
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 014

Robust optimization in the Presence of
Uncertainty

Joachim Buhmann, Matus Mihalak, Rastislav Sramek, Peter Widmayer

January 2013

Robust Optimization in the Presence of Uncertainty

Joachim M. Buhmann
Department of Computer

Science,
ETH Zurich,

Zurich, Switzerland
jbuhmann@inf.ethz.ch

Matúš Mihalák
Department of Computer

Science,
ETH Zurich,

Zurich, Switzerland
mmihalak@inf.ethz.ch

Rastislav Šrámek
Department of Computer

Science,
ETH Zurich,

Zurich, Switzerland
rsramek@inf.ethz.ch

Peter Widmayer
Department of Computer

Science,
ETH Zurich,

Zurich, Switzerland
widmayer@inf.ethz.ch

ABSTRACT
We study optimization in the presence of uncertainty such
as noise in measurements, and advocate a novel approach of
tackling it. The main difference to any existing approach is
that we do not assume any knowledge about the nature of
the uncertainty (such as for instance a probability distribu-
tion). Instead, we are given several instances of the same
optimization problem as input, and, assuming they are typ-
ical w.r.t. the uncertainty, we make use of it in order to
compute a solution that is good for the sample instances as
well as for future (unknown) typical instances.

We demonstrate our approach for the case of two typical
input instances. We first propose a measure of similarity of
instances with respect to an objective. This concept allows
us to assess whether instances are indeed typical. Based
on this concept, we then choose a solution randomly among
all solutions that are near-optimum for both instances. We
show that the exact notion of near-optimum is intertwined
with the proposed measure of similarity. Furthermore, we
will show that our measure of similarity also allows us to
derive formal statements about the expected quality of the
computed solution: If the given instances are not similar, or
are too noisy, our approach will detect this. We demonstrate
for a few optimization problems and real world data that our
approach works well not only in theory, but also in practice.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; I.2.6 [Artificial
Intelligence]: Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Keywords
Optimization; Uncertainty; Noise; Robustness; Instance sim-
ilarity

1. INTRODUCTION
Inaccuracy and uncertainty of data in input instances of

optimization problems are a curse, but a reality. How can
we even hope to solve a problem optimally if the input data
are noisy? So much for the traditional opinion.

In this paper, we argue that the opposite is often true:
Uncertainty can be a blessing that allows us to reach mean-
ingful solutions. In reality, it is mostly an illusion that in-
put data are accurate or that solutions can be implemented
accurately. For instance, edge weights of a graph might rep-
resent travel time measurements. A shortest path from a
start vertex to a target is used to indicate the fastest trip,
but might turn out not to be the best choice if the trip is
taken in the future, or if the measurements were noisy. For
real world problems, this dilemma questions the standard
approach of optimizing for a certain objective: Why should
it be best to find an optimum solution for an input instance
whose data come from measurements that we cannot realis-
tically assume to be exact? And, on the same note: What
should the computational goal be in this case?

Viewed from a machine learning perspective, optimization
under uncertainty pursues the conflicting goals of optimiz-
ing an objective function while keeping the result statisti-
cally robust. Optimization must naturally adapt solutions
to the last detail, and therefore to fluctuations in the data.
That objective is the reason why solutions need mathemat-
ical regularization to avoid over-fitting.

In this paper, we advocate an approach that attempts
to extract information from data, to eliminate noise, and
thereby to reach a typical and robust solution rather than a
solution that is geared far too strongly towards a noisy in-
put. Our approach has the following four key properties: (1)
It is based on a few input samples only (at least two), (2) it
needs no tweaking of parameters, (3) it needs no knowledge
on probability distributions of input instances, whether sys-

ITCS’13, January 9–12, 2013, Berkeley, California, USA.
Copyright 2013 ACM 978-1-4503-1859-4/13/01 ...$15.00.

tematic (like travel times that depend on weather) or ran-
dom, and (4) it provides a self-assessment of how typical
and meaningful its solution is. We reach our goal through a
notion of information with respect to an objective, through
a measure that we call the problem-based similarity of in-
stances. Our approach at the same time provides for a purely
algorithmic justification of a pioneering information theo-
retic method [1, 2], as well as for a refinement of this method
for optimization problems that exhibit structure in the so-
lution space. This approach reflects the understanding that
averaging over fluctuating solutions with near optimal ob-
jective function values promises to stabilize the optimization
process. Both strategies together, optimization and fluctu-
ation averaging, enhance the predictive value of solutions in
the sense that optimized, stable solutions should also yield
good objective function values on new problem instances. In
this sense, we interpret optimization under uncertainty as a
prediction problem.

For a few examples of optimization problems, we demon-
strate what it means to use our approach in solving their
uncertain versions. It turns out that on one hand, interest-
ing algorithmic problems arise. On the other hand, we get
solutions that tend to be only a few percentage points from
optimum for real world input instances, and that are better
than any competing method that we could imagine.

