
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 010

A Survey on Algorithmic Approaches for
Solving Tourist Trip Design Problems

Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas,
Grammati Pantziou, Yiannis Tasoulas

October 2012





Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 010

A Survey on Algorithmic Approaches for
Solving Tourist Trip Design Problems

Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas,
Grammati Pantziou, Yiannis Tasoulas

October 2012





A Survey on Algorithmic Approaches for Solving Tourist Trip

Design Problems

Damianos Gavalas1, Charalambos Konstantopoulos2, Konstantinos Mastakas3,
Grammati Pantziou4, and Yiannis Tasoulas2

1Department of Cultural Technology and Communication, University of the Aegean, Mytilene,
Greece, email: dgavalas@aegean.gr

2Department of Informatics, University of Piraeus, Piraeus, Greece, email:
{konstant,jtas}@unipi.gr

3Department of Mathematics, University of Athens, Athens, Greece, email: kmast@math.uoa.gr
4Department of Informatics, Technological Educational Institution of Athens, Athens, Greece,

email: pantziou@teiath.gr

Abstract

The tourist trip design problem (TTDP) refers to a route-planning problem for
tourists interested in visiting multiple points of interest (POIs). TTDP solvers de-
rive daily tourist tours i.e., ordered visits to POIs, which respect tourist constraints
and POIs attributes. The main objective of the problem discussed is to select POIs
that match tourist preferences, thereby maximizing tourist satisfaction, while taking
into account a multitude of parameters and constraints (e.g., distances among POIs,
visiting time required for each POI, POIs visiting days/hours, entrance fees, weather
conditions) and respecting the time available for sightseeing in daily basis. The aim of
this work is to survey models, algorithmic approaches and methodologies concerning
tourist trip design problems. Recent approaches are examined, focusing on problem
models that best capture a multitude of realistic POIs attrbutes and user constraints;
further, several interesting TTDP variants are investigated. Open issues and promising
prospects in tourist trip planning research are also discussed.

1 Introduction

Tourists that visit a destination for one or several days, are facing the problem to decide
which points of interest (POIs) would be more interesting to visit and to determine a route
for each trip day, i.e., which POIs to visit as well as visit order among them. This is a
challenging quest that involves a number of constraints such as the visiting time required
for each POI, the POI’s visiting days/hours, the travelling distance among POIs, the time
available for sightseeing in daily basis and the “degree of satisfaction” (termed “profit”)
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associated with the visit to each POI (based on personal profile and peferences). A number
of different problems may be defined by considering different parameters and constraints
of the above general problem, termed as the “tourist trip design problem” (TTDP) [114].

Mobile tourist guides may be used as tools to derive solutions to TTDP [36], [68], [67],
[80]. Based on a list of personal interests and preferences, up-to-date information for the
sight and information about the visit (e.g. date of arrival and departure, accommodation
address, etc), a mobile guide can suggest near-optimal and feasible routes that include
visits to a series of sights, and to recommend the order of each sight’s visit along the route
[114].

A number of web and mobile applications have recently incorporated tourist route
recommendations within their core functionality [113], [2], [53]. In effect, most are TTDP
solvers (e.g. the City Trip Planner [1], the mtrip [2]) taking into account several user-
defined parameters within their recommendation logic (days of visit, preferences upon
POI categories, start/end location, visiting pace/intensity), while also allowing the user
to manually edit the derived routes, e.g. add/remove POIs. Recommended tours are
visualized on maps [1], [2], [53], allowing users to browse informative content on selected
POIs. Some tools also offer augmented reality views of recommended attractions (e.g., [2]).

The modeling of a TTDP is approached considering the following input data (see Fig-
ure 1):

• A set of candidate POIs, each associated with a number of attributes (e.g. type,
location, popularity, opening days/hours, etc).

• The travel time among POIs calculated using multi-modal routing information among
POIs, i.e. tourists are assumed to use all modes of transport available at the tourist
destination, including public transportation, walking and bicycle.

• The “profit” of each POI, calculated as a weighted function of the objective and sub-
jective importance of each POI (subjectivity refers to the users’ individual preferences
and interests on specific POI categories).

• The number of routes that must be generated, based upon the period of stay of the
user at the tourist destination.

• The anticipated duration of visit of a user at a POI which derives from the average
duration and the user’s potential interest for that particular POI.

• The daily time limit T that a tourist wishes to spend on visiting sights; the overall
daily route duration (i.e. the sum of visiting times plus the overall time spent moving
from a POI to another which is a function of the topological distance) should be kept
below T .
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Figure 1: Input data and recommended itineraries in TTDP.

By solving a TTDP we expect to derive daily, ordered visits to POIs, while respecting
user constraints and POIs attributes. High quality TTDP solutions should feature POI rec-
ommendations that match tourist preferences and near-optimal feasible route scheduling.
The algorithmic and operational research literature include many route planning problem
modeling approaches, which may be used for different versions of TTDP. A well-known
optimization problem that may formulate a simple version of TTDP is the orienteering
problem (OP) [105]. The OP is based on the orienteering game, in which several locations
with an associated profit have to be visited within a given time limit. Each location may be
visited only once, while the aim is to maximize the overall profit collected on a single tour.
Clearly, the OP may be used to model the simplest version of the TTDP wherein the POIs
are associated with a profit (i.e. user satisfaction) and the goal is to find a single tour that
maximizes the profit collected within a given time budget (time allowed for sightseeing in
a single day).

Extensions of the OP have been successfully applied to model more complicated versions
of the TTDP. The team orienteering problem (TOP) [29] extends the OP by considering
multiple tours (i.e. daily tourist itineraries). The TOP with time windows (TOPTW)
considers visits to locations within a predefined time window (this allows modeling open-
ing and closing hours of POIs). The time-dependent TOPTW (TDTOPTW) considers
time dependency in the estimation of time required to move from one location to another
and therefore, it is suitable for modeling multi-modal transports among POIs. Several
further generalizations exist that allow the modeling of even more complicated versions of
the TTDP, e.g. the multi-constraint team orienteering problem with time windows (MC-
TOPTW) takes into account multiple user constraints such as the overall budget that may
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Figure 2: Optimization problems relevant to the TTDP (arrows denote problem exten-
sions/generalizations).

be spent for POI entrance fees. A non-exhaustive illustration of the optimization problems
with relevance to the TTDP as referred to in the literature is given in Figure 2.

In this article we survey exact, approximate and heuristic approaches for solving the
TTDP and interesting variants of the TTDP. Section 2 and 3 present algorithmic tech-
niques for solving optimization problems that are employed for modeling different versions
of the TTDP. Specifically, Section 3 surveys algorithmic approaches for solving single tour
versions of the TTDP i.e. problems aiming at finding a single tour that maximizes the
profit under certain constraints (OP and OPTW), and Section 3 surveys algorithmic ap-
proaches dealing with multiple tour versions of the TTDP (TOP, TOPTW, TDTOPTW).
It is noted that particular emphasis is given to algorithmic techniques for solving problems
highly relevant to more complicated and realistic versions of the TTDP (e.g. TOPTW and
TDTOPTW). Section 4 highlights combinatorial problems that may be used for model-
ing variants of the TTDP and surveys algorithmic approaches dealing with such problems.
Finally, Section 5 concludes the paper providing new prospects in tourist route planning re-
search. Specifically, we discuss (i) quality improvements upon existing solution approaches,
(ii) modeling TOPTW generalizations, (iii) modeling problems relevant to TTDP and (iv)
employing parallel computing techniques to design new heuristics for the TTDP.

