graphs and X+Y sets

In this section we present fully polynomial time approximation schemes for
the problem of counting approximate shortest paths in a directed acyclic
graph and for the problem of counting small sums in X1 +X2 + . . .+Xn.
We will start with shortest paths and first treat the case where we are
interested only in the set of approximate solutions for one instance.



2.1 FPTAS for directed acyclic graphs

We first show a recurrence that can be used to exactly count the number
of paths that approximate the shortest path within some multiplicative
threshold ρ. Evaluating the recurrence takes exponential time, but we will
later show how to group partial solutions together in such way that we
trade accuracy for the number of recursive calls. We adapt the approach
of Stefankovic et al. [6], which they used to approximate the number of
all feasible solutions to the knapsack problem.

Let G be a directed acyclic graph with n vertices. We will label the
vertices v1, . . . , vn in such order that there is no path from vi to vj unless
i < j, i.e. v1, . . . , vn defines a topological ordering. We suppose that v1 = s
and vn = t, otherwise the graph can be pruned by discarding all vertices
that appear before s and after t in the topological order, since no path
from s to t ever visits these.

For a concrete vertex vi with in-degree d, let us denote its d neighbors
that precede it in the topological order by p1, . . . , pd and let us denote the
corresponding incoming edge lengths by l1, . . . , ld. Instead of asking for the
number of s-t paths that are shorter than L for a given L, we indirectly
ask for smallest threshold L, such that there are at least a paths from s
to t, shorter than L. Let τ(vi, a) denote the minimum length L such that
there are at least a paths from v1 to vi of length at most L. τ(vi, a) can
be computed by the recurrence

τ(v1, 0) = −∞
τ(v1, a) = 0,∀a : 0 < a ≤ 1
τ(v1, a) =∞,∀a : a > 1

τ(vi, a) = min
α1,...,αd∑
αj=1

max


τ(p1, α1a) + l1
...
τ(pd, αda) + ld

.

Intuitively, the at least a paths starting at v1 and arriving at vi must
split in some way among incoming edges. The values αj define such split.
We look for a set of α1, . . . , αd that minimizes the maximum allowed path
length needed such that the incoming paths can be distributed according
to αj , j = 1, . . . , d.

To find the number of paths of length at most L, we search for a such
that τ(vn, a) ≤ L < τ(vn, a+1). In particular, if the length of the shortest
s-t path is OPT , we can find the number of ρ-approximate s-t paths by
setting L := ρOPT .



Calculating τ using the given recurrence will not result in a polynomial
time algorithm since we might need to consider an exponential number
of values for a, namely 2n−2 on a DAG with maximal number of edges.
To overcome this, we will consider only a polynomial number of possible
values for a, and always round down to the closest one in the evaluation.
If we are looking for an algorithm that counts with 1 + ε precision, the
ratio between two successive considered values of a must be at most 1+ε.

For this purpose, we introduce a new function τ ′. In order to achieve
precision of 1 + ε, we will only consider values of τ ′ for minimum path
numbers in the form of qk for all positive integers k such that qk < 2n−2,
where q = n+1

√
1 + ε. The values of τ ′ for other numbers of paths will be

undefined. The function τ ′ is defined by the following recurrence.

τ ′(v1, 0) = −∞
τ ′(v1, a) = 0,∀a : 0 < a ≤ 1
τ ′(v1, a) =∞, ∀a : a > 1

τ ′(vi, qj) = min
α1,...,αd∑
αj=1

max


τ ′(p1, q

bj+logq α1c) + l1
...
τ ′(pdi , q

bj+logq αdc) + ld

(1)

To give a meaning to the expression qbj+logq αic when αi = 0, we define
it, for our purposes, to be equal to 0, which is consistent with its limit
when αi goes to 0. We want to show that the rounding does not make
the values of τ ′ too different from the values of τ . Ideally, we would want
the bound τ(vi, qj−1) ≤ τ ′(vi, qj) ≤ τ(vi, qj), but we will see that it is
sufficient to show that τ(vi, qj−i) ≤ τ ′(vi, qj) ≤ τ(vi, qj).
Lemma 1. Let 1 ≤ i and i ≤ j. Then,