Related work.
Noisy inputs received attention in a variety of ways. Stochas-

tic optimization [3, 4] investigates the fortunate situation in
which a distribution of input data is known, and it mostly
aims at the optimum in expectation. Info-gap decision the-
ory is peculiar in that it models uncertainty as an informa-
tion gap rather than a probability [5]. Robust optimization
[6] explicitly describes the uncertainty that is inherent in the
input data. In the discrete version, we get a discrete set of
input instances for which the structure of a solution must be
chosen (such as a path from start to target vertex), and after
this choice, one of the given instances is revealed as the true
one. A worst case perspective in which an adversary will re-
veal the worst possible instance, given the chosen solution, is
far too pessimistic for real world situations. Recoverable ro-
bust optimization [7] pursues this approach one step further
and allows the algorithm to modify the proposed solution
after the true instance has been revealed. This adaptation
enables us to at least generate a feasible solution in all cases,
while for robust optimization in general, feasibility cannot
be guaranteed. Optimization for stable inputs attempts to
understand when and how small changes in the input data
affect the solution [8, 9, 10, 11, 12, 13]. Regret minimization
and online learning focuses on finding a good solution in an
online setting, revealing one input after another, assuming
an arbitrary adversary [14]. Here, for a meaningful analysis,
necessarily more instances are needed.

2. A BIRD’S EYE VIEW OF OUR APPROACH

Generator.
We are given two input instances of an optimization prob-

lem. The two instances are related in an unknown way, like
two travel time measurements of the same set of routes at
different times. We will consider them to be generated by

some abstract generator. Given both generated instances,
the goal is to compute a good solution for the next (un-
known) generated instance. The generator induces noise
that we do not know how to predict or eliminate. Specifi-
cally, we do not postulate any characteristics of the noise
(such as additive, Gaussian, or independent on different
parts of the input instance). We assume that the generated
instances have the same structure, and differ only in mea-
sured values (e.g., for an optimization problem on graphs,
the structure of the graph is the same, but edge weights may
differ).

Optimization problems.
In our setting, an uncertain minimization problem is given

by (I, S, c), where I is the set of all instances (e.g., all edge-
weighted graphs of the same topology), S is the set of all
feasible solutions of any instance I ∈ I, i.e., we assume that
a solution s ∈ S is a feasible solution for every instance I ∈ I
(e.g., all simple paths from vertex s to vertex t), and c(s, I)
is the cost of solution s ∈ S in an instance I ∈ I (e.g., the
sum of the edge-weights in instance I along a path s). Note
that the set of instances as well as the set of feasible solu-
tions can have infinite size, for instance if we allow arbitrary
weights and solutions are points in continuous space. Given
an instance I of a (standard) minimization problem, the goal
is to find a feasible solution s∗ of minimum cost c(s∗, I); we
call such a solution a minimum of I. The goal of our ap-
proach for an uncertain minimization problem, however, is
to find a feasible solution that is close to optimum for a
typical instance of the given minimization problem. We de-
fine an uncertain maximization problem analogously, and by
optimization we refer to either minimization or maximiza-
tion. Note that in our definition, we only look at a class of
instances of fixed size. Whenever we argue about problem
complexity, we will therefore consider the union of problems
of all topologies and sizes, as usual.

Two instances.
By looking at a single input instance we cannot hope to

separate the noise from the information: the input could be
fully determined by noise and we would not be able to tell
that it is so. We therefore assume that several instances are
given as input – these instances are considered to be repre-
sentative, typical instances of the problem. In this paper we
explain our approach for two instances.

Example.
Consider the problem of driving from town s to town t

in the road network G = (V,E) of Figure 1a. The path
through a2 and b2 is a highway, while the other edges are
local roads. The edge weights in Figures 1b and 1c are
driving times. Driving on the highway is usually fast. Due
to maintenance, however, edges a2 and b2 are prone to traffic
jams. A feasible solution is an s-t path. In total, there are
eleven s-t paths (the nine paths using at least partially the
highway, and the two paths through local roads c1 and c2).
An optimum solution is a path of smallest driving time. In
case of no traffic jam the highway is the (only) optimum
solution. We focus our investigation on the situation where
congestion appears. Figures 1b and 1c are two instances I1
and I2 for two consecutive days where congestion appears

a3

s t

a2 b2

b3

a1 b1

c1

c2

(a) A road network

1

s t

0
1.2 0 0

0

1

1.1 1.1

0.5
0.5

0.25

0.25

(b) Instance I1 and its optimum path

1

s t

0 0 0 1.2
0

1

1.1 1.1

0.5
0.5

0.25

0.25

(c) Instance I2 and its optimum path

Figure 1: A fastest path from s to t

on the first and the second part of the highway, respectively.
The question is now how to drive on the third day.

Similarity of instances.
Given two typical instances, we aim at extracting the rel-

evant information and at discarding the irrelevant noise.
Since we lack any other knowledge, we look for common
features with respect to the goal of close to optimum so-
lutions. We define closeness to optimum by means of an
approximation ratio ρ: A near optimum solution for an in-
stance I is a ρ-approximate solution, i.e., a solution s ∈ S
with cost(s, I) ≤ ρ · cost(s∗, I), where s∗ ∈ S is an opti-
mum solution for instance I. The appropriate ρ is problem
and generator dependent and unknown to us. We will call
the set of all ρ-approximate solutions of an instance I a ρ-
approximation set of I, and denote it by Aρ(I).

Thus, the common features of instances I1 and I2 (with
respect to our optimization goal) are feasible solutions that
lie in the intersection Aρ(I1) ∩ Aρ(I2) of the respective ρ-
approximation sets. While one might further investigate the
structure of this intersection to capture the information con-
tained in it, we will see that already the number of solutions
in this intersection provides a considerable amount of infor-
mation. Naturally, we expect that for approximation ratio
close to 1, the approximation sets, and in particular their
intersection, even for unrelated instances, tend to be small,
while for approximation ratio far from 1, they tend to be
large. When the size of the intersection of both approxima-
tion sets is farthest from this expectation, we learn the most
from it. Therefore, we choose the value of ρ accordingly.
The following definition summarizes this intuition.