2 Single tour TTDP solution approaches

2.1 Orienteering Problem (OP)

The Orienteering Problem (OP) was introduced by Tsiligirides [105] named after a sport
game called orienteering. Other names used for OP are Selective Traveling Salesperson
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Problem (STSP) [74], Maximum Collection Problem (MCP) [64] and Bank Robber Problem
[12]. OP can be formulated as follows: Let G = (V,E) be an edge-weighted graph with
profits (rewards or scores) on its nodes. Given a starting node s, a terminal node t and a
positive time limit (budget) B, the goal is to find a path from s to t (or tour if s = t) with
length at most B such that the total profit of the visited nodes is maximized (see Figure
3).

Figure 3: OP illustration. Circles’ radius denote nodes’ profit.

OP can be formulated as an integer programming problem as follows [109]: Let N be
the number of nodes labelled by 1, 2, . . . , N where s = 1 and t = N , pi be the profit of
visiting node i and cij be cost of traveling from i to j. For every path from 1 to N , if node
i is followed by node j we set the variable xij equal to 1 or equal to 0 otherwise. Finally, ui
denotes the place of node i in the path. With this notation we have the following relations:

max
N−1∑
i=2

N∑
j=2

pixij , (1)

s.t.
N∑
j=2

x1j =
N−1∑
i=1

xiN = 1, (2)

N−1∑
i=1

xir =
N∑
j=2

xrj ≤ 1, for all r = 2, . . . , N − 1, (3)

N−1∑
i=1

N∑
j=2

cijxij ≤ B, (4)

2 ≤ ui ≤ N, for all i = 1, 2, . . . , N, (5)
ui − uj + 1 ≤ (N − 1)(1− xij), for all i, j = 2, . . . , N, (6)
xij ∈ {0, 1}, for all i, j = 1, . . . , N. (7)

The objective function (1) is to maximize the total profit of visited nodes. Constraint (2)
ensures that the path starts at node 1 and ends at node N . Constraint (3) ensures that the
path starting at node 1 and ending at node N is connected and each node is visited at most
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once. Constraint (4) ensures that the path meets the time budget. Finally, constraints (5)
and (6) ensure that there are no closed subtours.

The most important types of OP considered so far depend on whether the graph is
undirected or directed (undirected OP or directed OP), whether the nodes have different
or the same profits (weighted OP or unweighted OP), whether there is no fixed terminal
node but only a fixed starting node called root (rooted OP) or whether there are not fixed
end points at all (unrooted OP) and their combinations. OP is harder than rooted OP,
which in turn is harder than unrooted OP, since algorithms for rooted OP can be used to
solve unrooted OP by considering each node of the graph as the root. Likewise, OP can
be used to solve rooted OP by considering as the starting node the root and each node of
the graph as the finishing node.

OP is NP-hard (e.g. see [58], [74]). Hence, exact solutions for OP are only feasible for
graphs with a small number of nodes. Some of the exact algorithms proposed for the OP
are based on branch-and-bound [74, 88] and branch-and-cut [54, 48]. There exist a number
of approximation algorithms for the above variants of OP, however, with high complexity.
Note that rooted OP is APX-hard (e.g. see [22], where it is proved that rooted OP is
NP-hard to approximate to within a factor of 1481

1480).
Some helpful remarks concerning the approximability of certain OP variants are the

following:

• In the approximation algorithms for the OP, the input graph can be restricted to
graphs having nodes with unit profit since Korula [69, Lemma 2.6] proved that an a-
approximation algorithm for OP with unit profits yields an a(1+O(1))-approximation
algorithm for weighted OP. The basic idea is to use a standard scaling technique to
adjust the weights into integers from 1 to n2, where n is the number of nodes, and
then to transform the graph to a new graph with at most n3 nodes having unit profits.
A solution with the above approximation is derived for the weighted OP by applying
an a-approximation algorithm on the newly transformed graph.

• An approach for approximating the unrooted OP in undirected graphs comes from
approximation algorithms for the k-TSP problem (find a tour of minimal length while
visiting at least k nodes). The basic idea is to break such a tour into pieces bounded
by B and then pick the one with the largest profit (for more details, see [16]).

• Usually, the approximation algorithms for OP have highest complexity in directed
graphs than in undirected graphs (e.g. see [31]).

One of the first works for approximating the rooted OP is that of Arkin et al. [12] that
gives an (2 + ε)-approximation algorithm for OP restricted to points in the 2-dimensional
plane. The fundamental idea to approximate the rooted OP in undirected graphs was
presented by Blum et al. in [21], [22]. They use, as an intermediate step, the solution of
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the min-excess (s− t) path problem (find a minimum-excess 1 path connecting fixed nodes
s and t that visits at least k nodes or collecting at least k profit). The basic idea is to guess2

the profit POPT of the optimal solution of the rooted OP and try to compute for every node
the min-excess path from the root to the node that collects at least a fixed fraction of POPT ,
until a path is found with length at most B. In this work they obtain a 4-approximation
algorithm for rooted OP in undirected graphs by using a (2 + ε)-approximation to the
min-excess (s− t) path problem. In fact, most subsequent approximation algorithms (e.g.
see [31]) use the solution of a min-excess path problem as an intermediate step.

Later, Bansal et al. [18] give a 3-approximation algorithm for OP in metric spaces.
In their approach they show that a (2 + ε)-approximation to the min-excess (s − t) path
problem can be used to obtain a 3-approximation for OP, hence, improving the previous
result by Blum et al. [21], [22].

Chen et al. [34] present a PTAS for the rooted OP in Rd, where every location has
unit profit. In order to create the PTAS, an approximation algorithm is presented for the
k−TSP in Rd based on Mitchell’s approximation algorithm for the k−TSP [81] and Arora’s
work on the same problem[13].

Chekuri and Pal [33] give an O(log n)-approximation algorithm for solving the OP in
directed graphs that runs in quasi-polynomial time. In their formulation of OP, called
submodular OP, the total profit of the nodes visited is not necessarily the sum of the profit
of each node but has the submodular property, i.e., for subsets A,B of the set of nodes the
total weight f satisfies the inequality: f(A ∪B) ≤ f(A) + f(B)− f(A ∩B).

Chekuri et al. [31] give approximation algorithms for the OP in directed and undirected
graphs. In particular, they give a (2 + ε)-approximation algorithm for the undirected OP
with running time nO(1/ε) and an O(log2OPT ) approximation algorithm for directed OP,
where OPT denotes the number of nodes in an optimal solution. They follow Blum et al.
focusing on the k-stroll problem (i.e. find a minimum length s− t path that visits at least
k nodes) and give bi-criteria approximations for k-stroll in directed and undirected graphs
with respect to the path length and the number of nodes visited.

Nagarajan and Ravi [84] give an O( log2 n
log logn)-approximation algorithm for OP in di-

rected graphs, by approximately solving a number of problems in the following order: from
minimum ratio ATSP to directed k-path problem, then to the minimum excess problem
and finally to OP in directed graphs. First, they present a polynomial time O( log2 n

log logn) bi-
criteria approximation algorithm for the directed k-TSP problem (find a minimum length
tour that contains a specified root and at least another k nodes), by using an O( log2 n

log logn)-
approximation algorithm for minimum ratio ATSP problem, due to Asadpour et al [15].
They reduce the directed k-path problem to the directed OP More specifically, they go
through from directed k-path problem to directed minimum excess problem and finally to
OP in directed graphs.

1excess of an s− t path is the difference of the path length from the shortest s− t path.
2i.e., try exhaustive search
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Table 1 summarizes the approximation algorithms for the OP in directed and undirected
graphs and their approximation ratio.

