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Exploiting parallelism in route planning algorithms is a challenging algorithmic problem with obvious
applications in mobile navigation and timetable information systems. In this work, we present a novel
algorithm for the one-to-all profile-search problem in public transportation networks. It answers the question
for all fastest connections between a given station S and any other station at any time of the day in
a single query. This algorithm allows for a very natural parallelization, yielding excellent speed-ups on
standard multicore servers. Our approach exploits the facts that, first, time-dependent travel-time functions
in such networks can be represented as a special class of piecewise linear functions and, second, only few
connections from S are useful to travel far away. Introducing the connection-setting property, we are able to
extend Dijkstra’s algorithm in a sound manner. Furthermore, we also accelerate station-to-station queries
by preprocessing important connections within the public transportation network. As a result, we are able to
compute all relevant connections between two random stations in a complete public transportation network
of a big city (New York) on a standard multi-core server in real time.
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1. INTRODUCTION

Research on fast route planning algorithms has been undergoing a rapid develop-
ment in recent years (see Delling et al. [2009c] for an overview). The fastest technique
for static time-independent road networks yields query times of a few memory ac-
cesses [Abraham et al. 2011]. Recently, the focus has shifted to time-dependent trans-
portation networks in which the travel time assigned to an edge is a function of the
time of the day. Thus, the quickest route depends on the time of departure. It turns out
that this problem is very different from computing distances in road networks [Bast
2009]. In general, two interesting questions arise for time-dependent route planning:
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4.4:2 D. Delling et al.

compute the best connection for a given departure time and the computation of all best
connections during a given time interval (e. g., a whole day). The former is called a
time-query, while the latter is called a profile-query. Especially in public transporta-
tion, the use of time-queries is limited; specifying some fixed departure time will most
probably lead to an awkward itinerary when a fast connection was just missed, thus,
forcing the passenger to wait for a long time or letting him use a lot of slow trains. In
this case, using the slightly earlier train would significantly improve the overall travel
time. Hence, especially in public transportation networks, we are interested in the
fast computation of profile-queries. Previous algorithms for computing profile-queries
augment Dijkstra’s algorithm by propagating travel-time functions instead of scalar
values through the network [Dean 1999]. However, due to the fact that travel-time
functions cannot be totally ordered, these algorithms lose the label-setting property,
meaning that nodes are inserted multiple times into the priority queue. This implies a
significant performance penalty, making the computation of profile-queries very slow.
Furthermore, state-of-the-art algorithms typically do not involve parallel computation,
and in fact, route planning is one of the rare large-scale combinatorial problems where
parallelism seems to be of limited use to speed up single queries in the past.

Related Work. Modeling issues and an overview of basic route-planning algorithms
in public transportation networks can be found in Pyrga et al. [2008], while Orda
and Rom [1990] deal with time-dependent route planning in general. Basic speed-up
techniques like goal-directed search have been applied to time-dependent railway net-
works in Disser et al. [2008], while SHARC [Bauer and Delling 2009] and Contraction
Hiearchies [Geisberger et al. 2008] have been tested on such networks as well [Delling
2011; Geisberger 2010]. However, most of the algorithms fall short as soon as they are
applied to bus networks [Bauer et al. 2011; Delling et al. 2009b]. The fastest (in terms
of query times) known solution for computing connections in public transit networks
is based on the concept of transfer patterns [Bast et al. 2010]. Although this concept
accelerates query times greatly, it drops optimality and is based on preprocessing the
input for thousands of CPU hours, which makes it hard to use in a dynamic scenario.

Most efforts in developing parallel search algorithms address theoretical machines
such as the PRAM [Paige and Kruskal 1985; Driscoll et al. 1988] or the communica-
tion network model [Chandy and Misra 1982; Ramarao and Venkatesan 1992]. Even
in these models, for a long time there was no algorithm known that is able to exploit
parallelism beyond parallel edge relaxations and parallel priority queuing without
doing substantially more work than a sequential Dijkstra implementation in general
networks. Very recently, Delling et al. [2012] introduced a new algorithm for comput-
ing the distance from one node to any other that exploits parallelism on all levels.
Implemented on a GPU, the algorithm is up to three orders of magnitude faster than
Dijkstra’s algorithm. However, this algorithm only works in road networks.

There also have been a few experimental studies of distributed single-source shortest
path algorithms for example based on graph partitioning [Adamson and Tick 1991;
Träff 1995] or on the �-stepping algorithm proposed in Meyer and Sanders [1998]
(e.g., see Madduri et al. [2007]). For an overview on many related approaches, we refer
the reader to Hribar et al. [2001]. All these approaches have in common that they do
provide good speed-ups only for certain graph classes. Search algorithms for retrieving
all quickest connections in a given time interval have been discussed in Dean [1999].
However, none of those algorithms have been parallelized and used for retrieving all
quickest connections of a day in realistic dynamic public transportation networks.

Our Contribution. We present a novel parallel algorithm for the one-to-all profile-
search problem asking for the set of all relevant connections between a given station
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Parallel Computation of Best Connections in Public Transportation Networks 4.4:3

S and all other stations, that is, all connections that at any time constitute the fastest
way to get from S to some other station. The key idea is that the number of possible
connections is bounded by the number of outgoing connections from the source station
S, and all time-dependent travel-time distances in such networks are piecewise linear
functions that have a representation that is bounded by this number as well. Moreover,
only few connections prove useful when traveling sufficiently far away. The algorithm
we present in this work greatly exploits this fact by pruning such connections as early
as possible. To this extent, we introduce the notion of connection-setting, which can be
seen as an extension of the label-setting property of Dijkstra’s algorithm, which usually
is lost in profile-searches (e.g., road networks). The main idea regarding parallelism in
transportation networks is that we may distribute different connections outgoing from
S to the different processors. Furthermore, we show how connections can be pruned
even across different processors.

While one-to-all queries are relevant for the preprocessing of many speed-up tech-
niques [Delling and Wagner 2009; Delling et al. 2009a], we also accelerate the more
common scenario of station-to-station queries explicitly. Therefore, we propose to uti-
lize the very same algorithm for valuable preprocessing. The key idea is that we select
a small number of important stations (called transfer stations) and precompute a full
distance table between all these stations, which then can be used to prune the search
during the query. We show the feasibility of our approach by running extensive exper-
iments on real-world transportation networks. It turns out that our algorithm scales
very well with the number of utilized cores.

Independent of our new algorithm, we also recap the widely used realistic time-
dependent graph model and improve it by modeling conflicting trains inside stations
more carefully. The key idea is then to compute a (minimum) coloring of a corresponding
conflict graph such that each color represents a node in the model graph. Hence, using
this coloring model, we are able to reduce the size of the graph significantly, which
directly yields speed-ups for any graph search algorithm.

Moreover, for realistic queries foot paths are crucial to enable transfers between
stations. However, often such data is not available from the transit agencies. Thus,
we present a heuristic approach to generate artificial foot paths using the underlying
road network. Our method is based on snapping stations to (nearest) intersections and
introducing cliques between stations of the same intersection.

As an example, using our parallel algorithm on the coloring model, we are able to
perform a one-to-all profile-search in less than 110ms and station-to-station queries in
less than 17ms in all of our networks.

This article is the full version of the one published in the Proceedings of the 24th
IEEE International Parallel & Distributed Processing Symposium [Delling et al. 2010].
Compared to the conference version, we introduce a new approach for modeling public
transit networks, show how to generate reasonable foot paths, improve the station-to-
station scenario, and extend the experimental evaluation greatly.

Overview. This work is organized as follows. In Section 2, we briefly explain necessary
definitions and preliminaries. Section 3 recaps the existing realistic time-dependent
graph model and introduces our new coloring model. Here, we also show how we gen-
erate artificial foot paths. Section 4 then starts with our parallel one-to-all algorithm.
Therefore, we first introduce the concept of connection-setting and show how some con-
nections dominate others. In Section 5, we present how our algorithm can be utilized
to accelerate station-to-station queries. A detailed review of our experiments can be
found in Section 6. We conclude our work with a brief summary and possible future
work in Section 7.

ACM Journal of Experimental Algorithmics, Vol. 17, No. 4, Article 4.4, Publication date: October 2012.



4.4:4 D. Delling et al.

2. PRELIMINARIES

A directed graph is a tuple G = (V, E) consisting of a finite set V of nodes and a set of
ordered pairs of vertices, or edges E ⊆ V × V . The node u is called the tail of an edge
(u, v), and v the head. The reverse graph

←−
G = (V,

←−
E ) is obtained from G by flipping all

edges, i. e., (u, v) ∈ ←−
E ⇔ (v, u) ∈ E.