Definition 1 (Problem-based instance similarity).
Let I1 and I2 be two input instances of an uncertain combi-
natorial optimization problem P = (I, S, c). For a given ρ,

let Aρ(I1) and Aρ(I2) be ρ-approximation sets for I1 and I2.
Further, let es(ρ, a, b) be the expected size of the intersection
of two ρ-approximation sets of sizes a and b of two arbitrary
instances Ia, Ib ∈ I, respectively, where the expectation is
over all approximation sets of the respective sizes, using the
uniform probability distribution. Then, the expression

Uρ(I1, I2) :=
|Aρ(I1) ∩Aρ(I2)|

es(ρ, |Aρ(I1)|, |Aρ(I2)|) (1)

is the unexpected similarity of I1 and I2 at value ρ (with
respect to the optimization problem P), and the expression

U(I1, I2) := max
ρ
Uρ(I1, I2) (2)

is the unexpected similarity of I1 and I2 with respect to the
optimization problem P.

We call U(I1, I2) the unexpected similarity due to the fact
that we normalize the absolute similarity, expressed as the
number of solutions in Aρ(I1) ∩ Aρ(I2), with the expected
similarity, expressed as the expected size of the intersec-
tion. Note that U(I1, I2) ≥ 1 as we can always set ρ so that
both approximation sets contain all solutions. The usage of
the uniform probability distribution in the definition of the
expected intersection follows the Laplace’s principle of in-
difference, as we do not have further information about the
generator.

Example (continued).
In our examples in Figures 1b and 1c, the optimum paths

for the two instances are different, but both have the same
travel time, namely 1. For ρ = 1.1 we get two paths in
Aρ(I1), namely the path through a3 and b2 and the path
through a1 and b2. Similarly, Aρ(I2) contains paths through
a2 and b3 and through a2 and b1. These approximation sets
have no path in common. For ρ = 1.2, only the highway
through a2 and b2 is in both Aρ(I1) and Aρ(I2). Observe
that ρ = 1.2 is the smallest value for which Aρ(I1)∩Aρ(I2) 6=
∅. This may appear to be a natural choice of ρ: Pick the
smallest ρ for which Aρ(I1)∩Aρ(I2) 6= ∅. Then, pick a path
from the intersection Aρ(I1) ∩ Aρ(I2) – the highway in our
case. In our example, this path is risky: It will reach a cost
of 2.4 if traffic jams appear in both parts of the highway.
Instead, one should also consider to drive on the local roads
only (the paths through c1 and c2), resulting in a driving
time of 1.25. We will see that our method will choose ρ =
1.25 as the approximation ratio that maximizes Uρ(I1, I2).

Computing a solution.
We choose a solution from the intersection of the two ap-

proximation sets uniformly at random. In the absence of
any knowledge about the generator, this is a natural choice
following Laplace’s principle of indifference. Naturally, we
want to choose ρ so that the chance of getting a good solu-
tion is maximized.

Choosing ρ.
When the two instances are indeed similar, they have

many good solutions in common. Some solutions in the
intersection Aρ(I1) ∩ Aρ(I2), however, are present simply
because ρ is large. Let us call such solutions expected. The
good solutions are then the ones in addition to the expected
ones – the unexpected solutions. Now the goal is to find the

opt1 opt2

S

ρ1
ρ2

s ∈ S

(a) Placing a solution s

opt1 opt2

S

ρ̄

(b) Aρ̄(I1) ∩Aρ̄(I2)

opt1 opt2

S

ρ̂

(c) Aρ̂(I1) ∩Aρ̂(I2)

Figure 2: Approximation sets for similar instances I1 and I2.
(a): We place the respective optimum solutions opt1 and opt2 on
a horizontal line at an arbitrary distance. Each remaining point
s ∈ S is then placed above the horizontal line at distance ρ1 from
opt1 and ρ2 from opt2, where ρ1 and ρ2 are the corresponding
approximation factors that solution s achieves. (b) and (c): Ex-
amples of approximation sets Aρ(Ii), i = 1, 2, ρ = ρ̄, ρ̂. Warning:
distances between solution points other than those to opti are
meaningless.

value of ρ that will maximize the proportion of good (un-
expected) solutions in the intersection, since this maximizes
the chances to draw a good solution at random. Figure 2
illustrates these ideas.

We have no direct way of counting the number of un-
expected solutions in Aρ(I1) ∩ Aρ(I2), but we can try to
compute an expectation of the size of the intersection of any
two feasible approximation sets A and B of the same sizes
as Aρ(I1) and Aρ(I2), respectively. Here, a feasible approx-
imation set X is a subset of S which is a ρ′-approximation
set of I ′ for some instance I ′ and some value ρ′.

Given ρ and the sizes |Aρ(I1)| =: k(ρ) and |Aρ(I2)| =:
l(ρ), let es(ρ, k(ρ), l(ρ)) denote the expected size of the in-
tersection of two feasible approximation sets A and B of sizes
k(ρ) and l(ρ), respectively. If the intersection of Aρ(I1) and
Aρ(I2) is larger than the expected number es(ρ, k(ρ), l(ρ)),
then it contains some unexpected solutions.