Table 1: Approximation algorithms for the OP

Reference Directed Undirected Approximation Time
OP OP Ratio

Blum et al. [21] X 4 polynomial
Bansal et al. [18] X 3 polynomial
Chekuri et al. [31] X (2 + ε) polynomial
Chekuri and Pal [33] X O(log n) quasi-polynomial
Chekuri et al. [31] X O(log2OPT ) polynomial
Nagarajan & Ravi [84] X O( log2 n

log logn) polynomial

For practical applications, many researchers propose heuristics to tackle the OP, based
on different approaches. Some representative methods are discussed in the sequel. Tsili-
girides [105] presents two algorithms for OP. A stochastic algorithm based on Monte-Carlo
techniques that constructs a large number of routes and picks the one with the maximum
profit and a deterministic heuristic algorithm, that partitions the geographic area into
concentric circles and restricts the allowed routes into the sectors defined by the circles.

In [58] a center-of-gravity heuristic for the OP is presented where the solution tour is
constructed by the cheapest insertion procedure according to a combined measure for node
selection. Golden et al. in [57] improve the center-of-gravity heuristic by rewarding nodes
associated with above-average tours while penalizing those associated with below-average
tours.

In [87] Ramesh et al. propose a four-phase heuristic. After choosing the best solution
from iterations over a set of three phases (node insertion, edge exchange and node deletion),
a fourth phase is entered, where one attempts to insert unvisited nodes into the tour.

In [116] the authors apply a neural network approach to solve the OP. They derive an
energy function and learning algorithm for a modified, continuous Hopfield neural network.

Chao et al. [28] propose a heuristic algorithm for OP that proceeds as follows. Initially,
the set of nodes is partitioned in a greedy way into paths each with length bounded by
B and the current solution is the path with the most profit. Then an iterative method
is employed. At each iteration a local search procedure is applied to improve the current
solution. However, if a better solution is not found, a solution with slightly less profit is
accepted. At the end of the iteration a perturbation move is applied, wherein a number of
nodes (that depends on the current iteration) with the smallest ratio of profit to insertion
cost are removed from the solution.

In [55] a tabu search heuristic for the unrooted OP is presented. The algorithm itera-
tively inserts clusters of nodes in the current tour or removes a chain of nodes. Compared
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to the previous approaches, this method reduces the chance to get trapped in a local op-
timum. Tests performed by the authors on randomly generated instances with up to 300
nodes show that the algorithm yields near-optimal solutions.

2.2 Orienteering Problem with Time Windows (OPTW)

In OP with Time Windows (OPTW) each node of the graph G can be visited only within
one or more specific time intervals (windows) which may be different for each node (see
Figure 4). Vansteenwegen et al. [109] argue that time windows significantly affect the
nature of OP and its respective algorithmic approaches. For instance, reducing the travel
time by reordering scheduled visits, is no longer appropriate due to the time windows.
Actually, it has been proved that OPTW is NP-hard even on the line [106].

Figure 4: OPTW illustration (dashed lines denote the sheduled route, while triangles
opening/closing times)

Righini et al. [91] give two exact dynamic programming algorithms for OPTW. The
first algorithm uses bidirectional search and the label of each node u used in the algorithm,
is a binary vector representing the nodes included in the path ending at u. In the second
method, the state space relaxation (SSR) [38] is applied, where the label is only an integer
denoting the number of visits along the path. Since in the second method a node may
be visited more than once due to the reduced information kept at each label, the authors
correct this by applying the decremental SSR (DSSR) method [90], which is an iterative
algorithm optimally solving the relaxed problem with the additional constraint that a
specific set of nodes cannot be visited more than once.

Kantor and Rosenwein [63] proposed two heuristics for solving the OPTW. The first,
the insertion heuristic, incrementally builds the solution and at each step it selects the
node with the highest ratio of profit over insertion cost as the next node to be inserted
in the path. The second heuristic, the tree heuristic, is employed when the time windows
constraints are tight and the input graph nodes are relatively few. By a depth first search
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exploration of the input graph, it maintains a number of partial solutions simultaneously
and repeatedly inserts new nodes in these partially constructed paths as long as the at-
tempted insertion satisfies the problem constraints and some heuristic criteria quantifying
the potential solution improvement yield from this insertion.

Also, a number of OPTW approximation algorithms have been proposed in the lit-
erature. Bansal et al. [18] gave an (3 log2 n)-approximation algorithm for OPTW. The
main idea is to partition the nodes into different groups according to their time windows
and in such a way that OPTW can be solved in each group ignoring time windows. The
final solution is derived by stitching the solutions of these subproblems using a dynamic
programming approach.

Chekuri and Kumar [32] gave a 5-approximation algorithm for OPTW with at most k
distinct time windows that runs in time polynomial in (n∆)k, where ∆ is the maximum
distance in the metric space and n is the number of nodes. They utilize an approximation
algorithm for the maximum coverage problem with group budget constraints3 and a 3-
approximation algorithm of Bansal et al [18] for OP.

Later, Chekuri and Pal [33] gave an O(logOPT )-approximation algorithm for rooted
OPTW in directed graphs where the total weight of the nodes visited has the submodular
property. Their approach, based on a variant of an algorithm for directed s-t connectivity
due to Savitch [92], is recursive and greedy and runs in quasi-polynomial time. An applica-
tion of this algorithm can be found in [37] where travel itineraries for a city are constructed
from information collected in the social breadcrumb Flickr about the preferences of tourists
visiting the city.

Also, Chekuri et al. [31] inspired by the technique of Bansal et al. [18] proved that
an α-approximation algorithm for OP yields an O(αmax {logOPT, logL}) approximation
algorithm for OPTW in directed (and undirected) graphs, where OPT denotes the number
of nodes in an optimal solution and L is the ratio of the longest to the shortest time window.

Finaly, Frederickson et al. [50] proposed approximation algorithms for the travelling
repairman problem (TRP) in a metric graph or a tree. TRP is a variant of OPTW, which
aims at finding a path passing through the maximum number of nodes with each node
visited within its time window. First, the algorithm trims all time windows into subwindows
with specific ends and then for the nodes of each time window, the optimum k-path from
s to t [30] is solved. Last, the solutions found for each time window are combined into a
solution to the TRP by applying a dynamic programming approach. For the case that all
time windows have equal length, it is proved that the optimal solution for the trimmed
time windows is within factor of 3 from the optimal solution before trimming. Using the
above result, the algorithm has a 3-approximation ratio with running time O(n4) when
the input graph is a tree and a (6 + ε)-approximation for a general graph with n4 · nO( 1

ε2
)

3Given an integer k and a collection of subsets, of a set S, partitioned into groups, pick k subsets of that
collection such that the cardinality of their union is maximized with the restriction that at most one set is
picked from each group.
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running time. Then, the authors generalize their method for time windows with different
lengths and they derive an O(logL)-approximation algorithm where L is the ratio of the
maximum to minimum time length of all input windows.

3 Multiple tour TTDP solution approaches

3.1 Team Orienteering Problem (TOP)

The extension of the OP to multiple tours was defined as the Team Orienteering Problem
by Chao et al. [29]. The TOP first appeared in the literature with the name Multiple Tour
Maximum Collection Problem (MTMCP) by Butt and Cavalier [25]. TOP is an extension
of OP where the goal is to find k paths (or tours) each with length bounded by B, that
have the maximum total collected profit (each non-starting, non-terminal node is visited
at most once along the k paths) (see Figure 5). TOP is NP-hard and APX-hard since OP
is a special case of TOP.

Figure 5: TOP illustration. Circles’ radius denote nodes’ profit.