τ(vi, qj−i) ≤ τ ′(vi, qj) ≤ τ(vi, qj). (2)

Proof. We first prove the first inequality, proceeding by induction on i.
The base case holds since τ(v1, a) ≤ τ ′(v1, b) for any a ≤ b. Suppose now
that the first inequality of (2) holds for every p, p < i. Then, for every
0 ≤ α < 1,

τ ′(p, qbj+logq αc) ≥ τ(p, qbj+logq αc−p)
≥ τ(p, qj−p−1+logq α) ≥ τ(p, αqj−i)



Thus, since every predecessor of vi is earlier in the vertex ordering, we can
use the obtained inequality to get the bound:

τ ′(vi, qj) = min
α1,...,αd∑
αj=1

max


τ ′(p1, q

bj+logq α1c) + l1
...
τ ′(pd, qbj+logq αdc) + ld

≥ min
α1,...,αd∑
αj=1

max


τ(p1, α1q

j−i) + l1
...
τ(pd, αdqj−i) + ld

= τ(vi, qj−i)

The inequality τ ′(vi, qj) ≤ τ(vi, qj) follows by a simpler induction on
i. Base case holds since τ(v1, x) = τ ′(v1, x) for all x. Assume that the
second part of (2) holds for all p < i. Then,

τ ′(p, qbj+logq αic) ≤ τ(p, qbj+logq αic) ≤ τ(p, αiqj).

And we can use the recursive definition to obtain the claimed inequal-
ity τ ′(vi, qj) ≤ τ(vi, qj).

τ ′(vi, qj) = min
α1,...,αd∑
αj=1

max


τ ′(p1, q

bj+logq α1c) + l1
...
τ ′(pd, qbj+logq αdi

c) + ld

≤ min
α1,...,αd∑
αj=1

max


τ(p1, α1q

j) + l1
...
τ(pd, αdi

qj) + ld

= τ(vi, qj)

ut

The next theorem shows how to use τ ′ to produce a (1+ε)-approximation
for the counting problem. We need to show that for any L, if we find k
such that τ ′(vn, qk) ≤ L < τ ′(vn, qk+1), the value qk will be no more than
(1 + ε)±1 away from the value a for which τ(vn, a) ≤ L < τ(vn, a).

Theorem 1. Given L, let k be such that τ ′(vn, qk) ≤ L < τ ′(vn, qk+1) and
a be such that τ(vn, a) ≤ L < τ(vn, a+ 1). Then (1 + ε)−1 ≤ a

qk ≤ 1 + ε.



Proof. Applying Lemma 1 twice, we get τ(vn, qk−n) ≤ τ ′(vn, qk) ≤ L <
τ ′(vn, qk+1) ≤ τ(vn, qk+1). As τ(vn, qk−n) is at most L, a is largest such
that τ(vn, a) ≤ L, and τ is monotonous in its second parameter, it must be
that qk−n ≤ a. Similarly, τ(vn, qk+1) is larger than L, so by monotonicity
a ≤ qk+1. Thus both a and qk must lie between qk−n and qk+1 and their
ratio can be at most qk+1−(k−n) = qn+1 = 1 + ε and at least qk−(k+1) =
(1 + ε)−1/(n+1) > (1 + ε)−1. ut

Left is to show that the we can compute all values of the function τ ′

in polynomial time.

Theorem 2. Given maximum allowed path length L, we can find k which
satisfies τ ′(vn, qk) ≤ L < τ ′(vn, qk+1) in time O(mn2ε−1 log n), where m
denotes the number of edges in the graph.

Proof. As noted before, directed acyclic graph on n vertices has at most
2n−2 paths between any two vertices. The values of a in τ therefore
span at most {1, 2, . . . , 2n−2}, and the values of qk in τ ′ span at most
{1, q, q2, . . . , qs}, where

s := logq(2
n−2) =

(n− 2)
log2 q

=
(n− 2)(n+ 1)

log2(1 + ε)
= O(n2ε−1).

Thus, we evaluate the function τ ′ for at most ns = O(n3ε−1) different
parameter pairs.

