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Abstract. We study the problem of finding multimodal journeys in transportation networks, in-
cluding unrestricted walking, driving, cycling, and schedule-based public transportation. A natural
solution to this problem is to use multicriteria search, but it tends to be slow and to produce too
many journeys, several of which are of little value. We propose algorithms to compute a full Pareto
set and then score the solutions in a postprocessing step using techniques from fuzzy logic, quickly
identifying the most significant journeys. We also propose several (still multicriteria) heuristics
to find similar journeys, but much faster. Our experiments show that this approach enables the
computation of high-quality multimodal journeys on large metropolitan areas, and is fast enough
for practical applications.

1 Introduction

Online services for journey planning have become a commodity used daily by millions of com-
muters. The problem of efficiently computing good journeys in transportation networks presents
several algorithmic challenges, and has been an active area of research in recent years. Much fo-
cus has been given to the computation of routes both in road networks [1, 16, 20, 32, 36, 49] and
in scheduled-based public transit [7, 9, 12, 15, 19, 25, 42, 44, 48], but these are often considered
separately. In practice, however, users want an integrated solution that can find the “best” way
to get to their destination considering all available modes of transportation. Within a metropoli-
tan area, this includes buses, trains, driving, cycling, taxis, and, of course, walking. We refer to
this as the multimodal route planning problem.

In fact, any public transportation network necessarily has a multimodal component, since
journeys require some amount of walking. Existing solutions [9, 12, 17, 19, 25] handle this by
predefining transfer arcs between nearby stations, and running a search algorithm on the public
transit network to find the “best” journey. Unlike in road networks, however, defining “best” is
not straightforward. For example, while some people want to arrive as early as possible, others
are willing to spend a little more time to avoid extra transfers. Most recent approaches therefore
compute the Pareto set [35] of non-dominating journeys optimizing multiple criteria, which is
practical even for large metropolitan areas [19, 44].

Extending public transportation solutions to a full multimodal scenario (with unrestricted
walking, biking, and taxis) may seem trivial at first: one could just incorporate routing tech-
niques for road networks [16, 32, 36] to solve the new subproblems. Unfortunately, meaningful
multimodal optimization needs to take more criteria into account, such as walking duration and
costs. Some people are happy to walk 10 minutes to avoid an extra transfer, while others are
not. In fact, some will walk half an hour to avoid using public transportation at all. Taking
a taxi all the way to the airport is a good solution for some; users on a budget may prefer a
cheaper solution. Not only do these additional criteria significantly increase the Pareto set [21,
31], but some of the resulting journeys tend to look unreasonable, as Appendix A illustrates.
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As a result, recent research efforts tend to avoid multicriteria search altogether [8], looking for
reasonable routes by other means. A natural approach is to work with a weighted combination of
all criteria, transforming the search into a single-criterion problem [2, 4, 41, 51]. When extended
to find the k-shortest paths [13, 28], this method can even take user preferences into account.
Unfortunately, linear combination may produce undesired results [14] (see Appendix A for an
example). To avoid such issues, another line of multimodal single-criterion research considers the
computation of label-constrained quickest journeys [6, 40]. The idea is to label edges according
to the mode of transportation and require paths to obey a user-defined pattern (often given as
regular expressions), typically enforcing a hierarchy of modes [13, 51] (such as “no car travel
between trains”). The main advantage of this strategy is that preprocessing techniques developed
for road networks carry over [5, 18, 23, 37, 38]. This approach, however, can hide interesting
journeys (for example, taking a taxi between train stations in Paris may be an option). In
fact, this exposes a fundamental conceptual problem with label-constrained optimization: it
essentially relies on the user to know her options before planning the journey.

Given the limitations of current approaches, we revisit the problem of finding multicriteria
multimodal journeys on a metropolitan scale. Instead of optimizing each mode of transporta-
tion independently [26], we argue in Section 2 that most users optimize three criteria: travel
time, convenience, and costs. While this produces a large Pareto set, we propose using fuzzy
logic [27, 53] to filter it in a principled way to a modest-sized set of representative journeys. This
postprocessing step is not only quick, but can also be user-dependent, incorporating personal
preferences. As Section 3 shows, recent algorithmic developments [19, 23, 32] allow us to answer
exact queries optimizing time and convenience in less than two seconds within a large metropoli-
tan area, for the simpler scenario of walking, cycling, and public transit. Unfortunately, this
is not enough for interactive applications, and becomes much slower when additional criteria,
such as costs, are incorporated. We therefore also propose (in Section 4) heuristics (still mul-
ticriteria) that are significantly faster, and closely match the top journeys in the Pareto set.
Section 5 presents a thorough experimental evaluation of all algorithms in terms of both solu-
tion quality and performance, and shows that our approach can be fast enough for interactive
applications. Moreover, since it does not rely on heavy preprocessing, it can be used in fully
dynamic scenarios.

2 Problem Statement

We want to find journeys in a network built from several partial networks. First, we have a public
transportation network representing all available timetable-based means of transportation, such
as trains, buses, rail, or ferries. We can specify this network in terms of its timetable, which is
defined as follows. A stop is a location in the network (such as a train platform or a bus stop)
in which a user can board or leave a particular vehicle. A route is a fixed sequence of stops
for which there is scheduled service during the day; a typical example is a bus or subway line.
A route is served by one or more distinct trips during the day; each trip is associated with a
unique vehicle, with fixed (scheduled) arrival and departure times for every stop in the route.

Besides the public transportation network, we also take as input several unrestricted net-
works, with no associated timetable. Walking, cycling, and driving are modeled as distinct
unrestricted networks, each represented as a directed graph G = (V,A). Each vertex v ∈ V
represents an intersection and has associated coordinates (latitude and longitude). Each arc
(v, w) ∈ A represents a (directed) road segment and has an associated duration dur(v, w),
which corresponds to the (constant) time it takes to traverse it.
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The integrated transportation network is the union of these partial networks (timetable-based
and unrestricted) with appropriate link vertices. In other words, vertices (or stops) in different
networks are identified with one another to allow for changes in modes of transportation.