Timetables. A periodic timetable is defined as a tuple (C,S,Z,�, T ), where S is a set
of stations, Z a set of trains (or buses, trams, etc.), C a set of elementary connections,
and � := {0, . . . , π − 1} a finite set of discrete time points (think of it as the minutes or
seconds of a day). We call π the periodicity of the timetable. Note that durations and
arrival times can take values greater than π (think of a train arriving after midnight).
Moreover, T : S → N0 assigns each station a minimum transfer time required to
change between trains. An elementary connection from c ∈ C is defined as a tuple
c := (Z, Sdep, Sarr, τdep, τarr) and is interpreted as train Z ∈ Z going from station Sdep ∈ S
to station Sarr ∈ S, departing at Sdep at time τdep ∈ � and arriving at τarr ∈ N0. For
simplicity, given an elementary connection c, X(c) selects the X-entry of c, that is, τdep(c)
refers to the departure time of c. Due to the periodic nature of the timetable, the length
�(τ1, τ2) between two time points τ1 and τ2 is computed by τ2−τ1 if τ2 ≥ τ1 and π +τ2−τ1
otherwise. Note that � is not symmetric.

General Modeling Approaches. For the purpose of route planning, the timetable is
usually modeled as a directed graph in such a way that a shortest path in the graph
corresponds to a quickest journey in the timetable. Basically, there exist two categories
of modeling approaches [Pyrga et al. 2008]: the time-expanded approach the time-
dependent approach. In the time-expanded approach, the main idea is to create a
node for each event of the timetable (departure of a train, arrival of a train, among
others). To connect appropriate events in the graph, edges are inserted with length
corresponding to the time difference of the respective events. Since a typical timetable
contains millions of events, this approach leads to large graphs, and thus, to a large
search space (and bad query times) for search algorithms [Müller–Hannemann and
Schnee 2007].

To overcome this issue, in the time-dependent model, the key idea is to group connec-
tions between same pairs of stations. These groups of connections can be represented
by a special form of piecewise linear functions (see next paragraph). This approach
yields significantly smaller graph sizes (usually, the number of nodes is in the order of
the number of stations); hence, a query algorithm has to explore a much smaller search
space. Moreover, it allows for the computation of the distances between two stations for
all departure times—as we are especially interested in. Hence, in this work, we focus
on the time-dependent approach.

Piecewise Linear Functions. In general, there are two types of distances in a public
transportation network. The first is the distance between two stations S and T for
a given departure time τ , denoted by dist(S, T , τ ). The second type, which we are
interested in this work, the distance function between two stations S and T for all
departure times τ ∈ �, denoted by dist(S, T , ·). Such a function is defined as f : � →
N0, where f (τ ) denotes the travel-time when starting at time τ . For the remainder
of this article, it is a crucial observation that in public transportation networks these
functions can be represented as piecewise linear functions of a special form: The travel-
time at time τ is composed of a waiting time for the next connection c starting at some
τdep(c) plus the duration of the itinerary starting with c. Moreover, if the best choice at
time τ is to wait for a connection c, the same holds for any τ ≤ τ ′ ≤ τdep in between. See
Figure 1 for an example. Hence, it is possible to represent f by a set of connection-points
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f (τ )

6:00 12:00 18:00 24:00

6h

12h

τ

(a) Function.

No. Dep.-time Travel-time

1 06:00 3h 00min
2 15:00 9h 00min
3 21:00 4h 30min
...

...
...

(b) Respective connections.

Fig. 1. A piecewise linear function f with three connection points (left side), representing three relevant
trains to start with (right side).

P( f ) ⊂ � × N0 such that f (τ ) = �(τ, τ f ) + w f for the (τ f , w f ) ∈ P( f ), which minimizes
�(τ, τ f ). Respecting periodicity in a meaningful way, these travel-time functions have
the FIFO-property if for any τ1, τ2 ∈ �, it holds that f (τ1) ≤ �(τ1, τ2) + f (τ2). In other
words, waiting never gets you (strictly) earlier to your destination. Note that all our
networks fulfill the FIFO-property.

Computing Distances. The sequential computation of dist(S, ·, τ ) can be done by a
time-dependent version of Dijkstra’s algorithm, which we call time-query. It visits all
nodes in the graph in nondecreasing order from the source S. Therefore, it maintains
a priority queue Q, where the key of an element v is the tentative distance dist(S, v).
By using a priority queue, the algorithm makes sure that if an element v is removed
from Q, dist(S, v) cannot be improved anymore. This property is called label-setting.

Determining the complete distance function dist(S, ·, ·), called a profile-query, from
a given station S to any other station for all departure times τ ∈ � can be computed
by a profile-search algorithm being very similarly to Dijkstra. The main difference is
that functions instead of scalars are propagated through the network. By this, the
algorithm may lose its label-setting property, since nodes may be reinserted into the
queue that have already been removed. Hence, we call such an algorithm a label-
correcting approach. An interesting result from Dean [1999] is that the running time
highly depends on the number of connection points assigned to the edges.

3. MODELING

As introduced before, we focus on the time-dependent modeling approach. More pre-
cisely, we use the realistic time-dependent model as defined in Pyrga et al. [2008]. It
uses time-dependent edges and supports minimum transfer times at stations.

Given a timetable, the graph G = (V, E) of the realistic time-dependent model is
constructed as follows. First, the set Z of trains is partitioned into routes, where two
trains Z1, Z2 ∈ Z are considered equivalent (i.e., belong to the same route) if they share
the exact same sequence of stations. Regarding the nodes, for each station S ∈ S, a
station node is created. Moreover, for each route that runs through S, a route node is
created. Route nodes are connected by edges to their respective station nodes with time-
independent weights depicting the transfer time T (S). Furthermore, for each route and
for each two subsequent stations S1 and S2 on that route, a time-dependent route-edge
(u, v) is inserted between the route nodes u and v of the respective route at the stations
S1 and S2. By these means, the time-dependent route-edges e get exactly those elemen-
tary connections c ∈ C assigned, where Z(c) relates to a train of the respective route
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S1 S2

Z3

Z1, Z2

Fig. 2. Illustration of the realistic time-dependent model, showing two stations where two routes run
through. Station nodes are blue, and route nodes are smaller and purple.

(between the two given stations). Note that the resulting time-dependent functions
on the route-edges are exactly of the same type as introduced in the previous section
(its connection points are exactly the respective elementary connections). In particular,
they fulfill the FIFO-property. See Figure 2 for an illustration.

Some variations of this model to incorporate different levels of detail exist (e.g., to
support quicker interchanges between trains stopping on the same platform, additional
edges can be added). However, all variants rely on the notion of routes and add at least
as many nodes per station to the graph as there are routes through the station. In fact,
an analysis of the model reveals that the average number of route nodes per station
is typically between 5 and 16, depending on the input (see Section 6), which is quite
high. To reduce this number, in the next section we introduce a new model based on a
formal notion of conflicting trains. Note that a smaller graph size immediately results
in faster query times for any search algorithm.

3.1. Coloring Model

One main reason of using the notion of routes in the realistic time-dependent model is
the observation that in a journey, interchanges between two trains on the same route
are never beneficial. Thus, when assigning trains of the same route to the same route
node (i.e., assigning their respective elementary connections to edges incident to the
route node), we ensure that we do not generate an itinerary with invalid transfers (i.e.,
violating the minimum transfer time at some station). However, this property can also
be guaranteed by a more formal notion of conflicting trains in the following sense.

Consider two trains Z1 and Z2 that run through some station S. Let τarr(Z1, S) be
the arrival time of train Z1 at S, and τdep(Z2, S) the departure time of Z2 at S. Then,
these two trains conflict if and only if Z2 departs after the arrival of Z1, and the time
in between is smaller than the minimum transfer time at S. More precisely, Z1 and Z2
conflict if and only if τdep(Z2, S) ≥ τarr(Z1, S) and τarr(Z1, S) + T (S) < τdep(Z2, S). In this
case, putting Z1 and Z2 on the same route node could yield an illegal itinerary, which
must be avoided.

Testing the conflict condition for all pairs of trains running through S naturally
induces an undirected conflict graph Gconf(S) = (Vconf(S), Econf(S)). The node set
Vconf(S) ⊆ Z contains exactly those trains Z ∈ Z that run through S, that is, where
there exists an elementary connection c ∈ C with Z(c) = Z and Sdep(c) = S or Sarr(c) = S.
Two pairs of nodes Zi, Zj ∈ Vconf(S) are connected by an edge {Zi, Zj} ∈ Econf(S) if and
only if Zi and Zj are conflicting. Experiments on our instances (see Section 6) reveal
that the number of conflicting trains indeed is small: We observe that of all possible
train pairs per station, on average, less than 0.5 % are actually conflicting. Thus, we
regard Gconf as sparse.

It is now easy to see that a valid node coloring on Gconf(S), where no two adjacent
nodes may share the same color, induces a set of route nodes of the station S in the
model graph G. Let K be the number of distinct colors used for Gconf(S), then for each
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(a) Conflict graph.

S

(b) Model graph.

Fig. 3. An example of a conflict graph Gconf(S) of some station S with a valid node coloring using three
colors (a) and the corresponding induced subgraph of S having three route nodes in the model graph G (b).
In (b), time-dependent route-edges are drawn bold, while time-independent transfer-edges are drawn thin.

color k = 1 . . . K, we create a route node u in G, and put exactly those trains on u that
have color k in Gconf(S). An example of a conflict graph and its induced subgraph in the
model are illustrated in Figure 3.