TOP can be formulated as an integer programming problem as follows [109]: Further
to the notation for OP, given the integer k, let xijm be equal to 1 if node i is followed by
node j in path m or equal to 0 otherwise, yim be equal to 1 if node i is visited in path m
or equal to 0 otherwise and uim be the position of node i in path m. With this notation
we have the following relations:

max
k∑

m=1

N−1∑
i=2

piyim, (8)

s.t.
k∑

m=1

N∑
j=2

x1jm =
k∑

m=1

N−1∑
i=1

xiNm = k, (9)

k∑
m=1

yrm ≤ 1, for all r = 2, . . . , N − 1, (10)
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N−1∑
i=1

xirm =
N∑
j=2

xrjm = yrm, for all r = 2, . . . , N − 1,m = 1, . . . , k (11)

N−1∑
i=1

N∑
j=2

cijxijm ≤ B for all m = 1, . . . , k, (12)

2 ≤ uim ≤ N, for all i = 1, 2, . . . , N, m = 1, . . . , k (13)
uim − ujm + 1 ≤ (N − 1)(1− xijm), for all i, j = 2, . . . , N, m = 1, . . . , k (14)
xijm, yim ∈ {0, 1}, for all i, j = 1, . . . , N, m = 1, . . . , k (15)

The objective function (8) is to maximize the total profit of visited nodes. Constraints
(9) and (10) ensure that each of the k paths starts at node 1 and ends at node N and that
each non-starting, non-terminal node is visited at most once. Constraint (11) ensures that
each path starting at node 1 and ending at node N is connected. Constraint (12) ensures
that the path meets the time budget. Finally, constraints (13) and (14) ensure that there
are no closed subtours.

Exact algorithms for TOP are presented by Butt et al. [26] and Boussier et al. [24].
Butt et al. [26] give an algorithm that optimally solves TOP by solving the relaxation
of the problem with the column generation technique together with a branch and bound
technique for deriving increasingly better solutions. Specifically, the problem is formulated
as a set-partitioning problem and then a column generation procedure is applied. When
applying the branch and bound technique, the solution space is partitioned around a specific
node pair {u, v} with one subspace containing solutions where both u, v belong to the same
tour and the other one containing solutions where these two nodes cannot be part of the
same tour. The combination of column generation and branch-and-bound technique (also
known as branch-and-price in the literature) has also been applied in [24] for optimally
solving the TOP. The selection of the new columns to be included at each step of column
generation is reduced to solving an instance of Elementary Shortest Path Problem with
Resource Constraint by using a dynamic programming approach. Finally, in a branch and
bound phase, different branches are created according to either whether a node should be
visited or not or whether a particular edge should be included in a tour or not.

Blum et al. [22] present an approximation algorithm for variants of TOP in undirected
graphs, where the paths have a common start point and not a fixed end point or they are
mutually disjoint. Their main idea is to iteratively apply algorithms for rooted OP setting
already visited node profits to zero. For the former case, applying this procedure using an
α-approximation algorithm for rooted OP, an 1/(1− e−α) approximation ratio is obtained.
While, in the latter case where the paths are mutually disjoint, using an α-approximation
algorithm for rooted OP, an (α+ 1) approximation ratio is obtained.

In the sequel, we outline the most important heuristic approaches for TOP (see Table
2). The first heuristic algorithm (BC) for TOP was presented by Butt and Cavalier [25].
They proposed a greedy algorithm that constructs the k tours successively. Every pair of

12



nodes obtains a weight that gives an estimate of how advantageous it is to include both
nodes in the same tour. Every tour initially contains the depot and the node pair with
the greater weight. Then, at each step the node belonging to the heaviest pair of nodes
with one of these nodes already in the tour is added to tour provided that this insertion is
feasible.

Table 2: TOP Heuristic Algorithms

Reference Algorithm Technique
Butt and Cavalier [25] BC Greedy Insertions
Chao et al. [29] CGW Local Search
Tang and Miller-Hooks [102] TMH Tabu Search
Archetti et al.[10] SVN, FVN Variable Neighbourhood Search

TS Tabu search
Ke et al. [65] ASe, ADC, Ant Colony Optimization

ARC, ASi
Vansteenwegen et al. [110] GLS Guided Local Search
Vansteenwegen et al. [112] SVNS Variable Neighbourhood Search
Souffriau et al. [99] FPR, SPR GRASP with Path Relinking
Bouly et al. [23] MA Genetic Algorithm
Muthuswamy et al. [83] PSO Discrete Particle Swarm Optimization

The heuristic algorithm (CGW) for the TOP presented by Chao et al. in [29] extends
the one presented by the same authors for the OP in [28]. The main differences of the two
algorithms are two. Firstly, in TOP the current solution contains the k (instead of one)
most profitable paths. Secondly, in TOP there are two perturbation moves instead of one
that holds for OP. The first move is identical for TOP and OP. In the second move of the
TOP algorithm, a number of nodes with the lowest profit are removed from the paths of
the solution.

In [102] a tabu search heuristic (TMH) for TOP is proposed by Tang and Miller-Hooks,
comprising three basic steps: initialization, solution improvement and evaluation. TMH is
embedded within an adaptive memory procedure that alternates between small and large
neighborhood stages during the solution improvement phase. Both random and greedy
procedures for neighborhood solution generation are employed, and infeasible as well as
feasible solutions are explored in the process. The heursitic has been compared against
CGW heuristic.

Archetti et al. [10] presented three metaheuristics solving the TOP. After defining a
number of local search moves that can be applied in the solution space of the problem
at hand, they present a tabu search heursitic and two variable neighborhood search [60]
heuristics (the fast variable neighborhood search - FVN and the slow variable neighborhood
search - SVN) which iteratively apply local search moves for gradually improving the
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solution derived at each step. The authors compare their algorithms with TMH and CGW
and they show that each of the proposed heuristics improves the performance of TMH and
CGW on average. They also show that FVN represents a fair compromise between solution
quality and computational effort.

An Ant Colony Optimization-based heuristic algorithm (ACO) is proposed by Ke et al.
[65] for TOP. Specifically, an iterative procedure is followed wherein the ants generate k
feasible tours by succesively inserting promising edges from previous iterations associated
with relatively low cost and high profit in their endnodes. Four methods, i.e., the sequential
(ASe), the deterministic-concurrent (ADC), the random-concurrent (ARC) and the simul-
taneous (ASi) methods, are proposed to construct candidate solutions in the framework of
ACO. The authors compare these methods with several existing approaches. The results
obtained by ASe are as good as the results obtained by Archetti et al. [10], however they
are faster to obtain. Therefore, it appears that ASe is a very good compromise between
solution quality and computational effort.

A guided local search [115] metaheuristic algorithm (GLS) for the TOP is presented by
Vansteenwegen et al. [110]. A solution to the problem is initialized as in CGW ([29] and
a local search procedure is applied to improve it. Finally, guided local search is employed
to ameliorate the effectiveness of the local search. In [112] Vansteenwegen et al. propose a
Skewed Variable Neighbourhood Search (SVNS) framework for the TOP. The algorithms
apply a combination of intensification and diversification procedures. The diversification
procedures remove a chain of points in each path. The available budget spread over different
paths within the current solution is gathered into a single path in the new solution. The
intensification procedures try to increase the score or to decrease the travel time in a path.
The SVNS algorithm clearly outperforms the GLS algorithm.