A query takes as input a source location s, a target location t, and a departure time τ , and
produces one or more journeys that leave s no earlier than τ and arrive at t. A journey is a
valid path in the integrated transportation network that obeys all scheduling constraints.

Note that, unlike previous work [9, 17, 19, 25, 46], we do not need to specify footpaths, which
are short, time-independent connections between nearby public transportation stops that allow
for transfers. For pure public transport optimization, adding these footpaths is often done by
the operator of the network or by heuristics [17].

Criteria. We still have to define which journeys the query should return. We argue that, in
multimodal networks, users optimize three natural criteria: arrival time, costs, and convenience.
Since convenience is hard to measure, we use number of trips and walking duration as proxies.
This results in a setup with four criteria: arrival time, number of trips, walking duration, and
costs. Note that for our first (simplified) scenario (with public transit, cycling, and walking, but
no taxi) we do not consider costs and work with only three criteria.

Given this setup, a first natural problem we need to solve is the full multicriteria problem,
which must return a full (maximal) Pareto set of journeys. We say that a journey J1 dominates
J2 if J1 is strictly better than J2 according to at least one criterion, and no worse according to
all other criteria. A Pareto set is a set of pairwise nondominating journeys [44, 35]. Note that,
if two journeys have equal values in all criteria, we only keep one.

Fuzzy Dominance. As already mentioned, full Pareto sets can be very large, with many similar
journeys. Moreover, several journeys in the Pareto set may seem irrelevant. For example, consider
a journey J2 that arrives much later than a similar journey J1, only to save a few seconds of
walking. Both journeys are Pareto-optimal, but J2 is arguably less relevant. The same applies to
all criteria, and in both directions: walking much more to save a few seconds is also undesirable.
Intuitively, most criteria are diffuse to the user, and only large enough differences are significant.

To formalize the notion of significance, we propose to score the journeys in the Pareto set
in a post-processing step. We compute scores using concepts from fuzzy logic [53] (and fuzzy
set theory [52]), which we briefly review. Loosely speaking, fuzzy logic aims at generalizing
Boolean logic to handle (continuous) degrees of truth. For example, the statement “60 and 61
seconds walking are equal” is false in classical logic, but might be considered “almost true” in
fuzzy logic. A fuzzy set is a tuple S = (U , µ), where U is a set, and µ : U → [0, 1] a membership
function that defines “how much” each element in U is contained in S. If U is clear from the
context, we just use µ to refer to S. When U consists of logical statements, we call S a fuzzy
predicate, and µ assigns each statement a truth value from [0, 1]. For our purposes we require
fuzzy relational operators µ<, µ=, and µ> over the real numbers R. For any x, y ∈ R, they
are used by evaluating µ<(x− y), µ>(y − x), and µ=(x− y). The operators (µ<, µ=, µ>) fulfill
Ruspini’s condition [47] if µ<+µ>+µ= = 1 holds, which is required for consistency. In this work,
we always use exponential membership functions for the operators, i. e., µ=(x) := exp( ln(χ)

ε2
x2),

where 0 < χ < 1 and ε > 0 control the degree of fuzziness. The other two operators are
derived by µ<(x) := 1 − µ=(x) if x < 0 (0 otherwise), and µ> := 1 − µ=(x) if x > 0 (0
otherwise). A triangular norm (short: t-norm) T : [0, 1]2 → [0, 1] is a commutative, associative,
and monotone (i. e., a ≤ b, x ≤ y ⇒ T (a, x) ≤ T (b, y)) binary operator to which 1 is the
neutral element. If x, y ∈ [0, 1] are truth values, T (x, y) is interpreted as a fuzzy conjunction
(and) of x and y. Given a t-norm T , the complementary conorm (or s-norm) of T is defined
as S(x, y) := 1− T (1− x, 1− y), which we interpret as a fuzzy disjunction (or). Note that the
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neutral element of S is 0. Two well-known pairs of t- and s-norms are (min(x, y),max(x, y)),
called minimum/maximum norms, and (xy, x+ y−xy), called product norm/probabilistic sum.

Following [27], we now recap the concept of fuzzy dominance in multicriteria optimization.
Given journeys J1 and J2 with M optimization criteria, we denote by nb(J1, J2) the (fuzzy) num-
ber of criteria in which J1 is better than J2. More formally nb(J1, J2) :=

∑M
i=1 µ

i
<(κi(J1), κi(J2)),

where κi(J) evaluates the i-th criterion of J , and µi< is the i-th fuzzy less-than operator. (Note
that we might use different fuzzy operators for each criterion.) Analogously, we define ne(J1, J2)
for equality and nw(J1, J2) for greater-than. Note that from Ruspini’s condition it holds that
nb + ne + nw = M . Hence the Pareto dominance can be generalized to obtain a degree of dom-
ination d(J1, J2) ∈ [0, 1], which is defined as (2nb + ne −M)/nb if nb > (M − ne)/2 (and 0
otherwise). Here, d(J1, J2) = 0 means that J1 does not dominate J2, while a value of 1 indicates
that J1 Pareto-dominates J2. Otherwise, we say J1 fuzzy-dominates J2 by degree d(J1, J2). Now,
given a (Pareto) set J of n journeys J1, . . . , Jn and an s-norm S, we define a score function
sc : J → [0, 1] that computes the degree of domination by the whole set for each Ji. More pre-
cisely, we define sc to be sc(J) := 1− S(J1, . . . , Jn). Note that if we set S to be the maximum
norm, the score is based on the (one) journey that dominates J most. On the other hand, with
the probabilistic sum the score may be based on several fuzzily dominating journeys. We finally
use the score to order the journeys by significance. One may then decide to only show the k
journeys with highest score to the user.

3 Exact Algorithms

This section considers exact algorithms for the multicriteria multimodal problem. Sections 3.1
and 3.2 propose two solutions, each building on a different algorithm for multicriteria opti-
mization on public transportation networks (MLC [46] and RAPTOR [19]). Section 3.3 then
describes an acceleration technique that applies to both. To simplify the discussion (and nota-
tion), we first describe the algorithms in terms of our simplest scenario, considering only the
(timetable-based) public transit network and the (unrestricted) walking network. Section 3.4
explains how to handle cycling and taxis, which are unrestricted but have special properties.