Computing Colorings. In general, our goal is to generate as few route nodes in G
as possible. Thus, we aim for computing a coloring on Gconf(S) with as few colors as
possible. In fact, a lower bound on the number of route nodes for S in G is given by
the chromatic number χ (Gconf(S)). Since it is well-known that computing χ (Gconf(S)) is
NP-hard, we use the following greedy heuristic to color Gconf(S) for every S. We start
with an uncolored graph and process the nodes of Gconf(S) in order of decreasing degree.
When considering node u, we assign u the smallest color that is not used to color any
of u’s neighbors.

Note that this algorithm never uses more than maxdeg(Gconf(S)) + 1 colors, where
maxdeg(Gconf(S)) is the maximum node degree of Gconf(S). Since we consider Gconf(S)
to be sparse, the results of the greedy algorithm on Gconf(S) are quite good in practice
(see Section 6 for experimental details).

Merging Small Stations. To further reduce the number of nodes in the model graph
G, we merge small stations S, which have only one route node (i.e., Gconf(S) has been
colored with one color). More precisely, we merge the station node with the (only) route
node. Since there are no conflicting trains at S, we do not lose correctness by applying
this procedure to all stations of this type in G.

3.2. Foot Paths

To enable transfers between nearby stations, the timetable is usually augmented with
a set F of foot paths. Each foot path is defined as a tuple (Si, Sj) ∈ S × S and an
associated length �(Si, Sj), meaning that it is possible to walk from station Si to station
Sj in time �(Si, Sj). To incorporate foot paths into the model graph G, for each tuple
(Si, Sj) ∈ F , we insert an edge (Si, Sj) into G with (constant) weight �(Si, Sj), similarly
to the transfer edges within stations of G.

Incorporating foot paths into the model turns out crucial for finding realistic
itineraries with reasonable transfers. Even worse, the graph obtained from some real-
world timetables may even get disconnected into components when foot paths are
omitted. Unfortunately, foot path data was not included with the timetable data avail-
able to us. Thus, we use the following heuristic to generate an artificial set F of foot
paths.

Let R be the road network covering (at least) the geographical area of the public
transportation network for which we are about to generate foot paths. We assign each
station S ∈ S to a bucket b using R. We find the intersection b ∈ R that is geographically
closest to S, and assign S to b if the geographical distance is no greater than a parameter
(typically set to 100m). We then look at all buckets b created, and between all pairs of
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Fig. 4. Example of heuristically generated foot paths in a typical U. S. bus network (two bus lines along two
streets). Foot edges are depicted in bold magenta.

different stations Si, Sj ∈ b, we add a foot path (Si, Sj) to F with a length computed
by the sum of the distances from Si to b to Sj divided by an assumed average walking
speed (typically 4kph).

Note that since each station is assigned to exactly one bucket, our heuristic ob-
tains many small components of stations that are interconnected by foot paths near
intersections. In particular, we avoid connecting large regions of the network through
sequences of foot paths. See Figure 4 for an example.

4. A PARALLEL SELF-PRUNING PROFILE SEARCH ALGORITHM

In this section, we describe our new parallel profile-search algorithm tailored to public
transportation networks. A crucial observation in such networks is the fact that each
itinerary from a source station S to any other station has to begin with an elemen-
tary connection originating at S. Let this set of outgoing connections be denoted by
conn(S) := {c ∈ C | Sdep(c) = S}. A naı̈ve and obvious way to compute the full distance
function dist(S, ·, ·) would be to compute a time-query dist(S, ·, τ ) for each elementary
connection c ∈ conn(S) with respect to its departure time τ = τdep(c). However, such
a connection does not necessarily contribute to dist(S, T , ·). A connection ci with de-
parture time τdep(ci) may as well be dominated by a connection c j with later departure
time τdep(c j) > τdep(ci) in the following sense: If the earliest arrival time at T starting
with c j is not greater than the earliest arrival time starting with ci, we can—and must,
for the sake of correctness—prune the result of the search regarding connection ci,
since starting with ci never yields the shortest travel time. Note that this observation
implies that for any T ∈ S, the set of connection points P(dist(S, T , ·)) of the distance
function dist(S, T , ·) is a subset of the set of connection points induced by conn(S) and
their distances to T . More precisely, the following holds:

P(dist(S, T , ·)) ⊆ {(τ,w) | ∃c ∈ conn(S) :
τ = τdep(c),
w = dist(S, T , τdep(c))}.

(1)

The problem to run |conn(S)| time-queries and then pruning dominated connections
from dist(S, T , ·) afterward is an embarrassingly parallel problem. Going much further,
we show how to extend the above observation to obtain a pruning rule that we call
self-pruning. It can be applied to eliminate “unnecessary” connections as soon as pos-
sible. Thereby, we use self-pruning within the restricted domain of each single thread,
but we also take advantage of communication between the different threads yielding
a rule we call inter-thread-pruning. Therefore, we require a fixed assignment of the
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outgoing connections to the processors where each processor handles a set of connec-
tions simultaneously.

The outline of our parallel algorithm is as follows. First, we partition the set conn(S)
to a given set of processors. Second, every processor runs a single thread, applying our
main sequential profile search algorithm restricted to its subset of outgoing connec-
tions. In a third step, the partial results by the different threads are combined, thereby
eliminating dominated connections that could not be pruned earlier, a step we will refer
to as connection reduction.

4.1. The Main (Sequential) Algorithm

From the point of view of a single processor that has some subset of conn(S) as in-
put, it basically makes no difference to the profile-search algorithm that some of the
connections are ignored. We simply obtain distk(S, ·, ·) restricted to the connections
assigned to the particular processor k. Hence, we describe the main algorithm as if it
was a purely sequential profile-search algorithm and turn toward the parallel issues
like merging the results from each processor, the choice of the partitioning of conn(S),
and the inter-thread-pruning rule, afterward.

The naı̈ve approach of running a separate time-query for each c ∈ conn(S) by
Dijkstra’s algorithm would require an empty priority queue for every connection c.
By contrast, our algorithm maintains a single priority queue and handles all of its
connections simultaneously. Moreover, we use tentative arrival times as keys (instead
of distances). By these means, we enable both the connection-setting property as well
as our self-pruning rule.

Initialization. At first, the set conn(S) is determined and ordered nondecreasingly
by the departure times of the elementary connections in conn(S). Thus, we may say
that a connection ci has index i according to the ordering of conn(S). The elements of
the priority queue are pairs (v, i), where the first entry depicts a node v ∈ V and the
second entry a connection index 0 ≤ i < |conn(S)|. For each node v ∈ V and for each
connection i, a label arr(v, i) is assigned that depicts the (tentative) arrival time at v
when using connection i. In the beginning, each label arr(v, i) is initialized with ∞.
Then, for each connection ci ∈ conn(S), we insert (r, i) with key τdep(ci) into Q, where r
depicts the route node where connection ci starts from. Note that in the beginning, the
“arrival time” arr(r, i) equals the departure time τdep(ci).

Connection-Setting. Like Dijkstra’s algorithm, we subsequently settle queue ele-
ments (v, i) assigning key(v, i) as the final arrival time to arr(v, i). Then, for each
edge e = (v,w) ∈ E, we compute a tentative label arrtent(w, i) at w by arrtent(w, i) :=
arr(v, i) + fe(arr(v, i)) (for connection i). If w has not yet been discovered using connec-
tion i, we insert (w, i) into the priority queue with key(w, i) := arrtent(w, i), otherwise the
element (w, i) is already in the queue, and we set key(w, i) to min(key(w, i), arrtent(w, i)).
Note that the following holds for every connection i: When a queue item (v, i) is settled,
the label arr(v, i) is final; thus, the label-setting property holds with respect to each
connection i, which we call connection-setting. The algorithm ends as soon as the pri-
ority queue runs empty. We end up with labels arr(v, i) for each node v ∈ V and each
connection 0 ≤ i < |conn(S)|, depicting the arrival time at v when starting with the ith
connection at S.

We would like to stress two things. First, although the computation is done for all
connections simultaneously, they can be regarded as independent, since the labels and
the queue items refer to a specific connection throughout the algorithm. Second, the
original variant of Dijkstra’s algorithm uses distances instead of arrival times as keys.
However, this has no impact on the correctness of the algorithm. For each connection
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the distance can be obtained by subtracting the respective departure time from the
arrival time, which is constant for all nodes.