Denoting the number of unexpected solutions in the inter-
section with u(ρ), we want to find ρ that maximizes

u(ρ)
u(ρ)+es(ρ,k(ρ),l(ρ))

. This is the same as maximizing the ratio

u(ρ) + es(ρ, k(ρ), l(ρ))

es(ρ, k(ρ), l(ρ))
=
|Aρ(I1) ∩Aρ(I2)|
es(ρ, k(ρ), l(ρ))

= Uρ. (3)

Thus, the value of ρ that maximizes the chances of picking

a good solution is the same as the value that defines the
unexpected similarity of instances.

Example (continued).
Recall that the first non-empty intersectionAρ(I1)∩Aρ(I2)

appears for ρ = 1.2 and contains the path through a2 and
b2. The unexpected similarity is U1.2 = 1

6219/872 ≈ 1.217

(one can check this for instance by brute-force enumera-
tion). For ρ = 1.25, the approximation sets get larger by the
two paths through c1 and c2. The unexpected similarity is
then U1.25 = 3

71307/1772 ≈ 1.318. Tedious calculations show

that this value maximizes Uρ. We therefore pick one of the
three s-t paths from the intersection A1.25(I1) ∩ A1.25(I2)
uniformly at random, arguably a good choice, which bal-
ances (i) the quality and (ii) the robustness, i.e., respectively,
the cost of travelling and the risk of travelling too long (if
the congestion appears on both parts on the highway).

Self-assessment.
If the unexpected similarity is near 1.0, we know that the

two instances are not unusually similar. This limit may be
because the noise level is very high, or the instances are
actually unrelated. On the other hand, if the unexpected
similarity is large, then the instances are similar, i.e., the
noise level is low and the intersection contains good solu-
tions for a third instance, generated by the same generator.
Unexpected similarity is thus at the same time the key to
choosing a good solution with the highest probability, and
the measure of the expected quality of the chosen solution.
Both are rare properties among known generalization and
prediction methods.

Recapitulation of the general approach
For an uncertain optimization problem (I, S, c), proceed as
follows:

1. Determine the domains Fk of feasible approximation
sets of size k.

2. Provide a mathematical analysis or an algorithmALGE
that computes the expected size of the intersection of
two approximation sets of given sizes k and l.

3. Provide an algorithm ALG∩ that computes the size
of the intersection Aρ(I1) ∩ Aρ(I2), given ρ and two
instances I1 and I2.

4. Find (smallest) ρ∗ that maximizes the unexpected sim-
ilarity Uρ, using ALGE and ALG∩.

5. Provide an algorithm ALGrand that picks a random
solution from the intersection Aρ∗(I1) ∩Aρ∗(I2).

In Section 3 we discuss in more detail what it means to
follow this approach, and in particular how to determine the
expectation in point 2.

A prototypic example
We expect our method to exceed the performance of other
optimization methods, when the set of good solutions that
have stable cost over all or most instances is large enough
not to be completely hidden in the noise, but there is a cer-
tain number of unstable solutions with wildly differing costs
which might out-perform the stable solutions with low prob-
ability. When the cost of a large number of solutions is very

random, a few of them might sometimes eclipse the true,
stable solutions. Usual combinatorial optimization methods
go straight for the single solution that minimizes the cost,
often missing the truly optimal solutions in the process.

In the following we give a concrete example of a very sim-
ple instance generator which illustrates such a situation. We
consider an uncertain minimization problem (I, S, c), with
a set of solutions S = G∪B, |G| =: g � b := |B|, and a cost
function c(s, I) ∈ {1, ρ̂, 2}, 1 < ρ̂ < 2, for every instance I
and every solution s. An instance I is generated with the
following random process. The cost of every solution s ∈ G
is ρ̂ (always). The cost of a solution s ∈ B is 1 with proba-
bility p and 2 with probability (1− p). We set ρ̂ and p such
that ρ̂, the cost of s ∈ G is smaller than 2− p, the expected
cost of s ∈ B.

In this setting, the obvious “optimization goal” is to find
a solution s ∈ G. How can we achieve this goal, given two
instances generated by the above process? We will demon-
strate that our approach does well with regard to this goal.
To quantify this performance, we compare our approach
with two natural competitors: given two instances I1 and
I2, (i) the Average method averages the costs of every solu-
tion and selects the solution s ∈ S with the smallest average
cost; (ii) the FirstIntersection method chooses the small-
est ρ for which Aρ(I1) and Aρ(I2) intersect, and selects a
solution from the respective intersection (if the intersection
contains more than one solution).

Let b1, b2 be the number of solutions from B with cost 1 in
I1 and I2, respectively, and let bx be the number of solutions
that have cost 1 in both I1 and I2. For appropriately set val-
ues of g, b, and p it follows that our approach selects s ∈ G
with higher probability than Average and FirstIntersec-

tion. Roughly speaking, both Average and FirstInter-

section selects s ∈ G only if bx = 0, which happens with
an extremely small probability (1− p)b. On the other hand,
our approach maximizes the unexpected similarity for ρ = ρ̂
with high probability and then selects a solution s ∈ G with
probability at least, but usually much more than, g

g+b
.

3. PROPERTIES OF UNEXPECTED SIMI-
LARITY

In this section we investigate the unexpected similarity.
Computing the unexpected similarity is not straightforward.
One of the difficulties lies in the computation of the denom-
inator – the expected size of an intersection of two approxi-
mation sets. If each set of feasible solutions is a feasible ap-
proximation set, i.e., ρ′-approximation set for some instance
I ′ and some value ρ′, we can calculate the expected size of
the intersection easily, as the following theorem shows. In
the following, we denote by Fx the set of all feasible approx-
imation sets of size x.