3.1 Multi-label-correcting Algorithm

Traditional solutions to the multicriteria problem on public transportation networks work by
first modeling the timetable as a graph [11, 17, 30, 43]. A particularly effective approach is to
use the time-dependent route model [46]. For each stop p, we create a single stop vertex linked
by time-independent transfer edges to multiple route vertices, one for each route serving p. In
addition, we add route edges between route vertices associated to consecutive stops within the
same route. To model the trips along this route during the day, the cost of a route edge is given
by a piecewise linear function. The cost of traversing an edge includes not only the time in
transit until the next stop, but also the time waiting until the next trip departs.

A journey in the public transportation network corresponds to a path in this graph. The
multi-label-correcting (MLC) [46] algorithm uses this fact to find full Pareto sets for arbitrary
criteria that can be modeled as edge costs. MLC is based on Dijkstra’s algorithm [24], but
operates on labels, which are tuples with one value per optimization criterion. Each vertex v
maintains a bag B(v) consisting of a Pareto set of nondominated labels. In each iteration, MLC
extracts from a priority queue the minimum (in lexicographic order) unprocessed label L(u).
For each arc (u, v) out of the associated vertex u, the algorithm creates a new label L(v) (by
extending L(u) in the natural way) and inserts it into B(v); newly-dominated labels (possibly
including L(v) itself) are discarded, and the priority queue is updated if needed. This basic
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algorithm can be sped up significantly with techniques such as target pruning and avoiding
unnecessary domination checks [25].

Extending MLC to solve the multimodal problem is straightforward: it suffices to augment
its input graph to include the walking network. We can combine the original graphs by merg-
ing (public transportation) stops and (walking) intersections that share the same location (and
keeping all edges). These link vertices can then be used to switch between modes of trans-
portation. The MLC query itself remains essentially unchanged, and still processes labels in
lexicographic order. Although labels can now be associated to vertices in different networks
(public transportation or walking), they can all share the same priority queue.

3.2 Round-based Algorithm

An important drawback of the MLC algorithm (even restricted to public transportation net-
works) is that it can be quite slow: unlike Dijkstra’s algorithm, MLC may scan the same vertex
multiple times (the exact number depends on the criteria being optimized), and domination
checks make each such scan quite costly. Delling et al. [19] have recently introduced RAPTOR
(Round bAsed Public Transit Optimized Router) as a faster alternative for public transporta-
tion. The simplest version of the algorithm optimizes two criteria: arrival time and number of
transfers. Unlike MLC, which searches a graph built from the timetable, RAPTOR operates di-
rectly on the timetable using a dynamic programming approach. The algorithm works in rounds,
with round i processing all relevant journeys with up to i− 1 transfers. It maintains one label
per round i and stop p representing the best known arrival time at p for up to i trips. During
round i, the algorithm first processes each route once. It reads arrival times from round i− 1 to
determine relevant trips (on the route), and updates the labels of round i at every stop along the
way. Once all routes are processed, the algorithm considers potential transfers by looking at all
(predefined) footpaths. Simpler data structures and better locality make RAPTOR an order of
magnitude faster than MLC. Delling et al. [19] have also proposed McRAPTOR, an extension
of RAPTOR that can handle more criteria (besides arrival times and number of transfers) by
maintaining a bag (set) of labels with each stop and round.

Here we propose MCR (multimodal multicriteria RAPTOR), which extends McRAPTOR to
handle multimodal queries. As in McRAPTOR, each round has two phases: the first processes
trips in the public transportation network, while the second considers arbitrary paths in the
unrestricted networks. We use a standard McRAPTOR round for the first phase (with no foot-
paths), and MLC for the second (on the walking network). For consistency with McRAPTOR,
during the second phase MLC keeps a heap of bags (instead of individual labels). The algorithm
keeps track of which labels have already been extended, and ensures that no label is processed
more than once. Labels generated by one phase are naturally used as input to the other. The
initialization routine (before the first round) runs Dijkstra’s algorithm on the walking network
from the source s to determine the fastest walking path to each stop in the public transportation
network (and to t), thus creating the initial labels used by MCR. Note that, during round i,
McRAPTOR reads labels from round i− 1 and writes to round i. In contrast, MLC may read
and write labels of the same round if walking is not regarded as a trip.

3.3 Contracting the Unrestricted Networks

As our experiments will show, the bottleneck of the multimodal algorithms (based on either
MLC or RAPTOR) is processing the (quite large) walking network. To improve performance,
we use a quick preprocessing technique proposed by Dibbelt et al. [23], which we describe next.

The key observation is that, for any journey involving public transportation, walking between
trips always begins and ends at the restricted set K of link vertices. We can exploit this fact
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by building (in a preprocessing step) an overlay [48] of the walking network G = (V,A), which
is a graph on K ⊂ V where every pairwise distance is the same as in G. A standard way of
computing such overlays is to use contraction [32], as follows. First, we define a total order
(given by a rank function r) among the vertices in V \ K, then shortcut them in this order.
(Vertices in K have infinite rank.) To shortcut a vertex v, we delete it (and its adjacent arcs)
from the graph and add as few arcs as necessary to preserve distances among the remaining
vertices. More precisely, given two arcs (u, v) and (v, w), we add a new shortcut arc (u,w) with
dur(u,w) = dur(u, v)+dur(v, w) if and only if u–v–w is the only shortest path between u and w
in the remaining graph. Once only vertices in K remain, the graph will be an overlay. Although
the final outcome does not depend on the contraction order, the running time of this procedure
does, since the density of intermediate graphs may vary. Among other criteria, it is usually
advantageous to contract well-separated vertices with relatively small degrees first [32].

Even if good orders are observed, it is often the case that the overlay graph itself has too
many arcs, negating the benefits of having fewer vertices. It is well known [10, 16, 23, 33] that
this can be avoided by stopping the contraction as soon as the average degree of the contracted
graph reaches a certain threshold (we use 12 in our experiments). Although not an overlay, this
core graph does preserve the distances between all vertices in K, which is what we need.