Connection Reduction and Self-Pruning. For each node v ∈ V , the final labels arr(v, ·)
induce a set of connection points P̂ by P̂ := {(τdep(ci),�(τdep(ci), arr(v, i))) | ci ∈ conn(S)}.
Unfortunately, the function f represented by P̂ does not account for domination of
connections and hence does not necessarily fulfill the FIFO-property. Formally, for
two points (τi, wi), (τ j, w j) ∈ P̂ with j > i, it is possible that τ j + w j ≤ τi + wi. The
aforementioned connection reduction, which remedies this issue at the end of the
algorithm, reduces P̂ to obtain P(dist(S, T , ·)) by eliminating those points that are
dominated by another point with a later departure time and an earlier arrival time.
More precisely, we scan backward throughP keeping track of the minimum arrival time
τ arr

min := τimin + wimin along the way. Each, time we scan a connection point j < imin with
an arrival time τ arr

j ≥ τ arr
min, the connection point is deleted. The remaining connection

points are exactly those of P(dist(S, T , ·)).
Performing this connection reduction after termination of the algorithm results in the

computation of many unnecessary connections and, therefore, many unnecessary queue
operations. Recall that the keys in our queue are arrival times. Thus, we propose a more
sophisticated approach to eliminate dominated connections during the algorithm: We
introduce a node-label maxconn : V → {0, . . . , |conn(S)| − 1} depicting the highest
connection index with which node v has been reached so far. Each time we settle a queue
element (v, i) with arr(v, i) := key(v, i), we check if i > maxconn(v). If this is not the case,
the node v has already been settled earlier—but with a later connection (remember that
j > i ⇒ τdep(c j) ≥ τdep(ci)), thus implying arr(v, j) ≤ arr(v, i). Therefore, the current
connection does not pay off, and we prune the connection i at v, that is, we do not relax
outgoing edges at v. Moreover, we set arr(v, i) := ∞, depicting that the ith connection
does not “reach” v. In the case of i > maxconn(v), we update maxconn(v) to i and
continue with relaxing the outgoing edges of v regularly. Obviously, by applying self-
pruning, the set of connection points P(dist(S, v, ·)) at each node v induced by arr(v, ·)
fulfills the FIFO-property automatically (labels with arr(v, i) = ∞ have to be ignored).

THEOREM 4.1. Applying self-pruning is correct.

PROOF. Let v ∈ V be an arbitrary node. We show that no optimal connection to v has
been pruned by contradiction. Let arr(v, i) be the arrival time at v of the (optimal) ith
connection and assume that i has been pruned at v. Let j denote the connection that
was responsible for pruning i. Then, it holds that arr(v, j) ≤ arr(v, i). Moreover, since
j pruned i, it holds that j > i, which implies τdep(c j) ≥ τdep(ci). Therefore, it holds that
�(τdep(c j), arr(v, j)) ≤ �(τdep(ci), arr(v, i)). This is a contradiction to i being optimal:
Using the jth connection results in an earlier arrival at v by departing later at S.

Putting things together, the complete (sequential) algorithm can be found in
Algorithm 1 in pseudocode notation.

4.2. Parallelization

Unlike the trivial parallelization that would assign a connection c ∈ conn(S) for an
arbitrary idle processor, which then runs Dijkstra’s algorithm on c, our algorithm
needs a fixed assignment of the connections to the processors beforehand. Let p denote
the number of processors available. In the first step, we partition conn(S) into p subsets
where each thread k runs our main algorithm on its restricted subset connk(S).

After termination of each thread, we obtain partial distance functions distk(S, ·, ·)
restricted to the connections that were assigned to thread k. Thus, the master thread
merges the labels arrk(v, ·) of each thread k to a common label arr(v, ·) while preserving
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ALGORITHM 1: Self-Pruning Connection-Setting (SPCS)
Input: Graph G = (V, E), source station S, outgoing connections conn(S)
Side Effects: Distance labels arr(·, ·) for each node and connection

// Initialization
1 Q ← new(PQueue);

2 maxconn(·) ← −∞;
3 arr(·, ·) ← ∞;
4 discovered(·, ·) ← false ;

5 sort(conn(S));
6 forall the ci ∈ conn(S) do
7 r ← route node belonging to ci ;
8 Q.insert((r, i), τdep(ci));
9 discovered(r, i) ← true ;

// Main Loop
10 while not Q.empty() do

// Settle next node/connection
11 (v, i) ← Q.minElement();
12 arr(v, i) ← Q.minKey();
13 Q.deleteMin();

// Self-Pruning Rule
14 if maxconn(v) > i then
15 arr(v, i) ← ∞;
16 continue ;
17 else
18 maxconn(v) ← i;

// Relax outgoing edges
19 forall the outgoing edges e = (v, w) ∈ E do
20 arrtent(w, i) ← arr(v, i) + fe(arr(v, i));
21 if not discovered(w, i) then
22 Q.insert((w, i), arrtent(w, i));
23 discovered(w, i) ← true ;
24 else if arrtent(w, i) < Q.key((w, i)) then
25 Q.decreaseKey((w, i), arrtent(w, i));

the ordering of the connections. This can be done by a linear sweep over the labels.
Note that the common label arr(v, ·) is not necessarily FIFO, since we do not self-
prune between threads so far. For that reason, the connection points P(S, T , ·)) of the
final distance function are obtained by reducing the connection points induced by the
common label arr(v, ·) with our connection reduction method described earlier. The
pseudocode of the main parallel algorithm is presented in Algorithm 2.

Choice of the Partition. The speed-up achieved by the parallelization of our algorithm
depends on the partitioning of conn(S). As the overall computation time is dominated
by the thread with the longest computation time (for computing the final distance
function, all threads have to be in a finished state), nearly optimal parallelism would be
achieved if all threads share the same amount of queue operations, thus, approximately
sharing the same computation time. However, this figure is not known beforehand,
which requires us to partition conn(S) heuristically. We propose the following simple
methods.
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ALGORITHM 2: Parallel SPCS (PSPCS)
Input: Graph G = (V, E), source station S, outgoing connections conn(S),

p processors
Side Effects: Distance labels arr(·, ·) for each node and connection

// Initialization
1 {conn1(S), . . . , connp(S)} ← partition(conn(S));

// Parallel Computation
2 for k ← 1 . . . p do in parallel
3 arrk(·, ·) ← ∞;

// Invoke the sequential self-pruning connection-setting algorithm
4 SPCS(connk(S));

// Connection-Reduction
5 arr(·, ·) ← merge(arr1(·, ·), . . . , arrp(·, ·));
6 forall the v ∈ V do
7 last ← ∞;
8 for i ← |conn(S)| . . . 1 do
9 if arr(v, i) < last then

10 last ← arr(v, i);
11 else
12 arr(v, i) ← ∞;

The equal time-slots method partitions the complete time-interval � into p intervals
of equal size. While this can be computed easily, the sizes of conn(S)i turn out to be
very unbalanced, at least in our scenario. The reason for this is that the connections in
conn(S) are not distributed uniformly over the day due to rush hours and operational
breaks at night. The equal number of connections method tries to improve on that
by partitioning the set conn(S) into p sets of equal size (i.e., containing equally many
subsequent elementary connections). This is also very easy to compute and improves
over the equal time slots method regarding the balance. Besides these simple heuristics,
in principle, more sophisticated clustering methods like k-means [MacQueen 1967] can
be applied. However, our experimental evaluation (see Section 6.2) shows that the
improvement in query performance is negligible compared to the simple methods;
thus, we use the equal number of connections method as a reasonable compromise. We
stress that for the correctness of our algorithm, it is not necessary to partition conn(S)
into cells of subsequent connections. However, it is intuitive to see that the self-pruning
rule is most effective on neighboring (regarding the departure time) connections.

Impact on Self-Pruning and Pruning between Threads. When computing the partial
profile functions independently in parallel, the speed-up gained by self-pruning may
decrease, since a connection j cannot prune a connections i if i is assigned to a different
thread than j. Thus, with an increasing number of threads, the effect achieved by self-
pruning vanishes to the extreme point where the number of threads equals the number
of connections in conn(S). In this case, our algorithm basically corresponds to computing
|conn(S)| time-queries in parallel—without any pruning. To remedy this issue, the
self-pruning rule can be augmented in order to make use of dominating connections
across different threads. In the case that the partitioning of conn(S) is chosen such
that each cell conn(S)k only contains subsequent connections, we can define a total
ordering on the cells by conn(S)k ≺ conn(S)l if for all connections c ∈ conn(S)k and
all connections c′ ∈ conn(S)l it holds that τdep(c) ≤ τdep(c′). Without loss of generality,
let k < l ⇔ conn(S)k ≺ conn(S)l. We introduce an additional label minarrk : V → �
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for each thread k that depicts for every node v the earliest arrival time at v using
connections assigned to the kth thread. In the beginning, we initialize minarrk(v) = ∞
and update minarrk(v) := min(minarrk(v), arr(v, i)) each time thread ksettles v for some
connection i. Then, in addition to our self-pruning rule, we propose the following inter-
thread-pruning rule: Each time we settle a queue element (v, i) with arr(v, i) = key(v, i)
in thread k, we check if there exists a thread l with l > k for which minarrl(v) ≤ arr(v, i).
If this is the case, we know by the total ordering of the partition cells that there exists
a connection j assigned to thread l with τdep(c j) ≥ τdep(ci) but arr(v, j) ≤ arr(v, i). In
other words, connection i assigned to thread k is dominated by a connection j assigned
to thread l. Thus, we may prune i at v the same way we do for self-pruning, that is, we
do not relax outgoing edges of v for connection i. Correctness of this rule can be proven
analogue to the the self-pruning rule described earlier.