In [97] the authors employ the Greedy Randomised Adaptive Search Procedure (GRASP)
to solve TOP. GRASP is a metaheuristic originally introduced by Feo and Resende [47].
GRASP performs a number of iterations that consist of a constructive procedure followed
by a local search approach. The constructive procedure, based on a ratio between greedi-
ness and randomness, inserts nodes one by one until all paths are full. Thus, a new initial
solution is generated during every iteration. Then, the initial solution is improved by the
local search procedure which alternates between reducing the total time of the solution
and increasing its total profit, until the solution is locally optimal. The different itera-
tions are independent and the best solution found is saved and returned as a result. In
[99] Souffriau et al. introduce a GRASP with Path Relinking metaheuristic approach for
solving the TOP. The goal of the Path Relinking extension is to avoid the independence
of the different iterations of the GRASP by adding a memory component, i.e. a pool of
elite solutions consisting of a number of best solutions. At each iteration the best solution,
considered for insertion into the pool of elite solutions, is returned by a procedure that
takes as arguments a starting solution and a guiding solution and visits the solutions on
the virtual path in the search space that connects the staring and the guiding solution.
A fast variant (FPR) and a slow variant (SPR) of the approach are tested using a large
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set of test instances from the literature. The two heuristics are compared against other
state-of-the-art approaches. The quality of the results of the slow variant is comparable to
the quality obtained by the best algorithms of Archetti et al. [10] and Ke et al. [65].

Bouly et al. [23] propose a genetic algorithm (MA) for TOP enhanced with local search
techniques. A population of chromosomes is constructed where a chromosome is a sequence
of nodes from which a solution to TOP is obtained by applying a PERT4 like technique.
A child chromosome is produced by a couple of chromosomes by applying a crossover
technique followed by a local search procedure with a certain probability. Computational
results are compared with those of different methods such as CGW, TMH, the slow VNS
algorithm (SVN), and the sequential method in the framework of ACO. It appears that
MA outperforms SVN in terms of efficiency and is quite equivalent in terms of stability
([23])

Muthuswamy et al. [83] tackle the TOP using discrete particle swarm optimization
(PSO), creating one tour at a time. At each step a population of particles is generated
such that each particle represents a feasible tour. Then, using PSO particles are heading
for more profitable solutions (tours). The whole procedure is enhanced with local search
techniques.

In the survey article of Vansteenwegen et al. [109], a summary of the performance of
the best TOP algorithms is given. The comparisons are based on 157 benchmark instances
([29]). For each algorithm, the number of times the best known solution is found, is given
together with the average gap to the best solution and the average computational time.

3.1.1 Team Orienteering Problem with Time Windows (TOPTW)

The TOP with Time Windows (TOPTW) introduced by Vansteenwegen P. [107], extends
TOP adding the constraint of limited time availability of serviced nodes (this corresponds
to the opening and closing hours of a POI). Exact solutions for TOPTW are feasible for
graphs with very restricted number of nodes (e.g. see the work by Z. Li and X. Hu [78]
which is used on networks of up to 30 nodes).

Li and Hu formulated the Team Orienteering Problem with Capacity Constraint and
Time Window (TOPCTW) [78] (an extension of TOPTW where each “customer” has a
demand and the serving vehicle has a capacity limitation) and obtained exact solutions
using an integer linear programming solver. However, this approach is inappropriate for
real-time applications.

Given the complexity of the problem, the main body of TOPTW literature exclusively
involves heuristic algorithms. Notably, existing methods are metaheuristics that involve,
(a) an insertion step (adds a visit to one of the k tours) iteratively performed until a
first feasible solution (or a set of feasible solutions) is obtained, and (b) a sort of local
search step that aims at escaping from local optima. Those two steps are repeated until a
termination criterion is met. Depending on the insertion step principle, existing methods

4program evaluation review technique
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are designated either as deterministic (those that always produce the same solution for
given problem instances) or as stochastic or probabilistic (those that involve a degree of
randomness in solutions generation). Probabilistic methods are generally shown to yield
high quality solutions (as they perform more extensive search of the solution space) at the
expense of increased execution time.

Labadi et al. [70] propose a local search heuristic algorithm for TOPTW based on a
variable neighbourhood structure. In the local search routine the algorithm tries to replace
a segment of a path with nodes not included in a path that offer more profit. For that,
an assignment problem related to the TOPTW is solved and based on that solution the
algorithm decides which arcs to insert in the path.

Lin et al. [79] propose a heuristic algorithm based on simulated annealing (SA) for
TOPTW. On each iteration a neighbouring solution is obtained from the current solution
by applying one of the moves swap, insertion or inversion, with equal probability. If the
new solution is more profitable than the current and with a probability depending on the
difference of profits of the two solutions in the opposite case, the new solution is adopted
and becomes the current one. After applying the above procedure for a certain number of
iterations the best solution found so far is further improved by applying local search.

The Iterated Local Search (ILS) heuristic proposed by Vansteenwegen et al. [111] is
the fastest known algorithm proposed for TOPTW [109]. ILS defines an “insertion” and a
“shake” step. The insertion step adds, one by one, new visits to a tour, ensuring that all
subsequent visits (those scheduled after the insertion place) remain feasible, i.e. they still
satisfy their time window constraint. For each visit i that can be inserted, the cheapest
insertion time cost is determined. For each of these visits the heuristic calculates a ratio,
which represents a measure of how profitable is to visit i versus the time delay this visit
incurs. Among them, the heuristic selects the one with the highest ratio for insertion. The
shake step is used to escape from local optima. During this step, one or more visits are
removed in each tour in search of non-included visits that may either decrease the tour
time length or increase the overall collected profit.

Overall, ILS represents a fair compromise in terms of speed versus deriving routes of
reasonable quality. However, ILS presents a number of shortcomings:

• In the insertion step, ILS may be attracted and included into the solution some high-
score nodes isolated from high-density topology areas. This may trap ILS and make
it infeasible to visit far located areas with good candidate noses due to prohibitively
large travelling time (possibly leaving considerable amount of the overall time budget
unused). For instance, in Figure 6(a), the itinerary {1, p, q, r, s, n} would yield more
profit and fully utilize the available time budget, compared to the solution {1, i, j, n}.
• During the insertion step, ILS rules out candidate nodes with high profit value as

long as they are relatively time-expensive to reach (from nodes already included in
routes). This is also the case even when whole groups of high profit nodes are located
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within a restricted area of the plane but far from the current route instance. In case
that the route instance gradually grows and converges towards the high profit nodes,
those may be no longer feasible to insert due to overall tour time constraints. For
instance, in Figure 6(b), ILS inserts i, l, j and k. Although p and q have larger
profit value, they are not selected on the first four insertion steps since they are
associated with large Shift values. On the next step, q is associated with the highest
Ratio, however its insertion violates the tour feasibility constraint; hence, it is not
performed.

• The ILS shake step examines a very narrow space of alternative solutions. For in-
stance ILS neglects swaps among visits included on the same or different itineraries
which could potentially decrease the involved tours’ length, thereby creating room
for accommodating new visits until a new local optima is reached.

(a) (b)

Figure 6: Weaknesses of ILS.

Montemanni and Gambardella proposed an ant colony system (ACS) algorithm [82]
to derive solutions for a hierarchical generalization of TOPTW, wherein more than the k
required routes are constructed. At the expense of the additional overhead, those additional
fragments are used to perform exchanges/insertions so as to improve the quality of the k
tours. The algorithm comprises two phases:

• Construction phase: Ants are sent out sequentially; when at node i, an ant chooses
probabilistically the next node j to visit (i.e. to include into the tour) based on two
factors:

– The pheromone trail τij (i.e. a measure on how good it has been in the past to
include arc (i, j) in the solution).

– The desirability nij , (a node j is more desirable when it is associated with high
profit, it is not far from i, and its time window is used in a suitable way).