We now have all the elements in place for a faster multimodal s–t query. We run essentially
the same algorithm as before (based on either MLC or RAPTOR), but replace the full walking
network with the (more compact) core graph. Since the source s and the target t may not
be in the core, we handle them as special cases during initialization. It works on the graph
G+ = (V,A ∪ A+) containing all original arcs A as well as all shortcuts A+ added (even
temporarily) during the contraction process. (Note that G+ is a supergraph of both G and its
core.) We run upward searches (i.e., only following arcs (u, v) such that r(u) > r(w)) in G+ from
s (scanning forward arcs) and t (scanning reverse arcs); they reach all potential entry and exit
points in the core, and arcs within the core are not processed. The core vertices reached from
either s or t (and their respective distances) are used as input to MCR’s (or MLC’s) standard
initialization, which can operate on the core from this point on.

The main loop proceeds exactly as before, with one minor adjustment. For MLC, whenever
we extract a label L(v) associated with a scanned core vertex v, we check whether it has been
reached by the backward search during initialization. If this is the case, we create a tempo-
rary label L′(t) by extending L(v) with the (already computed) walking path to t, potentially
inserting it into B(t). MCR is adjusted similarly, with bags instead of labels.

3.4 Beyond Walking

This section explains how we can handle other unrestricted networks (besides walking). In
particular, our experiments include a bicycle rental scheme, which can be seen as a hybrid
network: while it does not have a fixed schedule (and is thus unrestricted), bicycles can only be
picked up and dropped off at certain designated locations (called cycling stations). We therefore
consider them as stops (part of the public transportation network), but without a schedule—a
bike can be used at any time. Moreover, we count one extra trip each time a bike is picked up
from a cycling station. To handle cycling within MCR, we consider it during the first stage of
each round (together with RAPTOR and before walking). Because bicycles have no schedule,
we process them independently (from RAPTOR) by running MLC on the bicycle network. To
do so, we initialize MLC with labels from round i−1 for all relevant bicycle stations, and during
the algorithm we update labels of (the current) round i.

We handle taxis as a separate criterion reflecting the (monetary) cost of taxi rides. Moreover,
we consider a taxi ride to be a trip, since we board a vehicle. In our round-based algorithms, we
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handle taxi the same way we handle walking, with the exception that in the taxi stage labels
are read and written in consecutive rounds i − 1 and i, respectively. Note that (unlike rental
bicycles) we also allow taking a taxi as the first and/or last leg of any location-to-location query.
As our experiments will show, incorporating taxi tends to increase the size of the full Pareto set
(and running times) significantly. Note that, if taxis were not penalized in any way, an all-taxi
journey would almost always dominate all other alternatives (even sensible ones), since it is fast
and has no walking.

Dealing with personal cars or bicycles is somewhat simpler. Since we can assume that these
vehicles are only available for the first or last legs of the journey, we must only consider them
during initialization. The initialization phase can also be used to deal with other special cases,
such as allowing a rented bicycle to be ridden to the final destination (to be returned later).

Note that the contraction scheme from Section 3.3 can also be used for the cycling and
driving networks. For every unrestricted network (walking, cycling, driving), we keep the link
vertices (stops and bicycle stations) in one common core, contracting (up to) all other nodes.
As before, queries then start with upward searches in each relevant unrestricted network.

4 Heuristics

Even with the accelerations we consider, the exact algorithms proposed in Section 3 are not fast
enough for interactive real-world applications. This section presents several heuristics aimed
at quickly finding a set of journeys that is similar to the exact solution, which we take as
ground truth. We consider three general approaches: weakening the dominance rules, reducing
the number of criteria, and restricting the lengths of certain trips. We explain each in turn, then
discuss how we can actually evaluate the quality of the solutions found by these heuristics.

Weak dominance. The first strategy we consider is to relax the domination rules during
the algorithm, instead of computing the full Pareto set. Although this may lead to suboptimal
solutions, it may be faster because it reduces the number of labels pushed through the network.

We consider four different implementations of this strategy. The first, MCR-hf, uses fuzzy
dominance (instead of strict dominance) when comparing labels during the algorithm: for labels
L1 and L2, we compute the fuzzy dominance value d(L1, L2) (cf. Section 2), and dominate L2 if
d exceeds a given threshold (we use 0.9). The second, MCR-hb(κ), uses strict domination, but
discretizes criterion κ: before comparing labels L1 and L2, we first round κ(L1) and κ(L2) to
predefined discrete values (buckets). Of course, this can be extended to use buckets for several
criteria. The third heuristic, MCR-hs(κ), uses strict domination but adds a slack of x units to
κ. More precisely, L1 already dominates L2 if κ(L1) ≤ κ(L2)+x and L1 is at least as good L2 in
all other criteria. The last heuristic, MCR-ht, relaxes the domination rule by trading off two or
more criteria. More concretely, consider the case in which walking (walk) and arrival time (arr)
are criteria. Then, L1 already dominates L2 if arr(L1) ≤ arr(L2) + a · (walk(L1) − walk(L2)),
walk(L1) ≤ walk(L2) + a · (arr(L1) − arr(L2)), and L1 is at least as good as L2 in all other
criteria, for a tradeoff parameter a.

Fewer criteria. The second heuristic acceleration we test is to reduce the number of criteria
considered during the algorithm. For concreteness, we explain our approach for the simple
multimodal scenario (without taxis), with three criteria: arrival time, walking duration, and
number of trips. Our heuristic, MR-x, still works in rounds, but optimizes only the number of
trips and arrival times explicitly (as criteria). To take walking duration into account, we count
every x minutes of a walking segment (transfer) as a trip; the first x minutes are free. With
this approach, it suffices to run plain Dijkstra to compute transfers, since link vertices no longer
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need to keep bags. The round index to which labels are written then depends on the walking
duration (of the current segment) of the considered label. A particularly effective special case
is x = ∞, where a transfer is never a trip. Another effective approach is a variant where a
transfer always counts as a single trip, regardless of duration; we abuse notation and call this
variant MR-0. One can obtain even better results by running MR-0 and MR-∞ independently
and returning the union of the journeys they find; we call this approach MR-(0,∞).