In a shared memory set-up like in multicore servers, the values of minarrk(·) can be
communicated through the main memory, thus not imposing a significant overhead to
the algorithm. Moreover, for practical use, it is sufficient to only check a constant num-
ber c of threads {k+ 1, . . . , k+ c}, since dominating connections are less likely to be “far
in the future,” (i.e., assigned to threads l � k). Furthermore, we like to mention that our
inter-thread-pruning rule does not guarantee pruning of dominated connections, since
the priority queue is not shared across threads. However, in most cases, connections
j with small arrival times prune connections i with high arrival time with respect to
their particular thread. Hence, j is likely to be settled before i, thus, enabling pruning
of i. An illustration of the inter-thread-pruning rule is presented in Algorithm 3.

ALGORITHM 3: Inter-Thread-Pruning Rule
Input: Thread number k, number of processors p, . . .

1 . . . ;
2 minarrk(·) ← ∞;
3 . . . ;

4 while not Q.empty() do
5 . . .

// Inter-thread-pruning rule
6 if ∃l with k < l ≤ p for which minarrl(v) ≤ arr(v, i) then
7 arr(v, i) ← ∞;
8 continue ;

9 minarrk(v) ← min(minarrk(v), arr(v, i));
10 . . .

5. STATION-TO-STATION QUERIES

Dijkstra’s algorithm can be accelerated by precomputing auxiliary data as soon as
we are only interested in point-to-point queries [Delling et al. 2009c]. In this section,
we present how some of the ideas, for example, the stopping criterion, map to our new
algorithm. Moreover, we show how the precomputation of certain connections improves
the performance of our algorithm. The enhancements introduced in this section refer
to the sequential algorithm (see Section 4.1). Thus, all results translate to our parallel
algorithm naturally. Also note that they require a target station as input; in particular,
they do not accelerate one-to-all queries.

5.1. Stopping Criterion

For point-to-point queries, Dijkstra’s algorithm can stop the query as soon as the target
node has been taken from the priority queue. In our case, that is, station-to-station, we
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Fig. 5. The superstation graph G∗ corresponding to the network as depicted by Figure 4.

can stop the query as soon as the target station T has its final label arr(T , i) for all i
assigned. This can be achieved as follows. We maintain an index Tm, initialized with
−∞. Whenever we settle a connection i at our target station T , we set Tm := max{i, Tm}.
Then, we may prune all entries q = (v, i) ∈ Q with i ≤ Tm (at any node v). We may stop
the query as soon as the queue is empty.

THEOREM 5.1. The stopping criterion is correct.

PROOF. We need to show that no entry q = (v, i) ∈ Q with i ≤ Tm can improve on
the arrival time at T for the connection i. Let q′ = (v′, i′) be the responsible entry that
has set Tm. Since i ≤ Tm holds, we know that regarding the departure times of the
connections τdep(c′

i) ≥ τdep(ci) holds as well. Moreover, since q is settled after q′, we
know that arr(v′, i′) ≤ arr(v, i) holds. In other words, it does not pay off to use train i
at station S.

5.2. Pruning with a Distance Table

Next, we show how to accelerate our station-to-station algorithm by pruning with the
help of a distance table. Since a distance table computed directly on the model graph G
would be too large to be practical, we use the smaller superstation network to compute
the distance table. Intuitively, superstations are obtained by merging stations that are
connected by a foot path.

Constructing Superstations. Consider the foot graph GF = (S,F) whose nodes are
exactly the stations in the timetable, and edges correspond to foot paths. As mentioned
in Section 3, GF is composed of small connected components of stations near the same
intersections of the road network. Thus, we use GF to obtain the superstation graph
G∗ = (S∗, E∗) in the following way. For each connected component in GF , we create a
superstation S∗ in S∗. An edge (S∗

i , S∗
j ) is contained in E∗ if and only if there exists a

train running from any of the stations inside S∗
i to any of the stations inside S∗

j . We use
sst(S) to denote the superstation of a station S ∈ S. See Figure 5 for the superstation
graph obtained from the network as depicted in Figure 4.

Furthermore, for our pruning rule, we need the notion of the diameter of a super-
station S∗, which we define as the longest shortest path inside a component of GF ,
but additionally taking the transfer times at its respective source and target stations
into account. Formally, let distF(Si, Sj) denote the shortest path distance between two
stations Si and Sj in GF , then

diam(S∗) := max
Si ,Sj∈S∗

{T (Si) + distF(Si, Sj) + T (Sj)}. (2)

Think of the diameter as an upper bound on the time you can spend walking inside a
superstation.
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S∗

Fig. 6. Local and via superstations of a superstation S∗. Local superstations are indicated in blue, while via
superstations are marked thicker in red.

Transfer Superstations. We are now given a subset S∗
trans ⊆ S∗ of superstations,

called transfer superstations (think of them as important hubs in the network), and a
distance table D : S∗

trans × S∗
trans × � → N0. The distance table returns, for each pair of

superstations S∗, T ∗ ∈ S∗
trans the quickest way of getting from S∗ to T ∗ at time τ ∈ �,

that is, the earliest possible arrival time at T ∗ for any of the combinations of a station
inside S∗ and a station inside T ∗. Note that we do not consider the diameters of S∗
and T ∗ here. In other words, the distance table returns a lower bound on the distance
between S∗ and T ∗ at time τ .

Before explaining the pruning rule in detail, we need additional notion of local and
via superstations. The set of local superstations local(S∗) ⊆ S∗ of an arbitrary super-
station S∗ includes all superstations L∗ such that there is a simple path from L∗ to
S∗ that contains only nontransfer superstations in the superstation graph G∗. The set
of transfer superstations that are adjacent to at least one local superstation of S∗ are
called the via super stations of S∗, denoted by via(S∗) ⊆ S∗

trans. They basically separate
S∗ ∪ local(S∗) from any other superstation in G∗. Figure 6 gives a small example. In the
special case of S∗ being a transfer superstation, we set local(S∗) = ∅ and via(S∗) = {S∗}.

Applying the Distance Table. In the following, we call an S-T (with respective super-
stations S∗ and T ∗) query local if S∗ ∈ local(T ∗), otherwise the query is called global.
Note that a best connection of a global query must contain a via station of T ∗. We
accelerate global S-T queries by maintaining an upper bound μi, j—initialized with
∞—for each connection i and each via superstation V ∗

j of T ∗. Whenever we settle a
queue entry q = (v, i) with sst(v) ∈ S∗

trans, we set μi, j := min{μi, j,D(sst(v), V ∗
j , arr(v, i)+

diam(sst(v))) + diam(V ∗
j )} for all V ∗

j ∈ via(T ∗). In other words, μi, j depicts an upper
bound on the earliest train we can catch at V ∗

j , even if we had to transfer (and poten-
tially walk) at V ∗

j . So, we may prune the search regarding q if

∀V ∗
j ∈ via(T ∗) : D(sst(v), V ∗

j , arr(v, i)) > μi, j (3)

holds. In other words, we prune the search at v for a connection i if the path through
sst(v) is provably not important for the best path to any via station of V ∗

j ∈ via(T ∗).
Figure 7 gives a small example.

THEOREM 5.2. Pruning based on a distance table is correct.

The proof can be found in Appendix A. It follows the intuition that arriving at a time
≤ μi, j at V ∗

j ensures catching the optimal train toward T . Moreover, when we prune
at v, the path through v yields a later arrival time at V ∗

j than μi, j . Thus, the path at v

can be pruned, since there is no improvement over the path corresponding to μi, j .

Determining via(T ∗). We determine the via superstations of T ∗ on the fly. During
the initialization phase of the algorithm, we run a depth first search on the reverse
superstation graph from T ∗, pruning the search at stations V ∗ ∈ S∗

trans. Any station
V ∗ ∈ S∗

trans touched during the DFS is added to via(T ∗). Note that we may distinguish
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S∗ A∗

B∗

V ∗
j T ∗

≥ µi,j

⇒ arr(V ∗
j , i) + diam(V ∗

j ) ≤ µi,j

Fig. 7. Example for pruning via a distance table, given an S-T query. A∗ and B∗ are transfer superstations,
and V ∗

j is the via superstation of T ∗. When settling a node at superstation A∗, we obtain that the arrival
time at V ∗

j , plus the diameter at V ∗
j is smaller or equal to μi, j . Hence, we may prune the query at B∗ if the

lower bound obtained from the distance table yields an arrival time at V ∗
j greater than μi, j .

local from global queries when computing via(T ∗). As soon as our DFS visits S∗, the
query is local, otherwise it is global.

5.3. Selecting Transfer Superstations

The efficiency of pruning via a distance table highly depends on which superstations
are selected for S∗

trans. In Schulz et al. [1999], the authors propose to identify important
stations by a given “importance” value provided by the input. However, such values
are not available for all inputs. Hence, we compute importance values heuristically.
Consider the aforementioned superstation graph G∗. We augment G∗ with constant
edge weights �(S∗

i , S∗
j ). Therefore, consider all connection points of trains running from

any station inside S∗
i to any station inside S∗

j , denoted by P(S∗
i , S∗

j ). Then, we define
�(S∗

i , S∗
j ) to be the expected travel time to get from S∗

i to S∗
j , solely using connections

from P(S∗
i , S∗

j ). Note that the expected travel time also includes waiting times between
connections. We now use G∗ together with � to select important stations by one of the
following methods.