• Local search: performed upon the solutions derived from construction phase, aiming
at taking them down to a local optimum.
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ACS has been shown to obtain high quality results (that is, low average gap to the
best known solution) at the expense of prolonged execution time, practically prohibitive
for online applications.

Tricoire et al. [104] deal with the Multi-Period Orienteering Problem with Multiple
Time Windows (MuPOPTW), a generalization of TOPTW, wherein each node may be
assigned more than one time window on a given day, while time windows may differ on
different days. Both mandatory and optional visits are considered. The motivation behind
this modelling is to facilitate individual route planning of field workers and sales representa-
tives. The authors developed two heuristic algorithms for the MuPOPTW: a deterministic
constructive heuristic which provides a starting solution, and a stochastic local search al-
gorithm, the Variable Neighbourhood Search (VNS), which considers random exchanges
between chains of nodes.

Vansteenwegen et al. [109] argue that a detailed comparison of TOPTW solution
approaches (i.e. ILS, ACS and the algorithm of Tricoire et al. [104]), is impossible since
the respective authors have used (slightly) different benchmark instances. Nevertheless, it
can be concluded that ILS has the advantage of being very fast, while ACS and the approach
of Tricoire et al. [104] (2010) have the advantage of obtaining high quality solutions.

Labadi et al. [71], [72] recently proposed a method that combines the greedy randomized
adaptive search procedure (GRASP) with the evolutionary local search (ELS). GRASP
generates independent solutions (using some randomized heuristic) further improved by a
local search procedure. ELS generates multiple copies of a starting solution (instead of a
single copy generated in ILS) using a random mutation (perturbation) and then applies
a local search on each copy to yield an improved solution. GRASP-ELS derives solutions
of comparable quality and significantly less computational effort to ACS. Compared to
ILS, GRASP-ELS gives better quality solutions at the expense of increased computational
effort. Table 3 summarizes the performance of GRASP-ESP, ILS and ACS presented in
[72]. This comparison is based on a number of sets of instances: sets c100, r100, rc100 and
c200, r200, rc200 designed by Solomon [95] and pr01-10, pr11-20 designed by Cordeau et al.
[40]. The table reports for each method and for different number of tours k (k = 1, ..., 4),
the average gap to the best known solution and the average computational time, over all
instance sets. It appears that GRASP-ELS derives solutions of comparable quality and
significantly less computational effort to ACS; compared to ILS, GRASP-ELS gives better
quality solutions but it needs more computational effort.

Garcia et al. introduced the Multi-Constrained Team Orienteering Problem with Time
Windows (MCTOPTW) [51]; each visit in the MCTOPTW is associated with a number
of attributes; the sum of those attributes values is bounded by a max value (e.g. the sum
of attractions entrance fee should not exceed an overall budget or the total time spent in
parks cannot exceed a given time threshold). The proposed algorithm is based on ILS [111],
incorporating two different aspects: (a) The feasibility check of visit insertions caters for
checking constraints in addition to time feasibility; (b) the ratio function determining the
candidate visit to be inserted is adapted so as to associate each attribute constraint with
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Table 3: Comparison of TOPTW Metaheuristics

# of tours k ILS GRASP-ELS ACS
Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

k=1 2.1 1.2 0.1 2.6 0.9 811.4
k=2 1.9 2.6 0.1 7.5 1.0 1812.9
k=3 1.9 3.6 0.1 8.8 0.8 1588.0
k=4 1.8 4.7 0.2 11.7 0.5 1286.9

a special weight and include the available quantity of each constraint on the route. For
instance, if the total entrance fee constraint is assigned a relatively high weight, the algo-
rithm favors insertions of visits with relatively low entrance fee, even more so if currently
selected visits sum to low overall fee (relatively to the fee threshold).

Souffriau et al. [98] studied the Multi-Constraint Team Orienteering Problem with Mul-
tiple Time Windows (MCTOPMTW), in effect an extension of MCTOPTW which allows
defining different/ multiple time windows for different days. The proposed MCTOPMTW
algorithm is based on a hybrid ILS-GRASP approach: GRASP yields an initial solution
(GRASP involves a degree of randomness in the insertion phase) and the ’shake’ routine
of ILS is used thereafter to derive an improved solution. The authors report that the
ILS-GRASP algorithm yields fairly quality solutions, while achieving computation time
suitable for online applications.

3.2 Time Dependent Team Orienteering Problem with Time Windows
(TDTOPTW)

Time-dependent route planning incorporates time dependency in calculating cost of edges,
i.e. travelling times among nodes. Time dependency is useful for modeling transfers
among nodes through multimodal public transportation. Time-dependent graphs has been
investigated in almost all variants of the orienteering problems, from the basic OP to the
TOPTW.

Time Dependent OP (TDOP) was introduced by Formin and Lingas [49]. TDOP
is MAX-SNP-hard since a special case of TDOP, time-dependent maximum scheduling
problem is MAX-SNP-hard [100]. An exact algorithm for solving TDOP is given by Li et
al [77] using a mixed integer programming model and a pre-node optimal labeling algorithm
based on the idea of dynamic programming. Moreover, Li [76] proposes an exact algorithm
for TDTOP based again on dynamic programming principles. However, both algorithms
are of exponential complexity. Fomin and Lingas [49] give a (2+ε) approximation algorithm
for rooted and unrooted TDOP (which runs in polynomial time if the ratio R between
the maximum and minimum traveling time between any two sites is constant). When
considering unrooted TDOP, its running time is O(

(
2R2(2+ε

ε )
)
!2R

2
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rooted TDOP its running time increases by the multiplicative factor O(Rnε ) (the key idea is
derived from Spieksma’s algorithm [100] for Job Interval Selection Problem, which employs
a divide-and-conquer approach). First, the problem is split in smaller ones. Exact solutions
are found to each smaller problem and later combined (stitch) to obtain an approximate
solution.

Abbaspour et al. [3] investigated a variant of Time Dependent OP with Time Windows
(TDOPTW) in urban areas, where the nodes are partitioned into the POIs (associated with
profits and time windows) and multimodal transportation stops which do not have profit.
A genetic algorithm is proposed for the problem that uses as a subroutine another genetic
algorithm for solving the shortest path problem between POIs.

TDTOPTW is the problem that better models more complicated and realistic TTDP
requirements among all problems and approaches surveyed in this article. TDTOPTW is
particulary complex as it adds time dependency of arcs to TOPTW. Zenker et al. [119]
described a tourism-inspired problem that refers to TDTOPTW and presented ROSE, a
mobile application assisting pedestrians to locate events and locations, moving through
public transport connections. ROSE incorporates three main services: recommendation,
route generation and navigation. The authors identified the route planning problem to
solve and they described it as a multiple-constrained destination recommendation with time
windows using public transportation. However, no algorithmic solution to this problem has
been proposed.

The work of Garcia et al. [51], [52] is the first to address algorithmically the TD-
TOPTW and is based on the algorithm by Vansteenwegen et al. [111] for the TOPTW.
The authors present two different approaches to solve TDTOPTW, both applied on real
urban test instances. The first approach involves a pre-calculation step, computing the
average travel times between all pairs of POIs, allowing reducing the TDTOPTW to a
regular TOPTW. A repair procedure introduces the real travel times between the POIS of
the derived TOPTW solution. In case that the TOPTW solution is infeasible (due to vio-
lating the time windows of POIs included in the solution), a number of visits are removed.
The second approach considers direct public transportations, without transfers, and as-
sumes only periodic service schedules. It modifies the insert procedure of the TOPTW
ILS heuristic [111] by introducing a few new concepts and formulas to keep the concepts
updated, and making possible the local and efficient evaluation of the possible insertion of
an extra POI. The authors propose two variants of the second approach that take transfers
into account. The fist variant is based on precalculating all required values for each pair
of POIs. To reduce the number of calculations, the notion of the “period of a transfer
connection” is used, defined as the least common multiple of the periods of all services
involved in the transfer. The second variant models transfers as direct connections. The
waiting time at the transfers is approximated by half of the period of the second service
of the transfer. The authors tested all approaches for a set of instances based on real data
for a city with around 50 POIS and with high frequency of public transportation. Based
on the results of the tests the following can be concluded:
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• The second approach (real travel time with no transfers) gives good solutions only
for cities with a small number of POI to POI connections that are unfeasible without
transfers. The approach needs low computation time (the same order of magnitude
with the TOPTW algorithm [111]).