When we must also consider costs are a criterion (to handle taxis), we propose the MCR-hc
heuristic. Once again, we drop walking as an independent criterion, leaving only arrival time,
number of trips, and costs to be optimized. To account for walking, we make it another (cheaper)
component of the cost criterion.

Restricting criteria. Consider our simple scenario of walking and public transit. Intuitively,
most journeys start with a walk to a nearby stop, followed by one or more trips (with short
transfers) within the public transit system, and finally a short walk from the final stop to the
actual destination. To take this observation into account, we propose MCR-tx-ry. It still runs
three-criterion search (walking, arrival, and trips), but limits walking in the beginning and end
to y minutes, and walking transfers between stops to x minutes. A related variant we tested
(MR-tx-ry) has the same constraints, but runs only bicriteria search (optimizing arrival time
and trips). Note that existing solutions often use such restrictions [9].

Quality evaluation. One challenge with heuristics is evaluating how good they are. We take
the solution found by MCR to be the ground truth, then measure the quality of a heuristic by
determining how close it is to the ground truth. To quantify this, we first compute the fuzzy
score values for each journey with respect to their Pareto set. Then, for a given parameter k, we
measure the similarity between the top k scored journeys returned by the heuristics and the top k
scored journeys in the ground truth. Note that the score depends on the algorithm only, and does
not assume knowledge of the ground truth, which is consistent with a real-world deployment
of the algorithms. To compare two sets of k journeys, we run a greedy maximum matching
algorithm. First, we compute a k×k matrix where entry (i, j) represents the similarity between
the i-th journey in the first set and the j-th in the second. To measure the similarity, we make
use of the same fuzzy relational operators we use for scoring. More precisely, given two journeys
J1 and J2, the similarity with respect to the i-th criterion is given by ci := µi=(κi(J1)−κi(J2)),
where κi is the value of this criterion and µi= is the corresponding fuzzy equality relation. Then,
we define the similarity sim(J1, J2) as T (c1, c2, . . . , cM ), where T is an arbitrary t-norm. We
always select T to be consistent with the s-norm that we use to compute the score values.
Having computed the pairwise similarities, we greedily select the unmatched pairs with highest
similarity (by picking the highest entry that does not share a row or column with a previously
picked entry) from the table. The similarity of the whole matching is then the average similarity
of its pairs, but weighted by the fuzzy score of the reference journey. This means that matching
the highest-score reference journey is more important than matching the k-th one.

5 Experiments

This section presents an extensive evaluation of the methods introduced in this paper. We
implemented all algorithms from Sections 3 and 4 in C++ and compiled the code with g++
4.6.2 (64 bit) with optimization flag -O3. We conducted our experiments on one core of a dual
8-core Intel Xeon E5-2670 machine clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM.
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Table 1. Performance and solution quality on journeys considering walking, cycling, and public transportation.
Bullets (•) indicate which criteria are taken into account by the algorithm.

# Scans # Comp. Time Quality-3 Quality-6
Algorithm A

rr
.

T
rp

.
W

lk
.

# Rnd. p. Ent. p. Ent. # Jn. [ms] Avg. Sd. Avg. Sd.

MCR-full • • • 13.8 13.8 168.2 29.1 4 634.0 100 % 0 % 100 % 0 %
MCR • • • 13.8 3.4 158.7 29.1 1 438.7 100 % 0 % 100 % 0 %
MLC • • • — 10.6 1 246.7 29.1 4 543.0 100 % 0 % 100 % 0 %

MCR-hf • • • 15.6 2.9 14.3 10.9 699.4 89 % 15 % 89 % 11 %
MCR-hb • • • 10.2 2.1 12.7 9.0 456.7 91 % 12 % 91 % 10 %
MCR-hs • • • 14.7 2.6 11.1 8.6 466.1 67 % 28 % 69 % 23 %
MCR-ht • • • 10.5 2.0 6.4 8.6 373.6 84 % 22 % 82 % 20 %

MCR-t5 • • • 13.8 2.7 126.6 28.9 891.9 93 % 16 % 92 % 15 %
MCR-t10 • • • 13.8 2.7 132.7 29.0 1 467.6 97 % 10 % 95 % 10 %
MCR-t10-r15 • • • 10.7 1.7 73.3 13.2 885.0 38 % 40 % 30 % 31 %
MR-t10 • • ◦ 7.6 1.1 4.8 4.5 22.2 63 % 28 % 62 % 24 %

MR-∞ • • ◦ 7.6 1.4 4.8 4.5 44.4 63 % 28 % 63 % 24 %
MR-0 • • ◦ 13.7 2.1 6.9 5.4 61.5 63 % 28 % 63 % 24 %
MR-10 • • ◦ 20.0 1.1 4.8 4.3 39.4 51 % 33 % 45 % 29 %
MR-(0,∞) • • ◦ 13.7 3.5 11.6 6.1 108.8 66 % 27 % 66 % 23 %

Input and Methodology. We focus on the transportation network of London (England);
results for other instances (available in Appendix B.2) are similar. For public transportation,
we use the timetable information made available by Transport for London (TfL) [39, 50], from
which we extracted a Tuesday in the periodic summer schedule of 2011. It includes all subway
(tube), buses, tram, and light rail (DLR) data. To model the underlying road network, we use
PTV data from 2006 [45], which explicitly indicates whether each road segment is open for
driving, cycling and/or walking. In the walking network, we set the walking speeds to 5 km/h.
To compute driving times (for experiments that need them), we assume driving at the maximum
allowed speed limit. For simplicity, we do not consider turn costs (which are not well defined
in the data). We obtained the bicycle station data from the TfL website [50] and assume an
average cycling speed of 12 km/h. The resulting combined network has about 20 k stops, 5 M
departure events, 564 cycle stations, and 259 k vertices in the walking network.