Contraction Hierarchies. A fast approach for selecting important superstations is
using contraction hierarchies [Geisberger et al. 2008]. A contraction routine iteratively
removes unimportant nodes from G∗ and adds shortcuts in order to preserve the dis-
tances between nonremoved nodes. We stop as soon as the number of noncontracted
nodes is c and mark these superstations as important.

Shortest Path Covers. Abraham et al. [2011] observed that contraction hierarchies
do a poor job picking the most important nodes of a road network. Hence, they use
shortest path covers for selecting them. Unfortunately, computing such covers is hard,
but the authors propose a polynomial time O(log n) approximation algorithm, which
we adapt to our problem in the following way. Beginning with S∗

trans as an empty set,
we iteratively determine the next most important superstation as the one that covers
most (yet uncovered by S∗

trans) shortest paths in G∗. We stop as soon as we selected c
transfer superstations. Note that this algorithm requires c times the computation of
all-pairs shortest path in G∗. However, G∗ is sufficiently small for this approach to still
be practical.

6. EXPERIMENTS

We conducted our experiments on up to 48 cores (4 CPUs, 8 NUMA-nodes, 6 cores per
NUMA-node) of an AMD Opteron 6172 machine running SUSE Linux. The machine is
clocked at 2.1GHz, has 256GiB of RAM, 512KiB of L2 cache per core, and 6MiB of L3
cache per NUMA-node. The program was compiled with GCC 4.5, using optimization
level 3. Our implementation is written in C++, solely using the STL and Boost at some
points. As parallelization framework, we use OpenMP, and a 4-heap as priority queue.
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To avoid congestion of the memory bus, we keep a copy of the graph in the designated
memory area of each NUMA-node.

Inputs. We use three different public transportation networks as inputs: the Los
Angeles County Metro (15,146 stops and 979,283 elementary connections) and the
complete network of MTA New York including buses, ferries, and subways (16,897
stops and 2,062,846 elementary connections). Moreover, we use the railway network of
Europe. It has 30,517 stations and 1,691,691 elementary connections. The networks of
Los Angeles, and New York were created based on the timetable of March 1, 2011. The
European railway network is based on the timetable of the winter period 1996/1997.
Note that the local networks are much denser than the railway network, that is, the
connections per station ratio is significantly higher there. Moreover, our data of the
European railway network contains real minimum transfer times for all stations. For
the bus networks of New York and Los Angeles, this data was not available to us.
Hence, we set a minimum transfer time of 90 seconds for all bus stops. Foot paths are
computed on all networks (see Section 3.2).

The timetable data of the local city networks is publicly available through General
Transit Data Feeds, while the timetable data of the European railway networks was
kindly given to us by HaCon Ingenieurgesellschaft. See Figure 8 for a visualization of
the Los Angeles superstation graph.

6.1. Modeling

Our first set of experiments focuses on evaluating the models, as presented in Section 3.
In particular, we compare the realistic time-dependent model with our new coloring-
based model. Table I shows figures on all of our inputs for both models. We observe
that using the coloring-based model reduces the graph size for all inputs. The average
number of route nodes per station can be reduced by a factor of between 6.1 (New York)
and 12.3 (Los Angeles).

In addition, we observe for many stations that there exists no conflict between any
connections. In fact, we can merge the only route node with its station node for 79.5 %
of the stations in the Los Angeles network. On the other hand, on the European railway
network about two thirds of the stations contain more than one route node, which stems
from the fact that in this network the transfer times are much higher, thus, increasing
the likelihood of two trains conflicting.

Since the coloring-based model yields smaller graphs, which improves performance of
all our algorithms compared to the classic route-based model, we use the coloring-based
model for all subsequent experiments.

6.2. One-to-All Queries

Our second set of experiments focuses on the question how well our parallel self-
pruning connection-setting algorithm (PSPCS) performs if executed on a varying num-
ber of cores. Therefore, we run 1000 one-to-all queries with the source station picked
uniformly at random. We report the average number of connections taken from the
priority queue (sum over all cores) and the average execution time of a query. Table II
reports these figures for a varying number (between 1 and 48) of cores and different
load balancing strategies. To evaluate the load balancing, we report the standard devia-
tion with respect to the execution times of the individual threads. In other words, a low
deviation shows a good balance, whereas a high deviation indicates that some threads
are often idle. For comparison, we also report the performance of a label-correcting (LC)
approach (see Section 2), as well as of our connection-setting algorithm (CS) without
self-pruning enabled (think of it as a simultaneous execution of a bunch of Dijkstras
for every connection out of the source station). Regarding LC, for better comparability,
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Fig. 8. Excerpt of the superstation graph of one of the Los Angeles County Metro network. Transfer su-
perstations are highlighted in thick red (see Section 5.2). In this figure, we used the contraction hierarchy
method to select 10 % of the stations as a transfer station.

Table I. Comparison of the Route-Based Model to Our Coloring-Based Model
We report the number of stations in the timetable, the number of nodes and edges in the
graph, as well as the number of route nodes per station and the percentage of stations that
are merged (i.e., consist of only one route node).

Los Angeles New York Europe
Routes Colored Routes Colored Routes Colored

# Stations 15,146 15,146 16,897 16,897 30,517 30,517
# Nodes 89,111 21,680 79,881 27,203 515,062 83,732
# Edges 235,394 54,896 198,232 67,105 1,412,082 392,675
Rt.-Nodes p. St. 4.9 0.4 3.7 0.6 15.9 1.7
% Merged St. — 79.5 — 71.7 — 33.2

the number of connections here indicates the sum of the sizes of the connection-labels
taken from the priority queue.

We observe that our algorithm scales pretty well with increasing number of cores.
On both the Los Angeles and New York networks, the number of settled connections
is only increasing mildly with the number of cores. Therefore, on 12 cores, we have a
speed-up factor of around 4 to 8 compared to an execution on 1 core. On 48 cores, the
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Table II. One-to-All Profile-Queries with Our Parallel Self-Pruning Connection-Setting Algorithm (PSPCS) on 1,
3, 6, 12, 24, and 48 Cores with Different Load Balancing Strategies, Compared to a Label-Correcting (LC)

Approach
The column spd.-up indicates the time speed-up of a multicore run over a single-core execution of PSPCS. The
column Dev reports the standard deviation with respect to the execution times of the individual threads indicating
how well the threads are balanced (lower values are better).

Los Angeles New York Europe
Settl. Time Spd. Dev. Settl. Time Spd. Dev. Settl. Time Spd. Dev.

p Conns [ms] Up [%] Conns [ms] Up [%] Conns [ms] Up [%]
1 844,852 374.0 1.0 — 1,606,515 931.5 1.0 — 550,912 394.9 1.0 —

EQUICONN
3 855,676 131.5 2.8 9.1 1,625,545 391.5 2.4 13.9 666,889 162.4 2.4 15.3
6 871,978 72.1 5.2 12.9 1,654,798 165.9 5.6 12.6 843,695 139.5 2.8 18.8

12 904,149 66.1 5.7 20.9 1,711,439 118.1 7.9 16.8 1,172,269 100.9 3.9 15.0
24 967,339 46.4 8.1 22.6 1,822,735 106.9 8.7 20.5 1,709,985 125.8 3.1 21.4
48 1,079,224 21.4 17.5 13.9 2,038,022 57.0 16.3 18.5 2,393,664 109.7 3.6 20.9

EQUITIME
3 853,629 153.5 2.4 18.9 1,623,518 384.6 2.4 24.5 651,022 163.7 2.4 17.5
6 865,679 85.6 4.4 25.6 1,645,273 201.0 4.6 26.4 799,641 172.6 2.3 23.4

12 891,822 90.7 4.1 24.9 1,692,424 132.9 7.0 23.7 1,065,354 116.5 3.4 18.2
24 943,625 55.2 6.8 23.4 1,783,835 117.5 7.9 22.2 1,474,137 136.1 2.9 21.4
48 1,022,931 38.2 9.8 21.1 1,953,405 69.7 13.4 19.9 1,970,312 117.3 3.4 21.2

KMEANS
3 852,122 142.2 2.6 17.8 1,619,993 361.8 2.6 22.7 648,190 166.0 2.4 19.1
6 864,301 87.2 4.3 24.5 1,643,853 190.9 4.9 25.1 810,833 113.9 3.5 18.8

12 893,412 89.5 4.2 24.7 1,693,146 171.5 5.4 21.3 1,128,571 118.0 3.3 18.0
24 949,905 44.6 8.4 21.5 1,795,074 92.2 10.1 19.8 1,644,280 122.6 3.2 21.3
48 1,057,201 31.0 12.0 20.8 2,002,726 58.5 15.9 19.0 2,276,361 107.2 3.7 21.8
CS 1,352,894 586.7 — — 3,327,697 1,965.4 — — 4,377,790 3,843.3 — —
LC 2,529,009 445.9 — — 4,656,646 748.4 — — 1,278,093 635.3 — —

speed-up factor is between 3.6 (Europe) and 17.5 (Los Angeles). The relatively mild
speed-ups on Europe compared to the other networks are explained by the fact that
the average number of connections at a station is much smaller than in the dense bus
networks. Still, on all cores, we are able to compute all quickest connections of a day
in less than 0.2 seconds. Note that this value is achieved without any preprocessing;
hence, we can directly use this approach in a fully dynamic scenario (as discussed
in Müller–Hannemann et al. [2008]).