To show that the evaluation of τ ′ can be done in polynomial time,
we need to show that we can efficiently find α1, . . . , αd that minimize Ex-
pression (1). Fortunately, τ ′(vi, qk) is monotonous with increasing k, we
can thus apply a greedy approach. Given vi, we will evaluate τ ′(vi, qk) for
all possible values of qk in one run. Instead of the tuple α1 . . . αd we will
consider an integer tuple k1 . . . kd. We start with all ki equal to 0 and al-
ways increase the ki that minimizes τ ′(pi, qki+1)+ li by one. Whenever the
sum of all qki increases over some value qk, we store the current maximum
of τ ′(pi, qki) + li as the value τ ′(vi, qk). We terminate once

∑
i q
ki reaches

2n−2. As we can increase each ki at most s times, we make at most ds steps,
each of which involves choosing a minimum from d values and replacing
it with a new value. The latter can be done in time O(log d) ⊆ O(log n),
for instance by keeping the values τ ′(vi, qki+1) + li in a heap. The sum of
d for all vertices is equal to the number of edges m. The time necessary
to find all the values of τ ′(vn, qj) is thus O(mn2ε−1 log n). ut



2.2 FPTAS for solutions that approximate two instances

In this section we consider counting solutions that are ρ-approximate for
two instances at the same time. The instances differ in edge lengths, but
share the same topology,1 effectively giving each edge two different lengths.
We cannot directly apply the approach for the single instance case as we
now have two lengths per edge and it is unclear how to define a maximum
over pairs in Equation (1). We will nonetheless follow a similar approach
and define a function τ2 similar to τ that adds one of the edge lengths in
a form of a “budget”. τ2(vi, a, L1) will be equal to the shortest length L2

with respect to the edge lengths in the second instance such that there
are at least a paths from v1 to vi, no longer than L1 with respect to the
edge lengths in the first instance. We will denote the edge lengths of the
d incoming edges of vertex vi in the second instance by l′i. τ2 can then be
evaluated by the following recursion.

τ2(v1, 0, x) = −∞, ∀x ∈ R+

τ2(v1, a, x) = 0,∀a : 0 < a ≤ 1, ∀x ∈ R+

τ2(v1, a, x) =∞, ∀a : a > 1,∀x ∈ R+

τ2(vi, a, L1) = min
α1,...,αd∑
αj=1

max


τ2(p1, α1a, L1 − l1) + l′1
...
τ2(pd, αda, L1 − ld) + l′d

If used to solve the problem, the function τ2 would have to be evaluated
not only for an exponential number of path counts a but also for possibly
exponential number of values of L1. To end up with polynomial runtime,
we need to consider only a polynomial number of values for both. We will
introduce a function τ ′2 that does this by considering only path lengths in
the form of rk, where r = n

√
1 + δ, and path numbers a in the form of qj ,

1 Another way of looking at this is that if we have a bijection that tells us which
vertex in the first instance corresponds to which vertex in the second instance, we
can drop all edges that exist in only one of them, as any path using this will not
approximate the optimal solution in the other instance.



where q = n
√

1 + ε, for positive ε and δ.

τ ′2(v1, 0, x) = −∞,∀x ∈ R+

τ ′2(v1, a, x) = 0, ∀a : 0 < a ≤ 1,∀x ∈ R+

τ ′2(v1, a, x) =∞,∀a : a > 1,∀x ∈ R+

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max


τ ′2(p1, q

bj+logq α1c, rblogr(rk−l1)c) + l′1
...
τ ′2(pd, q

bj+logq αdc, rblogr(rk−ld)c) + l′d

We again show that τ ′2 approximates τ2, this time in two variables.

Lemma 2. Let 0 ≤ i, i ≤ j, and i ≤ k. Then
τ2(vi, qj−i, rk) ≤ τ ′2(vi, qj , rk) ≤ τ2(vi, qj , rk−i). (3)

Proof. We proceed as for Lemma 1. Note that the function τ2 is monotone
non-decreasing in a, but monotone non-increasing in L1. Proceeding by
induction on i, the base case again holds since τ2(v1, a, y) ≤ τ ′2(v1, b, y) for
any a ≤ b and y. We suppose that Equation (3) holds for all p < i. Then,
for every 0 ≤ α < 1,