Recall that we specify the fuzziness of each criterion by a pair (χ, ε), roughly meaning that
the corresponding Gaussian (centered at x = 0) has value χ for x = ε. We set these pairs to
(0.8, 5) for walking, (0.8, 1) for arrival time, (0.1, 1) for trips, and (0.8, 5) for costs (given in
pounds; times are in minutes). Note that the number of trips is sharper than the other criteria.
For simplicity, our experiments consider only the minimum/maximum norms. Later in this
section we show that our approach is robust to small variations in these parameters, but they
can be tuned to account for user-dependent preferences.

Our experiments consider location-to-location queries, with sources, targets, and departure
times picked uniformly at random (from the walking network and during the day, respectively).

Algorithms Evaluation. For our first experiment, we ran 1 000 queries for each algorithm,
considering walking, cycling, and the public transportation network, and considering three crite-
ria: arrival time, number of trips, and walking duration. The results are summarized in Table 1
(Appendix B.1 has additional statistics). For each algorithm, the table first shows which of
the three criteria are explicitly taken into account. The next five columns show the average
(over all 1 000 runs) values observed for the number of rounds, scans per entity (stop/vertex),
label comparisons per entity, journeys found, and running time (in milliseconds). The last four
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Fig. 1. Number of Pareto optimal journeys with score higher than 0.1 for varying fuzziness. We consider both
the maximum norm (left) and probabilistic sum (right). The x axis varies the fuzziness in the arrival time, while
the y axis considers the walking duration. The intensity (color) of the corresponding entry indicates the average
number of journeys in the filtered output.

columns evaluate the quality of the top 3 and 6 journeys found by our heuristics, as explained
in Section 4. Note that we show both averages and standard deviations.

The algorithms in Table 1 are grouped in blocks. The first contains methods that compute
the full Pareto set according to all three criteria (arrival time, number of trips, and walking).
Our reference algorithm is MCR, which is round-based and uses contraction to accelerate com-
putations in the unrestricted networks. As anticipated, it is faster (by a factor of roughly three)
than either MCR-full (which does not use the core) or MLC (which uses the core but is not
round-based). Accordingly, all heuristics we consider are round-based and use the core.

The second block contains heuristics that accelerate MCR by weakening the domination
rules, causing more labels to be pruned (and losing optimality guarantees). As explained in
Section 4, MCR-hf uses fuzzy dominance during the algorithm, MCR-hb uses walking buckets
(discretizing walking by steps of 5 minutes for domination), MCR-hs uses a slack of 5 minutes on
the walking criterion when evaluating domination, and MCR-ht considers a tradeoff parameter
of a = 0.3 between walking and arrival time. Although all heuristics are faster than pure MCR,
the speedup is more limited for MCR-hf than for any of the other approaches. The best tradeoff
between running time and solution quality is given by MCR-hb.

The third block has algorithms with restrictions on walking duration. Limiting transfers to
10 minutes (as MCR-t10 does) has almost no effect on solution quality (which is to be expected
in a well-designed public transportation network). Unfortunately, this heuristic is not faster
than than the full algorithm, since it adds too many arcs to represent precomputed footpaths.
If we also limit the walking duration from s or t (MCR-t10-r15), the algorithm becomes slightly
faster, but quality becomes unacceptably low: the algorithm misses good journeys (including
all-walk) quite often. If instead we allow even more restricted transfers (with MCR-t5), we get
similar speedups with much better quality. A much faster alternative is MR-t10, which drops
walking duration as a criterion (it is considered only implicitly in the arrival time), making it
essentially the same as RAPTOR, with a different initialization. Quality is much lower than
for MCR-tx, however, indicating that considering the walking duration explicitly during the
algorithm is important to obtain a full range of solutions.

10
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Fig. 2. Evaluating the number of journeys returned by some of our algorithms: For a given n (on the abscissa),
we report the percentage of 1 000 random queries that compute n or more journeys.

The MR-x algorithms (fourth block) attempt to improve quality by transforming long walks
into extra trips, but they are not particularly successful. While they do consider more journeys
during the algorithm (resulting in higher running times), solutions are not much better. For such
level of solution quality, MR-t10 seems to be a better choice. Summing up, MCR-hb should be
the preferred choice for high-quality solutions, while MR-t10 can support interactive queries
with reasonable quality.

Fuzzy Parameters Evaluation. We also evaluated the impact of the fuzzy parameters on the
number of journeys we obtain. We again use London with walking, public transit, and cycling
as input. Figure 1 shows the number of journeys given a score higher than 0.1 (by the fuzzy
ranking routine) when we vary ε (the level of fuzziness) for two criteria, walking and arrival
time. Note that we set χ = 0.8, as in our main experiments. To simplify the exposition, we keep
the fuzziness of the third criterion (number of trips) constant.

A comparison between the plots shows that, for the same set of parameters, probabilistic
sum is significantly stricter than the maximum norm, and reduces the number of journeys much
more drastically (for a fixed threshold). Qualitatively, however, they behave similarly. Under
both norms, making the walking criterion fuzzier is more effective at identifying unwanted
journeys. A couple of minutes of fuzziness in the walking criterion is enough to significantly
reduce the number of journeys above the threshold. Adding fuzziness only to the arrival time
has much more limited effect on the results.

Quality of the Heuristics. We here further investigate the quality of our heuristics. We use
London with walking, public transit, and cycling as input. Figure 2 reports the size of the Pareto
set (the input to scoring) for various algorithms, while Figure 3 shows how well the the top k
heuristic journeys match the ground truth, for varying k. We observe that exact MCR does
indeed produce many journeys, supporting the notion of ranking them afterwards (by score).
A good heuristic, such as MCR-hb, computes much fewer journeys, but they match the top
MCR journeys quite well. An interesting observation is that the quality of the heuristic hardly
depends on the number of journeys we try to match.