• In the case that the average travel times are good approximations of the real travel
times, the first approach (average travel time approach) gives only slightly worse
solutions compared to the second approach and its variants (real travel time ap-
proaches). This happens only when we have high frequency of public transportation.
The computation time of the first approach is comparable with the one of the second
approach.

• Both variants of the second approach improve the results obtained by the real travel
time approach with no transfers (considering transfers widens the search space and
leads to better results [52]). The first variant, i.e. the real time approach based on
the precalculation, is not appropriate for big cities with a large number of POIS, as a
lot of memory is required to store the precalculated values and retrieving the values
is too time consuming. The second variant is less accurate than the first one but it
is more suitable for bigger cities.

4 TTDP variants

Clearly, the combinatorial problems discussed in Section 2 and Section 3 closely match the
TTDP modeling requirements. However, a large number of relevant problems investigated
in the optimization algorithms literature could also capture various aspects and model-
ing parameters of TTDP variants and closely related problems. Algorithmic approaches
to solve such problems are reviewed herein, explaining their utility in addressing TTDP
variants and closely related problem requirements.

The Travelling Salesman Problem with Profits (TSPP) is a bicriteria generalization of
TSP with two conflicting objectives. In TSPP we are given a network in which nodes are
associated with profits and links with travel costs, and the goal is to find a tour (which starts
and finishes at a specified node - the depot) over a subset of nodes such that the collected
profit is maximized while the travel cost is minimized. The problem was introduced under
the name multiobjective vending problem in [66]. In [19] the authors gave the first exact
Pareto fronts (sets of non-dominated solutions) for TSPP instances obtained from classical
TSP instances, available in the TSPLIB [89]. In [62] a hybrid meta-heuristic was presented
that yields high-quality approximations of the efficient frontier for TSPP.

There are three single-criterion variants of TSPP based on how the two objectives of
maximizing the collected profit and minimizing the travel cost are handled:

(i) The OP seeks for a tour that maximizes the total collected profit while maintaining
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the travel cost under a given value, i.e., the travel cost objective is stated as a
constraint.

(ii) The Profitable Tour Problem (PTP) introduced in [43], searches for a tour that
maximizes the collected profit minus the travel cost, i.e., the two objectives are
combined in one objective function.

(iii) The Prize Collecting TSP (PCTSP) introduced in [17] aims at finding a tour that
minimizes the travel cost, with the total tour profit being not smaller than a given
value, i.e., the profit objective is stated as a constraint.

TSP is a special case of both PTP and PCTSP and, therefore, the two problems belong
to the class of NP-hard problems. Bienstock et al. [20] developed the first approximation
algorithm for PTP with a performance guarantee bound of 5/2. This bound was improved
in [56] where a 2 − 1/(n − 1)-approximation algorithm was given, where n is the number
of nodes. Awerbuch et al. [16] gave an approximation algorithm for the PCTSP based on
an approximation algorithm for the k-minimum-spanning-tree problem ([14]). There also
exists literature on exact, heuristic and metaheuristic algorithms for PTP and PCTSP as
well as variants of these problems (see [46] for a survey).

A number of OP variants have been introduced in the literature to model TTDP variants
as well as other practical problems:

1. The Generalized Orienteering Problem (GOP), wherein each node of the network is
assigned a set of benefit values. For example, in the case of a POI, the benefit values
may be related to natural beauty, cultural interest, historical significance, educational
interest. The overall objective function may comprise any combination of the different
benefits. Nonlinear objective functions make the GOP more difficult to solve than
OP. In [116] a heuristic was designed to solve GOP using artificial neural networks,
while in [117] a straightforward genetic algorithm was given that yields comparable
results. In [94] an iterative algorithm was presented for the problem.

2. The Multi-Objective Orienteering Problem (MOOP) is the multi-objective extension
of the OP which was formulated in [93] as follows. Each node (POI) may be assigned
to different categories (e.g., culture, history, leisure, shopping) and provide different
benefits for each category. The aim of MOOP is to find all Pareto efficient solutions
without violating the maximum travel cost restriction. In [93] two metaheuristic
solution techniques for the bi-objective OP were presented. The first is an adaptation
of the Pareto Ant Colony Optimization metaheuristic developed by Doerner et al.
[44]. The second is a multi-objective extension of VNS [60].

3. The following stochastic variants of the OP have been studied in the literature:

• The Orienteering Problem with Stochastic Profits (OPSP), in which the nodes
are associated with normally distributed profits. The problem was introduced
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in [61] and aims at finding a tour that starts and finishes at the depot, visits a
subset of nodes within a time limit, and maximizes the probability of collecting
more than a prespecified target profit level. In [61] the authors present an exact
solution approach based on a parametric formulation of the problem for solving
small problem instances and a Pareto-based bi-objective genetic algorithm for
larger instances that is based on the conflict between high mean profit and low
variance in a solution.

• The Stochastic Orienteering problem (SOP), in which each node is associated
with a deterministic profit and a random service time. The visit time of a POI is
not known until the visit is completed. The problem combines aspects of both
the stochastic knapsack problem with uncertain item sizes and the OP. The
stochastic orienteering problem was introduced in [59] where an O(log logB)-
approximation algorithm was presented.

• The Orienteering Problem with Stochastic Travel and Service Times (OPSTS)
which was introduced in [27], wherein both travel and service times are stochas-
tic. If a node is visited, a reward is received, but if it is not, a penalty may
be incurred. This problem reflects the challenges of an employee of a company
who, on a given day, may have more customers to visit than he can serve. In [27]
heuristics for general problem instances and computational results for a variety
of parameter settings were given.

4. The OP with Compulsory Vertices (OPCV) discussed in [54], models the variant of
OP in which a subset of the nodes has to be visited. In TTDP modeling, these
compulsory nodes may be significant POIs that should be included in any itinerary.
Gendreau et al. ([54]) developed a branch-and-cut algorithm to solve to optimality
problem instances with up to 100 nodes, some of which are compulsory.

The Vehicle Routing Problem (VRP) can be described as the problem of designing
optimal delivery or collection routes from a depot to a number of nodes subject to certain
constraints. The most common constraints are (i) capacity constraints i.e., a demand
is attached to each node and the sum of weights loaded on any route may not exceed
the vehicle capacity, (ii) time constraints over individual routes, (iii) time windows, and
(iv) precedence relations between pairs of nodes. Although many variants of the classical
VRP have been studied based on different constraints (e.g., the Capacity-constrained VRP
(CVRP), the Time or Distance constrained VRP (DVRP), the Vehicle Routing Problem
with Time Windows (VRPTW), etc.) only a few can model tourist trip design problems.
In the sequel, we discuss two problems that can formulate useful variants of TTDP: the
DVRP and the Minimum Path Cover Problem (MPCP).