Regarding load balancing, we observe that using an equal number of connections
(equiconn) yields. On average, the lowest query times (and deviation). In few occasions,
equal time slots (equitime) or k-means yields better results, but over all inputs and
number of cores, equiconn seems to be the best choice. Hence, we use equiconn as
default strategy for all further multicore experiments. Another, not very surprising,
observation is that the deviation increases with increasing number of cores. The more
cores we use, the harder a perfect balancing can be achieved.

Comparing our new connection-setting to the LC approach, we observe that PSPCS
outperforms LC on Los Angeles and Europe even when PSPCS is executed on a single
core only. The main reason for this is that the number of connections investigated
during execution is much smaller for PSPCS than for LC. On the network of New
York, LC is slightly faster than PSPCS on a single core, but already on 3 cores, PSPCS
outperforms LC by a factor of 2. Note that the number of priority queue operations
for LC is up to four times lower than for PSPCS. Hence, the advantage of PSPCS in
number of settled connections does not yield the same speed-up in query times.
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Table III. Comparing Our Self-Pruning Connection-Setting Algorithm
with and without Inter-Thread-Pruning Enabled on a Varying

Number of Cores p
The column spd.-up refers to the speed-up in time over a single-core
execution of the same algorithm.

Without ITP With ITP
Settl. Time Spd. Settl. Time Spd.

p Conns [ms] Up Conns [ms] Up
Los Angeles

1 844,852 374.0 1.0 838,331 381.5 1.0
3 855,676 131.5 2.8 836,759 215.9 1.8
6 871,978 72.1 5.2 835,494 72.7 5.2

12 904,149 66.1 5.7 836,186 41.7 9.1
24 967,339 46.4 8.1 856,631 47.6 8.0
48 1,079,224 21.4 17.5 919,060 32.9 11.6

New York
1 1,606,515 931.5 1.0 1,595,121 958.3 1.0
3 1,625,545 391.5 2.4 1,594,007 413.8 2.3
6 1,654,798 165.9 5.6 1,594,153 173.9 5.5

12 1,711,439 118.1 7.9 1,600,842 158.0 6.1
24 1,822,735 106.9 8.7 1,625,629 104.7 9.2
48 2,038,022 57.0 16.3 1,711,238 59.5 16.1

Europe
1 550,912 394.9 1.0 511,203 373.7 1.0
3 666,889 162.4 2.4 528,588 224.5 1.7
6 843,695 139.5 2.8 610,796 100.2 3.7

12 1,172,269 100.9 3.9 824,653 119.5 3.1
24 1,709,985 125.8 3.1 1,230,380 109.8 3.4
48 2,393,664 109.7 3.6 1,753,982 106.7 3.5

When comparing the single-core execution of PSPCS to a connection-setting algo-
rithm without self-pruning (CS), we observe that enabling self-pruning makes a signif-
icant difference in both settled connections and running time. Most notably, on Europe,
the number of connections drops from 4.3 million to 0.5 million, together with a drop
from 3.8 to 0.4 seconds in running time. The difference is less pronounced on our bus
networks, which is due to the fact that these networks inherit a weaker hierarchy, that
is, there are fewer express trains (buses, respectively) that prune local (slow) trains.

Inter-Thread-Pruning. In our previous experiment (see Table II), we did not enable
inter-thread-pruning (see Section 4). Hence, in Table III, we compare our self-pruning
connection-setting algorithm with and without inter-thread-pruning on a varying num-
ber of cores. Thereby, we limit the number of threads we check for a dominating con-
nection to 1.

We observe that enabling inter-thread-pruning helps to reduce the number of settled
connections in all scenarios. Interestingly, even for a sequential execution, we are
able to reduce the number of settled connections. Here, the “thread” we check for a
dominating connection is the thread itself. By these means, we are able to prune over
the boundary of the time period, for example, for a connection after midnight to prune
a connection in the late evening (remember that the timetable is periodic).

While the number of settled connections decreases with inter-thread-pruning, the
additional computational overhead in the algorithm does not always justify the smaller
number of settled connections. Hence, the gain in query time is mostly only small. In
the network of New York, enabling inter-thread-pruning even leads to slightly worse
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query times. We conclude that the benefit of inter-thread-pruning is small. Thus, for the
sake of simplicity and reduced communication overhead of the algorithm, we disable
inter-thread-pruning in subsequent experiments.

6.3. Station-to-Station Queries

In this section, we evaluate our algorithm in a station-to-station scenario. We use all
48 cores as default and evaluate the impact of different distance table sizes. Since
these tables need to be precomputed, we also report the preprocessing time and the
size of the tables in megabytes. Furthermore, we report the average number of via
superstations per superstation if it were the target of a query. The distance tables are
computed by running our parallel one-to-all algorithm on 48 cores from every transfer
superstation. As strategies for selecting transfer stations, we evaluate both the greedy
cover (GC) and the contraction hierarchies (CH) approach (see Section 5.3). Table IV
gives an overview over the obtained results.

We observe that compared to Table II, the stopping criterion alone (which requires
no preprocessing) already accelerates queries by up to 89 % (Europe).

When we additionally use a distance table, we can accelerate our queries further. We
observe that the size of the distance table has a high impact on the query performance,
especially for smaller tables. Augmenting only 2.5 % of the superstations to transfer
superstations hardly accelerates queries. In fact, especially on the very dense network
of Los Angeles, the performance even degrades for small tables, as the average number
of required via superstations per target superstation is too high. Note that we need
to separate the target superstation by via stations from the network (see Section 5.2)
hence, when more superstations are augmented as transfer stations, fewer of them are
required to separate the target superstation.

On the other hand, augmenting 10% of the superstations to transfer superstations
yields additional speed-ups between 2.0 and 3.6, depending on the input. Larger dis-
tance tables hardly pay off: The size of the table increases significantly, and the gain
in query performance is little. Hence, selecting 10% to 15% of the stations as transfer
stations seems to be a good compromise.

Regarding the preprocessing effort, we observe that with increasing number of trans-
fer stations, the size of the tables and the preprocessing time increases as well. More-
over, while the part of the preprocessing time spent on selecting transfer superstations
is negligible when using the CH method (CH), it is significant for the gc method. This is
because for each selected superstation, we need to run an all-pairs shortest-path com-
putation on the (sparse) superstation graph, each of which takes time O(|S∗|2 log |S∗|).
Recall that S∗ is the set of superstations.

However, when using 10% transfer super stations selected by the CH method, we
can compute the distance tables between 6 and 10 minutes, while the tables consume
less than 1.5GiB space for all of our inputs. For this scenario, we are able to compute
all quickest connections on all inputs in less than 16.1ms time.

6.4. A Different Machine

In this final experiment, we run our parallel algorithm on different hardware. Here,
we use a dual Intel Xeon 5430 machine that has 8 cores on two NUMA-nodes clocked
at 2.6GHz, 32GiB of RAM and 2 × 1MiB of L2 cache. To evaluate our algorithm on this
machine, we use the one-to-all scenario, similarly to Section 6.2; however, for the sake
of simplicity, only for the equal connections distribution strategy. Table V shows the
obtained results.

We observe that the figures of the sequential algorithms coincide with those in
Table II, except that they are scaled: The Xeon machine is slightly faster, since it
has a higher clock frequency (2.6GHz compared to 2.1GHz of the Opteron machine).
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Table IV. Performance of Our Parallel Self-Pruning Connection-Setting Algorithm (PSPCS) with Stopping
Criterion Enabled

As load-balancing strategy we use the equal connections method. Moreover, we prune by a distance table as
described in Section 5.2. The number of transfer superstations is given in percentage of input super stations.

Los Angeles New York
Preprocessing QUERIES PREPROCESSING QUERIES

Size Time Space Via Settl. Time Spd. Time Space Via Settl. Time Spd.
[%] [m:s] [MiB] St. Conns [ms] Up [m:s] [MiB] St. Conns [ms] Up
0 — — — 614,254 19.8 1.0 — — — 1,188,870 35.4 1.0

GC
2.5 2:48 52.5 39.3 392,872 25.7 0.8 5:07 115.0 20.0 547,307 32.3 1.1
5.0 5:15 171.7 8.4 214,620 12.8 1.5 9:57 394.8 4.7 280,011 18.9 1.9

10.0 10:50 577.5 3.7 141,348 10.0 2.0 20:29 1,352.7 2.6 198,315 15.7 2.3
15.0 16:29 1,189.5 2.8 126,509 9.9 2.0 31:45 2,807.8 2.1 181,965 14.8 2.4
20.0 22:24 1,980.7 2.5 121,244 9.8 2.0 43:57 4,791.7 1.9 174,438 14.5 2.4

CH
2.5 1:09 53.3 295.4 565,832 60.7 0.3 1:43 110.9 165.2 784,445 82.8 0.4
5.0 2:41 196.3 28.0 250,452 26.0 0.8 4:31 412.0 8.1 299,851 12.8 2.8