Full Multimodal Problem. Our final experiment considers the full multimodal problem, also
including taxis. As explained in Section 3.4, we add cost as fourth criterion (at 2.40 pounds
per taxi-trip plus 60 pence per minute). For simplicity, we do not consider the cost of public
transit, since it is significantly cheaper. Table 2 presents the average performance of some of
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Fig. 3. Evaluating the solution quality by matching the top k journeys in the solution with the top k of the
reference algorithm (MCR). The scores and similarity values are obtained by using the minimum/maximum
norms (left) and the product norm/probabilistic sum (right). The legend of the right plot also applies to the left.

our algorithms over 1 000 random queries in London. The first block includes algorithms that
optimize all four criteria (arrival time, walking duration, number of trips, and costs). Note that
exact MCR becomes impractical. Fuzzy domination (MCR-hf) makes the problem tractable,
with little loss in quality. Using 5-minute buckets for walking and 5-pound buckets for costs
(MCR-hb) is even faster, though queries still take more than two seconds. The second block in
the table shows that we can reduce times if we drop walking duration as criterion (we incorporate
it into the cost function at 3 pence per minute, instead), with almost no loss in solution quality.
This is still not fast enough, though. Using 5-pound buckets (MCR-hb) reduces the average
query times to about 1 second, with reasonable quality.

6 Final Remarks

We have studied multicriteria journey planning in metropolitan multimodal networks. We ar-
gued that users of such networks optimize three criteria: arrival time, costs, and convenience. It
turns out that the corresponding full Pareto set is large, with many unnatural journeys. Fuzzy
set theory can extract the relevant journeys and rank them. Since exact algorithms are too slow,
we have introduced several heuristics that closely match the best journeys in the Pareto set.
Extensive experiments show that our approach enables efficient realistic multimodal journey
planning. A natural avenue for future research is accelerating our approach further to enable
interactive queries with an even richer set of criteria. Ultimately, the overall goal is to compute
multicriteria multimodal journeys on a global scale in real time.

Table 2. Evaluating the performance on our London instance when taking taxi into account.

# Scans # Comp. Time Quality-3 Quality-6
Algorithm A

rr
.

T
rp

.
W

lk
.

C
os

t

# Rnd. p. Ent. p. Ent. # Jn. [ms] Avg. Sd. Avg. Sd.

MCR • • • • 16.3 3.1 369 606.0 1 666.0 1 960 234.0 100 % 0 % 100 % 0 %
MCR-hf • • • • 17.1 2.1 137.1 35.2 6 451.6 92 % 12 % 92 % 6 %
MCR-hb • • • • 9.9 1.3 86.8 27.6 2 807.7 96 % 8 % 92 % 6 %

MCR • • ◦ • 14.6 2.4 7 901.4 250.9 25 945.8 98 % 6 % 97 % 5 %
MCR-hf • • ◦ • 12.0 1.4 33.6 17.6 2 246.3 87 % 12 % 74 % 12 %
MCR-hb • • ◦ • 9.0 1.0 20.0 11.6 996.4 86 % 12 % 74 % 12 %
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A Shortcomings of Existing Approaches

This appendix provides some examples where existing approaches fail. Figure 4 shows a known
problem for pure multicriteria search in multimodal networks. Consider computing the best
routes between two locations s and t in a road network, given an additional public transit line
with stops pi which operates very frequently. We want to find the best route allowing taxi
and public transit and consider two criteria: cost and arrival time. When computing the non-
dominating journeys from s to t, all journeys 〈s, pi〉 → 〈pi, p5〉 → 〈p5, t〉, i = 1 . . . 4, and 〈s, t〉
are optimal because the bus is cheaper and slower than the taxi. Of course, this can be extended
to arbitrarily long routes.

s t

p1 p2 p3 p4 p5

Fig. 4. Problem of multicriteria search in multimodal networks.

As discussed in Section 1, another approach to multimodal journey planning is computing
a weighted combination of all criteria under consideration and then running a single-criterion
search. However, especially for time-dependent problems (such as ours), the weighted combina-
tion of travel time with other criteria may yield bad journeys. For example, preferring cheaper
subpaths might make us miss the last bus home, forcing us to take an expensive taxi.

Figure 5 shows a more concrete example. The Pareto-optimal set from stop p1 to p2 when
departing at time τ = 0 contains three journeys. Concatenating J1 + J4 yields an arrival time
of 20 and a cost of 180, J1 + J5 yields 40 and 100, and J3 + J6 yields 180 and 20. Note that J2

is never used. Now, for the weighted linear optimization of α · (arr− dep) + (1− α) · cost (with
α ∈ [0, 1]), one might expect we can obtain these journeys for different values of α. However,
for α ∈ [0, 0.125] we get J3 + J6, for α ∈ (0.125, 0.875] we get J2 + J6, and for α ∈ (0.875, 1]
we obtain J1 + J4. So, we do not find J1 + J5, which provides a reasonable trade-off between
arrival time and costs. Even worse, for most values of α, we get a journey that is not part of
the Pareto set.

p1 p2 p3

J1 = (dep: 0, arr: 10, cost: 90)

J2 = (dep: 0, arr: 20, cost: 20)

J3 = (dep: 0, arr: 90, cost: 10)

J4 = (dep: 10, arr: 20, cost: 90)

J5 = (dep: 15, arr: 40, cost: 10)

J6 = (dep: 90, arr: 180, cost: 10)

Fig. 5. Problem of linear combination search in time-dependent multimodal networks.

B Further Experiments

This appendix provides a more detailed analysis of our algorithms, and presents experiments
on additional inputs.
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B.1 Detailed Performance

Table 3 presents a more detailed analysis of the main experiment in Section 5 (without taxis).
For each algorithm, it shows the effort (number of scans per vertex and/or stop, as well as run-
ning times in milliseconds) spent in each of the networks (public transit, walking, and cycling)
and in total. The table shows that all round-based algorithms except MR-t10 spend more time
processing the unrestricted networks (walking and cycling) than dealing with public transporta-
tion. This was to be expected: not only are the unrestricted networks bigger (they have more
vertices), but also they must be processed with a (slower) Dijkstra-based algorithm (as in MLC,
rather than RAPTOR). This is the reason for the good performance of the MR-t10 heuristic.

Table 3. Detailed performance analysis of our algorithms. The total running time includes additional overhead,
such as for initialization.