τ ′2(p, q
bj+logq αc, rblogr(rk−l)c) ≥ τ2(p, qbj+logq αc−p, rblogr(rk−l)c)

≥ τ2(p, qj−p−1+logq α, rk − l) ≥ τ2(p, αqj−i, rk − l).
Thus, since every predecessor of vi has index smaller than i,

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max


τ ′2(p1, q

bj+logq α1c, rblogr(rk−l1)c) + l′1
...
τ ′2(pd, q

bj+logq αdc, rblogr(rk−ld)c) + l′d

≥ min
α1,...,αd∑
αj=1

max


τ2(p1, α1q

j−i, rk − l1) + l′1
...
τ2(pd, αdqj−i, rk − ld) + l′d

= τ2(vi, qj−i, rk).

The proof of the inequality τ ′2(vi, qj , rk) ≤ τ2(vi, qj , rk−i) is similar.
Assuming that (3) holds for every p < i, we obtain

τ ′2(p, q
bj+logq αc, rblogr(rk−l)c) ≤ τ2(p, qbj+logq αc, rblogr(rk−l)c−p)

≤ τ2(p, αqj , rlogr(rk−l)−p−1) ≤ τ2(p, αqj , rk−i − l).



Plugging it into the definition of τ ′2, we obtain

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max


τ ′2(p1, q

bj+logq α1c, rblogr(rk−l1)c) + l′1
...
τ ′2(pd, q

bj+logq αdc, rblogr(rk−ld)c) + l′d

≤ min
α1,...,αd∑
αj=1

max


τ2(p1, α1q

j , rk−1 − l1) + l′1
...
τ2(pd, αdqj , rk−1 − ld) + l′d

= τ2(vi, qj , rk−1).

ut
Using Lemma 2, we can show that τ ′2 provides enough information

to compute an approximation of τ2. However, we cannot get a (1 + ε)
approximation to the optimal value as in the Theorem 1, because we
need to round the value of L1 to a power of r in order for it to be legal
parameter of τ ′2 and we further round it during the evaluation of τ ′2. We
will therefore relate the result of τ ′2 to the results of τ2 we would have
gotten if we considered the value of L1 when rounded up towards the
nearest number that can be represented as rk for integer k and the value
rk−n. Due to the choice of r, the ratio of these two values is 1 + δ.

Theorem 3. Given a desired maximum v1-vn path lengths L1 and L2 with
respect to two instances, let integer k be such that τ ′2(vn, qk, rdlogr L1e) ≤
L2 < τ ′2(vn, qk+1, rdlogr L1e), a be such that τ2(vn, a, rdlogr L1e−n) ≤ L2 <
τ2(vn, a + 1, rdlogr L1e−n), and b be largest such that τ2(vn, b, rdlogr L1e) ≤
L2 < τ2(vn, a+ 1, rdlogr L1e). Then a ≤ b, a

qk ≤ 1 + ε and qk

b ≤ 1 + ε.

Proof. The statement that a ≤ b follows from the definition of a and b:
decreasing the limit on the path length in the first instance from rdlogr L1e

to rdlogr L1e−n cannot increase the number of possible paths. By applying
Lemma 2 twice, we get

τ2(vn, qk−n, rdlogr L1e) ≤ τ ′2(vn, qk, rdlogr L1e) ≤ L2, (4)

and
L2 < τ ′2(vn, q

k+1, rdlogr L1e) ≤ τ2(vn, qk+1, rdlogr L1e−n). (5)

From the definition of a and (5) we can conclude a ≤ qk+1. This implies
that a

qk ≤ q ≤ 1 + ε, due to our choice of q. Similarly, from the definition

of b and (4) we get b ≥ qk−n and thus qk

b ≤ qn ≤ 1 + ε. ut



Theorem 3 shows that the computed number of s-t paths qk cannot
be larger than b by more than a factor of 1 + ε, nor can it be smaller
than a by a factor larger than 1+ε. We can now state the overall running
time of the approach. Compared to the function τ ′ we need to evaluate τ ′2
for dlogr L1e = O(nδ−1 logL1) values of rl, in addition to the values of vi
and qk. Otherwise the arguments are identical to the proof of Theorem 2.
Note that logL1 is by definition in O(n), but we list it explicitly since it
can be much smaller in practice.