10.0 6:12 659.0 3.8 128,265 9.8 2.0 10:50 1,500.4 2.6 183,729 10.7 3.3
15.0 9:35 1,323.1 2.7 109,229 8.0 2.5 17:23 3,126.8 1.9 167,777 9.5 3.7
20.0 13:12 2,166.4 2.3 110,502 8.8 2.2 24:53 5,213.8 1.7 162,283 11.9 3.0

Europe
PREPROCESSING QUERIES

Size Time Space Via Settl. Time Spd.
[%] [m:s] [MiB] St. Conns [ms] Up
0 — — — 1,266,720 58.0 1.0

GC
2.5 44:59 71.9 5.9 347,156 21.5 2.7
5.0 84:13 261.3 3.0 261,894 17.8 3.3

10.0 161:41 930.6 2.2 256,514 18.4 3.2
15.0 216:31 1,956.0 2.1 263,867 19.4 3.0
20.0 280:02 3,354.7 2.0 260,812 18.0 3.2

CH
2.5 2:32 72.7 42.7 507,466 41.8 1.4
5.0 5:21 269.5 4.9 280,494 19.1 3.0

10.0 12:01 985.8 2.2 220,550 16.1 3.6
15.0 18:37 2,068.6 1.9 208,599 14.1 4.1
20.0 27:01 3,492.4 1.7 218,388 15.4 3.8

Table V. One-to-All Profile-Queries as in Table II, but on 1, 2, 4, and 8 Cores of an Intel Xeon 5430 Machine
Regarding PSPCS, we only report results for the Equiconn distribution strategy.

Los Angeles New York Europe
Settl. Time Spd. Dev. Settl. Time Spd. Dev. Settl. Time Spd. Dev.

p Conns [ms] Up [%] Conns [ms] Up [%] Conns [ms] Up [%]
1 844,852 303.5 1.0 — 1,606,515 725.2 1.0 — 550,912 293.6 1.0 —

EQUICONN
2 849,553 196.1 1.5 9.5 1,615,576 440.0 1.6 7.4 608,951 166.2 1.8 12.6
4 861,235 92.1 3.3 9.6 1,636,196 224.4 3.2 10.4 726,382 113.4 2.6 15.8
8 882,905 53.3 5.7 13.7 1,674,558 131.0 5.5 11.7 955,412 83.7 3.5 14.2

CS 1,352,894 451.1 — — 3,327,697 1,363.7 — — 4,377,790 2,881.5 — —
LC 2,529,009 356.2 — — 4,656,646 589.0 — — 1,278,093 519.3 — —
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Regarding the parallel performance, we observe speed-ups in the range of 3.5 to 5.7 on
8 cores. Again, the number of settled connections on the networks of Los Angeles and
New York is almost independent of the number of cores, even without inter-thread-
pruning (which is, again, disabled in this experiment). Concluding, we are able to
compute all best connections to all stations in under 131ms on average, in all of our
networks on this machine.

7. CONCLUSION

In this work, we presented a novel parallel algorithm for computing all best connections
of a day from a given station to all other stations in a public transportation network in a
single query. To this extent, we exploited the special structure of travel-time functions
in such networks and the fact that only few connections are useful when traveling
sufficiently far away. Introducing the concept of connection-setting, we showed how to
transfer the label-setting property of Dijkstra’s algorithm to profile-searches in trans-
portation networks. By the fact that the outgoing connections of the source station
can be distributed to different processors, our algorithm is easy to use in a multicore
set-up yielding excellent speed-ups on today’s computers. Moreover, utilizing the very
same algorithm to precompute connections between important stations, we can greatly
accelerate station-to-station queries.

Regarding future work, it will be interesting to incorporate multicriteria connections,
for example, minimizing the number of transfers or incorporating fare zones, which
is relevant especially in local networks. The main challenge here is to keep up the
connection-setting property and to find efficient criteria for self-pruning in such a
scenario. Moreover, our algorithm can be seen as a replacement for Dijkstra’s algorithm
which is the basis for most of today’s speed-up techniques (e. g., Delling [2011]). Hence,
we are interested in applying those techniques to our new connection-setting approach.

APPENDIX

A. ADDITIONAL PROOFS

Proof of Theorem 5.2

We are proving the overall correctness by showing the correctness for each connection
i separately. Thus, let i be a fixed connection index and P = [S, . . . , T ] the shortest
path of a global S-T -query of connetion i. Note that if S-T is a local query, no pruning
is applied (and there is nothing to prove).

Now, let arropt(T , i) denote the (optimal) arrival time at T of the path P (i.e., using
connection i). Moreover, let T ∗ be the superstation of the target station T . To show the
main theorem, we prove a series of lemmas first.

LEMMA A.1. For all tuples (v, V ∗
j ) ∈ V × via(T ∗) with sst(v) ∈ S∗

trans, it holds that

arropt(T , i) ≤D(
sst(v), V ∗

j , arr(v, i) + diam(sst(v))
) + diam(V ∗

j )︸ ︷︷ ︸
=: μi,v, j

+ dist(V ∗
j , T , μi,v, j).

(4)

PROOF. Assume that the equation is false, and the right-hand side yields an arrival
time at T , which is earlier than arropt(T , i). Then, the path induced by the right-hand
side of the equation yields a shorter path to T , which is a contradiction to arropt(T , i)
being optimal.

This proves that using the distance table via V ∗
j at any node v yields an upper bound

on the arrival time at T (for connection i). Since this is true at all nodes v ∈ V (for
which sst(v) ∈ S∗

trans), the following corrolary follows immediately.

ACM Journal of Experimental Algorithmics, Vol. 17, No. 4, Article 4.4, Publication date: October 2012.



4.4:24 D. Delling et al.

COROLLARY A.2. Let μi, j := minv∈V,sst(v)∈S∗
trans

(μi,v, j). Then, it holds that arropt(T , i) ≤
μi, j + dist(V ∗

j , T , μi, j).

Note that in the algorithm, μi, j is maintained exactly the way it is defined in
Lemma A.1, and the minimum operation is applied iteratively each time we settle
a node v for which sst(v) ∈ S∗

trans holds. Hence, the inequality of Corollary A.2 holds in
the algorithm, as well.

Next, consider the combined shortest S-v-V ∗
j -T path of connection i with arrival

time arrV ∗
j
(T , i) at T . We can lower bound arrV ∗

j
(T , i) by the distance table as in the

following lemma.

LEMMA A.3. For all tuples (v, V ∗
j ) ∈ V × via(T ∗) with sst(v) ∈ S∗

trans, it holds that

arrV ∗
j
(T , i) ≥ D(sst(v), V ∗

j , arr(v, i))︸ ︷︷ ︸
=: γi,v, j

+ dist(V ∗
j , T , γi,v, j), (5)

where arrV ∗
j
(T , i) depicts the arrival time of the combined shortest S-v-V ∗

j -T path.

PROOF. Let us assume that the right-hand side of the equation evaluates to
arr′

V ∗
j
(T , i) with arr′

V ∗
j
(T , i) > arrV ∗

j
(T , i). Then, because both D(sst(v), V ∗

j , ·) and
dist(V ∗

j , T , ·) are fulfilling the FIFO-property, the departure time τ of D(sst(v), V ∗
j , τ )

of the path corresponding to arrV ∗
j
(T , i) on the left-hand side of the inequation has to

be strictly smaller than arr(v, i) at v. But, this cannot be true, since the path induced
by arrV ∗

j
(T , i) is assumed to be the shortest path.

Intuitively, Lemma A.3 proves that any valid (shortest) S-T -path that goes via v
and V ∗

j has to be at least as long as the “path” that completely ignores walking at
both sst(v) and V ∗

j (and basically acts as if you can catch any train at sst(v) and V ∗
j

instantaneously).
Next, we establish that when we apply our pruning rule during the algorithm, we do

not prune a path that is important (i.e., we only prune paths which are provably not
shortest to T ).

LEMMA A.4. Let v ∈ V be a node with sst(v) ∈ S∗
trans, and let γi,v, j > μi, j . Then,

γi,v, j + dist(V ∗
j , T , γv,i, j) ≥ μi, j + dist(V ∗

j , T , μi, j) (6)

holds.

PROOF. This follows immediately from the FIFO-property of dist(V ∗
j , T , ·).

We can now conclude our prove of Theorem 5.2. Hence, let v ∈ V be a node with
sst(v) ∈ S∗

trans, where the pruning rule is potentially applied. Then, from Lemma (A.3),
(A.4) and Corollary (A.2), we get for a via super station V ∗

j ∈ via(T ∗) that

γv,i, j > μi, j ⇒ arrV ∗
j
(T , i) ≥ μi, j + dist(V ∗

j , T , μi, j)︸ ︷︷ ︸
=: ψ

≥ arropt(T , i). (7)

Since our algorithm keeps track of μi, j as the minimum over all μi,x, j with sst(x) ∈ S∗
trans,

the path that corresponds to μi, j is not pruned. Hence, at the point where v is pruned,
a path with arrival time ψ toward V ∗

j is guaranteed to be found. Since v is only pruned
if Equation (6) holds for all V ∗

j ∈ via(T ∗), it follows that v /∈ P; thus, v is not important
for the shortest S-T -path.
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