Public Transit Walking Cycling Total
# Scans Time # Scans Time # Scans Time # Scans Time

Algorithm A
rr

.
T
rp

.
W

lk
.

p. Stop [ms] p. Vert. [ms] p. Vert. [ms] p. Ent. [ms]

MCR-full • • • 32.1 350.6 9.6 3 030.9 43.6 1 203.1 13.8 4 634.0
MCR • • • 32.1 341.4 1.2 889.3 1.7 159.2 3.4 1 438.7
MLC • • • 119.3 — 2.6 — 2.1 — 10.6 4 543.0

MCR-hf • • • 28.1 157.7 1.0 483.9 0.7 25.6 2.9 699.4
MCR-hb • • • 21.1 115.2 0.7 297.4 0.5 19.7 2.1 456.7
MCR-hs • • • 25.1 97.3 0.9 322.2 0.6 16.8 2.6 466.1
MCR-ht • • • 20.2 86.8 0.7 246.4 0.5 17.4 2.0 373.6

MCR-t5 • • • 31.5 318.4 0.5 348.6 1.7 157.2 2.7 891.9
MCR-t10 • • • 31.6 326.2 0.5 913.7 1.7 158.5 2.7 1 467.6
MCR-t10-r15 • • • 20.0 207.5 0.3 554.0 1.2 103.6 1.7 885.0
MR-t10 • • ◦ 14.4 9.4 0.2 9.5 0.3 1.6 1.2 22.2

MR-∞ • • ◦ 14.2 10.0 0.5 31.0 0.3 1.8 1.4 44.4
MR-0 • • ◦ 21.4 13.9 0.7 42.5 0.4 2.4 2.1 61.5
MR-10 • • ◦ 9.7 6.3 0.5 30.5 0.2 1.3 1.1 39.4
MR-(0,∞) • • ◦ 35.6 23.3 1.1 76.7 0.6 4.3 3.5 108.8

B.2 Additional Inputs

In addition to London, we tested inputs representing other large metropolitan areas (New York,
Los Angeles, and Chicago). We built the public transit network from publicly available General
Transit Feeds (GTFS), restricting ourselves to the timetable for August 10, 2011 (a Wednesday).
The road network data is still given by PTV, and these instances do not include bicycles.
Detailed statistics for all instances are presented in Table 4.

Table 5 compares the performance of our algorithms on these inputs. For reference, we also
consider a simplified version of the London network, without bicycles. For each input, we show
the average values (over 1 000 queries) for number of journeys found, running time, and quality
(considering the top 6 journeys). The results are consistent with those obtained for the full
London network, showing that our preferred choice of heuristics also holds here. MCR-hb is
always the best choice in terms of solution quality, while MR-t10 is preferred if query times
should be as low as possible.
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Table 4. Size figures for our input instances. We link every stop and cycle station with the walking/road network.

Figure London New York Los Angeles Chicago

Public Transit
Stops 20 843 17 894 15 003 12 137
Routes 2 184 1 393 1 099 710
Trips 133 011 45 299 16 376 20 303
Daily Departure Events 4 991 125 1 825 129 931 846 1 194 571
Vertices (Route Model) 99 230 66 124 81 657 47 561
Edges (Route Model) 260 583 193 159 214 369 118 452

Walking
Vertices 258 840 255 808 224 053 70 440
Vertices in Core 27 840 25 808 21 053 16 440
Edges 1 433 814 1 586 782 1 395 185 586 979
Footpaths ≤ 5 min 150 948 219 040 83 844 122 450
Footpaths ≤ 10 min 518 174 670 702 271 444 426 818

Cycling
Cycle Stations 564 — — —
Vertices 23 311 — — —
Vertices in Core 1 311 — — —
Edges 130 971 — — —

Taxi
Vertices 259 122 263 407 233 612 72 062
Vertices in Core 27 122 24 407 18 612 16 062
Edges 1 339 487 1 502 924 1 343 471 583 876

Table 5. Evaluating the performance of MCR and MR with different heuristics on other instances. The quality
is determined identically to Table 1 (cf. Section 5).

London No Bike New York Los Angeles Chicago
Time Qual. Time Qual. Time Qual. Time Qual.

Algorithm A
rr

.
T
rp

.
W

lk
.

# Jn. [ms] Avg. # Jn. [ms] Avg. # Jn. [ms] Avg. # Jn. [ms] Avg.

MCR • • • 27.5 1 215.9 100 % 25.5 1 703.0 100 % 16.7 644.6 100 % 22.1 532.8 100 %

MCR-hf • • • 10.5 677.3 89 % 8.6 611.0 91 % 8.9 445.0 88 % 8.3 241.3 72 %
MCR-hb • • • 8.7 430.3 91 % 7.2 413.8 94 % 7.6 295.8 93 % 7.1 160.8 92 %
MCR-hs • • • 8.5 450.6 68 % 6.7 414.0 84 % 7.4 310.7 62 % 6.6 158.8 58 %
MCR-ht • • • 8.3 342.6 81 % 6.6 300.9 80 % 6.7 228.4 69 % 6.2 113.9 79 %

MCR-t5 • • • 27.3 671.7 94 % 25.6 695.5 69 % 16.6 262.7 93 % 21.9 277.7 95 %
MCR-t10 • • • 27.4 1 123.0 96 % 25.3 1 401.4 85 % 16.8 424.5 96 % 22.0 578.8 98 %
MCR-t10-r15 • • • 11.9 688.1 28 % 5.4 677.9 10 % 3.9 202.0 13 % 9.6 372.7 28 %
MR-t10 • • ◦ 4.4 19.7 61 % 3.6 10.6 60 % 3.6 11.0 51 % 3.3 7.1 63 %

MR-∞ • • ◦ 4.4 40.0 61 % 3.4 26.3 65 % 3.6 21.5 51 % 3.3 12.3 63 %
MR-0 • • ◦ 5.2 55.7 61 % 3.8 37.6 65 % 4.3 28.5 52 % 3.7 15.6 63 %
MR-10 • • ◦ 6.1 36.8 43 % 6.0 26.1 41 % 6.1 26.6 42 % 5.1 13.9 50 %
MR-(0,∞) • • ◦ 9.6 99.3 64 % 7.3 69.6 65 % 8.0 54.0 53 % 7.0 29.6 64 %

17