Theorem 4. Given maximum allowed path lengths L1 and L2 in two in-
stances, we can find k which satisfies τ ′2(vn, qk, rdlogr L1e) ≤ L < τ ′2(vn, qk+1, rdlogr L1e)
in time O(mn3ε−1δ−1 log n logL1), where m denotes the number of edges
in the graph.

2.3 Pseudo-polynomial algorithm for two instances

If the discrepancy between a and b as defined in the Theorem 3 is too large
and all edges have integer lengths, we can consider all possible lengths in
the first instance, instead of rounding to values in the form of rk. The
function τ ′′2 will be τ ′ extended with exact maximum length of path in the
first instance.

τ ′′2 (v1, 0, x) = −∞,∀x ∈ R+

τ ′′2 (v1, a, x) = 0, ∀a : 0 < a ≤ 1,∀x ∈ R+

τ ′′2 (v1, a, x) =∞,∀a : a > 1, ∀x ∈ R+

τ ′′2 (vi, qj , rk) = min
α1,...,αd∑
αj=1

max


τ ′′2 (p1, q

bj+logq α1c, L− l1) + l′1
...
τ ′′2 (pd, qbj+logq αdc, L− ld) + l′d

We will state the two theorems about accuracy and runtime without
proofs, since these are similar to the proofs of theorems 1 and 2.

Theorem 5. Given L, let k be such that τ ′′2 (vn, qk, L1) ≤ L2 < τ ′′2 (vn, qk+1, L1)
and a be such that τ2(vn, a, L1) ≤ L2 < τ2(vn, a+1, L1). Then (1+ε)−1 ≤
a
qk ≤ 1 + ε.

Theorem 6. Given maximum allowed path lengths L1 and L2 in two in-
stances, if all edges have integer lengths, we can find k which satisfies
τ ′′2 (vn, qk, L1) ≤ L2 < τ ′′2 (vn, qk+1, L1) in time O(mn2ε−1L1 log n), where
m denotes the number of edges in the graph.



Since the running time is linear in L1, the algorithm that corresponds
to the evaluation of the function τ ′′2 is pseudo-polynomial.

2.4 FPTAS for counting small sums in X1 + X2 + . . . + Xn

Turning the FPTASes for paths on directed acyclic graphs into an algo-
rithm for counting sums in X1 + X2 + . . . + Xn works is analogous to
the NP-hardness reduction from section 1. We transform the set of sets
Xi into a directed acyclic graph with n + 1 vertices and m :=

∑
i |Xi|

edges. We can therefore calculate the ε-approximation to the number of
ρ-optimal solutions in time O(mn2ε−1 log n) for a single instance, and in
time O(mn3ε−1δ−1 log n logL1) for two instances, if we allow multiplica-
tive error of (1 + δ) for ρ.

3 Conclusion

References

1. Joachim M. Buhmann, Matus Mihalak, Rastislav Sramek, and Peter Widmayer.
Robust optimization in the presence of uncertainty. In Proceedings of the 4th con-
ference on Innovations in Theoretical Computer Science, ITCS ’13, pages 505–514,
New York, NY, USA, 2013. ACM.

2. D.B. Johnson and T. Mizoguchi. Selecting the k th element in x+y and
x_1+x_2+âŃŕ+x_m. SIAM Journal on Computing, 7(2):147–153, 1978.

3. Ting Chen, Ming-Yang Kao, Matthew Tepel, John Rush, and George M Church.
A dynamic programming approach to de novo peptide sequencing via tandem mass
spectrometry. Journal of Computational Biology, 8(3):325–337, 2001.

4. Bingwen Lu and Ting Chen. A suboptimal algorithm for de novo peptide sequencing
via tandem mass spectrometry. Journal of Computational Biology, 10(1):1–12, 2003.

5. Dalit Naor and Douglas Brutlag. On suboptimal alignments of biological sequences.
In Combinatorial Pattern Matching, pages 179–196. Springer, 1993.

6. Daniel Štefankovic, Santosh Vempala, and Eric Vigoda. A deterministic polynomial-
time approximation scheme for counting knapsack solutions. SIAM Journal on
Computing, 41(2):356–366, 2012.