Theorem 1. Let P = (I, S, c) be an optimization prob-
lem with the property that for any subset A of the set of all
feasible solutions S there exists an input instance I and value
ρ′ such that Aρ′(I) = A. Then, the unexpected similarity of
two instances I1, I2 ∈ I at value ρ is

Uρ =
|S||Aρ(I1) ∩Aρ(I2)|
|Aρ(I1)||Aρ(I2)| . (4)

Proof. Let |Aρ(I1)| = k and |Aρ(I2)| = l. As every
subset A of S is a ρ′-approximation set of some instance I,
we get that Fk and Fl are the sets of all subsets of S of size

k and l, respectively. Therefore, EA∈Fk,B∈Fl |A ∩ B| is the
expected overlap of two randomly chosen subsets A and B
of S of size k and l, respectively, which amounts to l k|S| , and

the claim follows.

As an example, the problem of clustering data points [1]
satisfies this property.

When not every subset A ⊆ S is a feasible approxima-
tion set, the situation is more complicated, and there is no
general recipe for how to compute the expected size of the
intersection. Still, the right-hand side of Equation (4) is in
some cases an upper bound on the unexpected similarity,
as we will later argue. Whenever |Aρ(I1)| = |Aρ(I2)|, this
expression may be close to the real value of the unexpected
similarity.

The following equality will prove to be useful in arguing
about the expected size of the intersection of two unrelated
feasible approximation sets.

Lemma 2. The expected size of the intersection of two ap-
proximation sets A ∈ Fk, B ∈ Fl for the uniform probability
distribution is

1

|Fk||Fl|
∑

F1∈Fk
F2∈Fl

|F1 ∩ F2| =

1

|Fk||Fl|
∑
s∈S
|{F ∈ Fk|s ∈ F}| · |{F ∈ Fl|s ∈ F}|.

Proof. It is easy to see that
∑
F1∈Fk
F2∈Fl

|F1 ∩ F2| =∑
s∈S |{F ∈ Fk|s ∈ F}| · |{F ∈ Fl|s ∈ F}| simply by sum-

ming up in two different ways.

We now show that in some cases the expression in Equa-
tion (4) provides an upper bound on Uρ.

Theorem 3. Let P = (I, S, c) be an optimization prob-
lem. If |Aρ(I1)| = |Aρ(I2)| for a given ρ, then

Uρ ≤ |S||Aρ(I1) ∩Aρ(I2)|
|Aρ(I1)||Aρ(I2)| . (5)

Proof. Define k := |Aρ(I1)| = |Aρ(I2)|. Recall that Fk
is the collection of all feasible approximation sets that con-
sist of k feasible solutions. Substituting k for |Aρ(I1)| and
|Aρ(I2)|, we can calculate the expected size of the intersec-
tion as:

1

|Fk|2
∑

F1∈Fk
F2∈Fk

|F1 ∩ F2| (a)
=

1

|Fk|2
∑
s∈S
|{F ∈ Fk|s ∈ F}|2

(b)

≥
∑
s∈S

k2|Fk|2
|Fk|2|S|2 =

k2

|S| =
|Aρ(I1)||Aρ(I2)|

|S| (6)

Equality (a) follows from Lemma 2. Inequality (b) is due
to the fact that the sum of squares of positive numbers∑n
i a

2
i subject to

∑n
i ai = A is minimized when for all i,

ai = A/n. Here, obviously,
∑
s |{F ∈ Fk|s ∈ F}| = k|Fk|.

Dividing the expression |Aρ(I1)∩Aρ(I2)| by the obtained
lower bound on the expected size of an intersection, we ob-
tain the claimed upper bound on the unexpected similarity.

From the proof of Theorem 3 we immediately see that
Equation (4) holds whenever every feasible solution s ∈ S

is part of the same number of approximation sets Fk. Gen-
eralizing this observation, we obtain a lower bound on the
unexpected similarity, as follows.

Theorem 4. Let a be a constant such that for each fea-
sible solution s of some optimization problem P = (I, S, c)
it holds that |{F ∈ Fk|s ∈ F}| ≤ ak|Fk|/|S|. Then,

Uρ ≥ |S||Aρ(I1) ∩Aρ(I2)|
a|Aρ(I1)||Aρ(I2)| (7)

Proof. The proof is similar to the proof of Theorem 3.
The sum of contributions of a single feasible solution is maxi-
mized when 1/a of the feasible solutions are in the maximum
number of approximation sets and the rest of the feasible so-
lutions is in no approximation set.

If instead of the best case situation in the proof of The-
orem 3 we consider the worst case, we get a lower bound
on Uρ that is smaller by a factor |S| as compared with the
derived upper bound of Theorem 3.

Theorem 5. Let P = (I, S, c) be an optimization prob-
lem. Then,

Uρ ≥ |Aρ(I1) ∩Aρ(I2)|
|Aρ(I1)||Aρ(I2)| (8)

Proof. We can construct an (artificial) optimization prob-
lem where all but one feasible solution can only lie in a sin-
gle approximation set of some fixed size k and the one last
solution is contained in all approximation sets. Then the ex-
pected size of the intersection attains the lower bound that
results from the most uneven division of feasible solutions
into approximation sets.

The missing factor |S| in the lower bound would for small
|Aρ(I1)| and |Aρ(I2)| often dominate the whole expression
and leaving it out makes for an extremely large gap between
the upper and the lower bound. This shows that the step
of deriving the appropriate specific formula or algorithm to
calculate the expected size of the intersection is a necessary
component of the approach unless it is possible to show that
for a concrete problem, the upper bound is sufficient. One
could hope that many typical combinatorial optimization
problems have solution spaces which are uniform, i.e., the
constant a from Theorem 4 should be low and the upper
bound should be reasonably tight.

To the end, we point out an interesting property of our ap-
proach. Given two instances I1 and I2, where the (unique)
optimum solution of I1 equals the (unique) optimum so-
lution of I2, then assuming the instances are typical, one
would pick the common optimum solution as a good robust
solution for the optimization problem. This is what our
method usually does as well. In the case when every sub-
set F ⊆ S of solutions is a feasible approximation set, it
is always the case, because U1 ≥ Uρ for every ρ > 1, as

U1 = 1
1·1 |S| ≥

min{|Aρ(I1)|,|Aρ(I2)|}
|Aρ(I1)|·|Aρ(I2)| |S| ≥ Uρ.

Proposition 6. Let I1 and I2 be two instances of an un-
certain optimization problem such that s ∈ S is a unique
optimum solution in I1 and a unique optimum solution in
I2. Then U1(I1, I2) ≥ Uρ(I1, I2) for every ρ ≥ 1. Moreover,
our method chooses s as the solution.

4. FINDING A SUB-ARRAY OF MAXIMUM
SUM

The classical textbook optimization problem Maximum-
SubarraySum takes an array (a1, a2, . . . , an) of n integers
and asks for a contiguous sub-array for which the sum of its
elements is maximum. A linear time solution of the problem
is attributed to Jay Kadane [15]. Despite its general impor-
tance, finding the k best sub-arrays has been studied only
recently [16, 17, 18]. The optimal algorithm runs in time
O(n+ k).

Uncertain optimization.
In the uncertain optimization version of this problem, we

are given I1 and I2, two integer arrays of size n each. The

set of all feasible solutions consists of all the n(n+1)
2

+ 1 sub-
arrays, including the empty sub-array whose sum is zero.
Given an approximation ratio ρ, in order to determine Uρ
we need to compute: (i) the size of the intersection Aρ(I1)∩
Aρ(I2), and (ii) the expected size of the intersection A ∩ B
of any two feasible approximation sets A and B of sizes
|A| = |Aρ(I1)| and |B| = |Aρ(I2)|.

The size of the intersection.
The size of the intersection Aρ(I1) ∩ Aρ(I2) can be com-

puted as follows. First, note that from a given approxima-
tion ratio ρ, a threshold t = ρ · OPTI for the sub-array
sum approximation follows immediately from the optimum
OPTI of a given instance I. We scan through the array and
maintain for scanning position j an auxiliary array auxj [i]
of sub-array sums of elements from position i to j. It is not
necessary to maintain this explicitly, since at each position
in the scan we only need to know how many of the entries of
aux are greater than t. Therefore, instead of updating all en-
tries in aux when a new position with element x is scanned,
we decrease the threshold by x. It is then enough to main-
tain a data structure that supports a query for the number
of elements above a threshold, in addition to the insertion
of new elements. A balanced search tree with aggregates at
inner vertices can service both in time O(logn). This allows
us to compute the size of an approximation set for a given
value of ρ in time O(n logn). The intersection of two ap-
proximation sets can be found similarly, by maintaining a
2-dimensional range tree with aggregates at inner vertices,
and by querying it with a 2-dimensional threshold at each
scan position. Hence, we proved the following theorem.

Theorem 7. Let I1 and I2 be two arrays of size n. Given
ρ, the size of the intersection of the ρ-approximation sets
Aρ(I1) and Aρ(I2) can be found in time O(n log2 n).

The expected size of the intersection.
Here we face the problem that not every set of sub-arrays

is a feasible approximation set, and thus we cannot use The-
orem 1. To see this, consider an example with the set of
sub-arrays F = {(a, c), (b, d)}, where a < b < c < d are ar-
ray positions and (i, j) denotes the sub-array from position
i to position j. Recall that a sub-array (i, j) is in an approx-
imation set Aρ if and only if ai + . . .+ aj ≥ ρ · opt. Thus, F
cannot be a feasible approximation set: it would also need
to contain one or both of the sub-arrays (a, d) and (b, c).

In the technical report [19] we derive an asymptotic sub-
stitute for the exact expected intersection size, given the

sizes of the feasible approximation sets, as expressed in the
following theorem.

Theorem 8. The expected size of an intersection of two
randomly picked feasible approximation sets of sizes k and l
on two arrays of length n each equals

4k2l2 − 2kl

2k + 2l − 3
· 1

n2
+O(n−3). (9)

An experimental evaluation with real world data.
Our problem has a natural interpretation when array el-

ements are price differences, such as day-to-day stock price
fluctuations: A maximum sub-array is then a single best
interval of buying, keeping and selling a stock (where in-
stead of the price difference, we naturally took the ratio of
stock prices, calculated as maximum sub-array sum for log-
arithms of factors). We thus based our experiments on the
historical daily prices of a variety of stock indices (BEL-20,
Dow Jones, Hang Seng, Nikkei, AEX, CAC-40, DAX, Eu-
rotop100, FTSE100, JSX, Nasdaq, AS30, RTSIndex, and
SMI) from 1999 to 2010, adjusted for inflation [20].

In an attempt to assess how well our approach works in
comparison with potential competing approaches, we came
up with a number of algorithms that, when provided with
two instances, return a (hopefully good) sub-array. We then
evaluated the sum of this predicted sub-array on a third in-
stance. The first algorithm, denoted by Random, picks a
random sub-array and is used simply to illustrate that the
results of following algorithms are not caused by excessive
growth of the markets. The less näıve algorithm PickOne
randomly chooses one of the input instances and returns
an optimum solution for this instance. Algorithm Aver-
age averages the two instances day by day and returns an
optimum sub-array for the averaged instance. Algorithm
UpperBound maximizes the upper bound on Uρ given by
Theorem 3 and picks a random solution from the gener-
ated intersection. Algorithm FirstIntersection finds the
smallest ρ that results in a non-empty approximation set
intersection and returns a random solution from it (in case
there is more than one). Algorithm Asymptotic is similar
to UpperBound, but uses the asymptotic estimate given by
Theorem 8 for the expectation in Uρ to choose the correct
approximation ratio. Finally, algorithm OptimalOffline
returns a sub-array that maximizes the average gain over all
instances of the given year – the best one one can possibly
get.

We considered each year as a separate class of instances,
and we used each pair of input instances as an input to
each algorithm. We then evaluated the output of the al-
gorithm on all (different) instances from that year. Table
1(a) shows the average loss (over all years) of each method
when compared to the algorithm OptimalOffline, where
ρ was determined by checking values with a step size of 0.01.
Algorithm Asymptotic performs best here at 87% of the
optimal off-line algorithm. In Table 1(b) we used only those
pairs of instances that had unexpected similarity higher than
5.0, and we evaluated those on all third instances of the same
year. This choice corresponds to the idea that instance pairs
of low unexpected similarity have little predictive capability.
We chose 5.0 so that roughly 50% of all triples of instances
were left after the filtering (6048 out of 12012). Choosing

higher threshold would decrease the number of chosen triples
and thus the relevancy of our results. The performance of
Asymptotic increased to 96% of the optimum off-line solu-
tion. Note that all other algorithms (except Random) ben-
efit from the instance similarity calculated by our method as
well. It is, however, that the performance of Asymptotic
increases the most.

Algorithm loss vs. opt % of opt
Random 24.14 4.4%
PickOne 4.21 83.3%
Average 4.02 84.0%
UpperBound 4.26 83.1%
FirstIntersection 3.44 86.3%
Asymptotic 3.33 86.8%
OptimalOffline 0.0 100.0%

(a) Instances with arbitrary unexpected similarity

Algorithm loss vs. opt % of opt
Random 27.79 4.4%
PickOne 2.22 92.4%
Average 2.13 92.7%
UpperBound 1.40 95.2%
FirstIntersection 1.31 95.5%
Asymptotic 1.16 96.0%
OptimalOffline 0.0 100.0%

(b) Instances with unexpected similarity larger than 5.0

Table 1: Comparison of optimization methods

5. CONCLUSION

Further experiments
We have demonstrated on two optimization problems that
our proposed optimization methodology performs well – on
the available data it performed the best among the natu-
ral algorithmic competitors. We have performed few more
experiments and reported about them in the technical re-
port [19], where we treat two more problems for our opti-
mization method – the shortest path problem and the min-
imum spanning tree problem. Obviously, the framework re-
quires more experiments with real data.

Variations of the framework
Our proposed optimization methodology in the presence of
noise should be understood as a framework that is open to
variations. In the following, we point out some of the most
immediate questions that need to be addressed.

How exactly should we choose approximation sets?
We should study optimizing the size of the intersection for
a variety of choices of approximation sets. It may be use-
ful to pick approximation sets parametrized by their size k
instead of quality ρ. We chose to optimize ρ because this
leads to some pleasant properties. For instance, a feasible
solution belongs to the approximation set only because of its
quality, regardless of other solutions. But it might be worth
giving up pleasant properties for others, and for computa-
tional ease. Furthermore, we chose a single value of ρ for

both instances. It might be worth to study what happens
for two independent approximation factors ρ1 and ρ2, or two
independent sizes k1 and k2.

In our normalization, we took all topologically different
approximation sets to be equally likely. We might, however,
have expectations about the generated instances. For short-
est paths in a traffic network, for instance, we might expect
edge weights to lie in some fixed range. Expectations like
these might be factored into the expected size of the approx-
imation set intersection.

Are all solutions in the intersection created equal?
Our method expects all solutions in the best approximation
set intersection to be equally desirable (e.g., equally good
for a third, unknown instance). In some cases, it might be
useful to choose the solution based on some problem specific
criterion.

Will more input lead to better results?
We studied two input instances because they are the mini-
mum number necessary to distinguish information from noise.
The extension to multiple instances is not immediately ob-
vious. In general, there are two approaches when we have
more than two instances at hand: (i) looking at the inter-
section of all instances and its expectation, or (ii) looking
at all intersections between all pairs, triples, etc. of the in-
stances. While the second approach extracts the maximum
amount of information from the instances, it seems it could
lead to over-fitting and would be extremely computationally
difficult.

Can we find efficient algorithmic solutions?
Even though it appears that our approach leads to high-
quality solutions, it does not lead to efficient algorithms
easily. Quite the opposite: It generates a family of algo-
rithmic problems, namely to compute the intersection size
of approximation sets, and to pick a solution at random from
this set. Ideally, we would want to avoid the explicit com-
putation of the set, and get hold of a random solution from
it more directly. For some problems, such as the Maximum-
SubarraySum, the intersection can be found efficiently. In
many cases, though, the sizes of the approximation sets are
exponential. The problem of exact counting is often compu-
tationally hard, even if the underlying problems themselves
are solvable in polynomial time. A way out may be to resort
to approximation algorithms for these counting and enumer-
ation problems.

Problem-based similarity beyond optimization
An interesting side-result that we did not focus on in this
paper is the expressiveness of instance similarity U . For ex-
ample, consider the problem of computing a shortest path
between vertices s and t in a graph G. Having two instances
I1 and I2 of this problem, one may attempt to measure the
similarity of these instances using the usual statistical tools
– e.g., the correlation coefficient. If the instances differ “a
lot” only in the edge-weights of very “heavy” edges that are
never used in any nearly-shortest path, then the unexpected
similarity of these two instances will regard these instances
to be very similar, whereas the correlation coefficient will tell
the opposite. At the same time, if the computational goal
was a maximum matching, the unexpected similarity would
regard the two instances as significantly different. This ex-

ample highlights the need for a measure of similarity of in-
stances with respect to a computational goal. We therefore
believe that the unexpected similarity may prove to be use-
ful also outside of the proposed framework. For example,
Table 1 suggests that inputs that are very similar, measured
according to the unexpected similarity, yield good results not
only for our, but also for other optimization methods.

And finally
In spite of the need to study all the mentioned variations
(and more), we believe that the proposed approach has the
potential to provide a solid theoretical foundation of practi-
cal value for optimization in the presence of unknown noise.

6. ACKNOWLEDGMENTS
This work has been partially supported by the Swiss Na-

tional Science Foundation (SNF) under the grant number
200021 138117/1, and by the EU FP7/2007-2013, under grant
agreement no. 288094 (project eCOMPASS).

7. REFERENCES
[1] Joachim M. Buhmann. Information theoretic model

validation for clustering. In IEEE International
Symposium on Information Theory (ISIT), 2010.

[2] Joachim M. Buhmann. Context sensitive information:
Model validation by information theory. In
Proceedings of the Third Mexican Conference on
Pattern Recognition (MCPR), volume 6718 of LNCS,
pages 12–21. Springer, 2011.

[3] J.J. Schneider and S. Kirkpatrick. Stochastic
Optimization. Springer, 2007.

[4] Peter Kall and János Mayer. Stochastic Linear
Programming: Models, Theory, and Computation.
Springer Verlag, 2005.

[5] Y. Ben-Haim. Info-gap decision theory: decisions
under severe uncertainty. Academic, 2006.

[6] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi
Nemirovski. Robust Optimization. Princeton Series in
Applied Mathematics. Princeton University Press,
October 2009.

[7] Christian Liebchen, Marco E. Lübbecke, Rolf H.
Möhring, and Sebastian Stiller. The concept of
recoverable robustness, linear programming recovery,
and railway applications. In Ravindra K. Ahuja,
Rolf H. Möhring, and Christos D. Zaroliagis, editors,
Robust and Online Large-Scale Optimization, volume
5868 of Lecture Notes in Computer Science, pages
1–27. Springer, 2009.

[8] Yonatan Bilu and Nathan Linial. Are stable instances
easy? In Andrew Chi-Chih Yao, editor, Proceedings of
the First Symposium on Innovations in Computer
Science (ICS), pages 332–341. Tsinghua University
Press, 2010.

[9] Davide Bilò, Michael Gatto, Luciano Gualà, Guido
Proietti, and Peter Widmayer. Stability of networks in
stretchable graphs. In Shay Kutten and Janez
Zerovnik, editors, SIROCCO, volume 5869 of Lecture
Notes in Computer Science, pages 100–112. Springer,
2009.

[10] Michael Gatto and Peter Widmayer. On robust online
scheduling algorithms. J. Scheduling, 14(2):141–156,
2011.

[11] Matúš Mihalák, Marcel Schöngens, Rastislav Šrámek,
and Peter Widmayer. On the complexity of the metric
TSP under stability considerations. In Ivana Černá,
Tibor Gyimóthy, Juraj Hromkovič, Keith G. Jeffery,
Rastislav Král’ovič, Marko Vukolic, and Stefan Wolf,
editors, SOFSEM, volume 6543 of Lecture Notes in
Computer Science, pages 382–393. Springer, 2011.

[12] Yonatan Bilu, Amit Daniely, Nati Linial, and Michael
Saks. On the practically interesting instances of
MAXCUT. CoRR, abs/1205.4893, 2012.

[13] Amit Daniely, Nati Linial, and Michael Saks.
Clustering is difficult only when it does not matter.
CoRR, abs/1205.4891, 2012.

[14] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[15] Jon Bentley. Programming pearls: algorithm design
techniques. Commun. ACM, 27:865–873, September
1984.

[16] Fredrik Bengtsson and Jingsen Chen. Efficient
algorithms for k maximum sums. Algorithmica,
46(1):27–41, 2006.

[17] Sung Eun Bae and Tadao Takaoka. Improved
algorithms for the k-maximum subarray problem. The
Computer Journal, 49(3):358–374, 2006.

[18] Chih-Huai Cheng, Kuan-Yu Chen, Wen-Chin Tien,
and Kun-Mao Chao. Improved algorithms for the
maximum-sums problems. Theoretical Computer
Science, 362(1-3):162–170, 2006.

[19] Joachim M. Buhmann, Matúš Mihalák, Rastislav
Šrámek, and Peter Widmayer. Optimization in the
presence of uncertainty. Technical Report 755,
Institute of Theoretical Computer Science, ETH
Zurich, 2012. Available online at http://www.inf.

ethz.ch/research/disstechreps/techreports.

[20] Market rates online.
http://www.marketratesonline.com.