In DVRP, given a depot node r and a distance constraint D the goal is to find a min-
imum cardinality set of tours originating from r and corresponding to routes for vehicles,
that covers all the nodes in the network ([73], [75], [85]). Each tour is required to have
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length at most D. DVRP may formulate the following problem: We are given a set of
POIs and we are asked to determine the minimum number of days that will be needed to
visit all POIs without violating the constraint of the available time per day. The unrooted
version of DVRP, defined as the minimum path cover problem (MPCP) in [11], seeks for
the minimum number of paths each of length at most D, that cover all the nodes of the
network. Note that in MPCP, the paths may start and end at any two nodes. MPCP
can be reduced to DVRP by adding a depot node that is located at some large distance L
from all nodes, and setting the distance constraint to D + 2L. In [75] DVRP was studied
under the objectives of total distance and number of tours. It was shown that the optimal
solutions under both objectives are closely related, and any approximation guarantee for
one objective implies a guarantee with an additional loss of factor 2, for the other objective.
In [85] the authors presented an (O(log 1/ε), 1 + ε)-approximation algorithm: i.e., for any
ε > 0, the algorithm provides a solution violating the length bound by a 1 + ε factor, while
using at most O(log 1/ε) times the optimal number of tours. The algorithm partitions
the nodes of the network into subsets, according to their distance from the depot, and
solves the unrooted DVRP with appropriate distance bounds on each subset. To solve the
unrooted DVRP the 3−approximation algorithm for the minimum path cover problem of
Arkin et al.([11]) is employed that proceeds as follows. First, it guesses the solution value
of k and then finds k paths with total length at most 2kD that cover the nodes of the
network. Finally, it cuts the paths into smaller paths with length less than or equal to D.

The above variants of VRP assume that all nodes must be visited and there is no
profit collected when visiting a node. Archetti et al. ([10]) name the extension of TSP
with profits to multiple tours as Vehicle Routing Problem with Profits (VRPP). In VRPP
visiting the whole set of nodes is not compulsory; a profit is collected when visiting a node,
while collecting the profits is distributed over several vehicles with limited capacity. Known
variants of the VRPP is the Prize-Collecting VRP (PCVRP), the Capacitated Profitable
Tour Problem (CPTP) [8], and the VRP with profits and time deadlines (VRPP-TD). In
PCVRP the main objective is a linear combination of three objectives: minimization of
total distance traveled, minimization of vehicles used, and maximization of prizes collected
[103]. In CPTP the objective is to maximize the difference between the total collected
profit and the total travel cost [8]. In VRPP-TD, in addition to the capacity constraints,
there are node-specific temporal constraints referred to as time deadlines. The objective
function is the same with the function of CPTP [4].

The extension of the OP to multiple tours, i.e., the TOP, is a special case of VRP
with profits. Archetti et al. ([8]) introduced the Capacitated Team Orienteering Problem
(CTOP) as a TOP with an additional constraint, i.e., a nonnegative demand is associated
with each node and the total demand in each tour may not exceed the given capacity
constraint. They present exact and heuristic algorithms that are extentions of schemes for
solving the TOP. The exact algorithm is an adaptation of a branch-and-price scheme first
presented in [24], while the heuristic algorithms are based on the heursitic solutions for
TOP given in [10]. In [7] a new branch-and-price scheme is presented to solve the CTOP.
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A column-based heuristic is applied at each node of the branch-and-bound tree in order to
obtain primal bound values.

Figure 7: Variants of TTDP (solid arrows denote problem variants, while dashed arrows
denote generalizations).

In all the above cited problems (see Figure 7) the sites/customers are represented by the
nodes of a network. Also, the network nodes are associated with profits and/or demands.
There is a limited literature on arc routing problems with profits i.e., problems in which
the sites/customers are represented by the arcs of a network and the profits/demands are
associated with the arcs. One such problem is the Prize-collecting Rural Postman Problem
(PRPP) defined in [6]. In PRPP the arcs are associated with profits and costs, and the
objective is to find a tour that maximizes the difference between the collected profit and the
travel cost. Note that PRPP is the arc routing counterpart of the profitable tour problem
(PTP). Problems related to post delivery and garbage collection can be modelled using
PRPP, which has been studied from the algorithmic point of view in [45] and in [5].

In [9] the undirected Capacitated Arc Routing Problem with Profits(CARPP) was
considered which is the arc routing counetrpart of the capacitated TOP (CTOP): a profit
and a nonnegative demand is associated with each arc and the objective is to determine
a path for each available vehicle in order to maximize the total collected profit, without
violating the capacity and time limit constraints of each vehicle. The authors consider
an application where carriers can select potential customers for transporting their goods.
Another potential application is the creation of personalized bicycle trips. Based on the
biker’s personal interests, starting and ending point and the available time, a personalized
trip can be composed using the selection of arcs that better match with the cyclist’s profile.

The study of the combination of the orienteering problem and the arc routing problem
with profits, under the name Mixed Orienteering Problem (MOP), where profits are asso-
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ciated to nodes as well as to arcs, is proposed in [109]. This problem is very interesting in
the context of tourist trip planning as variants of MOP can be used to formulate TDDP
variants where certain routes may be of tourist interest, in addition to attractions. To the
best of our knowledge, no research has been done on MOP.

5 New prospects in tourist route planning problems

5.1 Quality improvement upon existing solution approaches

Evidently, extensions of the elementary OP problem (such as the TOPTW and the TD-
TOPTW), which strongly resemble TTDP modeling, are particularly complex; hence, even
heuristic approaches that derive high quality approaches (e.g. the algorithms that deal
with TOPTW [72], [82], [104]) cannot meet the real-time execution requirement of TTDP
web/mobile applications. Notably, ILS [29 ] and the algorithm of Garcia et al. [52] (pro-
posed for TOPTW and TDTOPTW, respectively) significantly reduce execution time.
However, it appears that several promising new directions exist to further improve the
quality of solutions derived by those algorithms.

For instance, the insertion phase of ILS overlooks attractive candidate nodes (i.e. POIs
associated with relatively high profit) located far from currently selected nodes, as the
insertion of such nodes would considerably increase route travel time. This is also the case
when considering larger groups of nearby attractive candidate nodes located far from the
current solution’s nodes. In such scenarios, the increased travel cost of visiting the first
node would be soon compensated by successive visits to other nearby interesting sites;
yet, deterministic approaches like ILS will fail to incorporate such groups of nodes into
derived solutions as they examine candidate nodes individually. In fact, realistic TTDP
problem instances are likely to match such high-profit node distribution patterns. Namely,
city tourist attraction maps typically include distinct areas (possibly far located from each
other or from tourist hotels) with high density of must-see POIs.

A way around this problem would be the identification of node clusters located in
close proximity with relatively high average profit, prior to executing the insertion phase.
Several cluster analysis algorithms such as the k-means or the fuzzy c-means clustering
[118] could serve for partitioning available nodes into separate groups (clusters). Certainly,
the clustering criteria could be adjusted to incorporate several attributes (in addition to
distance), such as the feasibility of successive visits to cluster nodes with respect to their
time windows. Thereafter, several alternative insertion criteria could be examined to bias
solutions including such node clusters. It is noted that the clustering procedure could be
performed offline to save online queries execution time.

Another characteristic of TTDP overlooked by TOPTW algorithms is the fact that,
typically, POIs time windows largely overlap. This fact could be utilized to effectively
reduce TOPTW to TOP and thereafter apply perturbations typically used in TOP algo-
rithms (such as 2-opt exchanges) to further improve derived solutions.
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5.2 Modeling and solving TOPTW generalizations

The state-of-the-art relevant to the OP and VRP families of problems presented in previous
sections, reveals that little has been done in regards with tourist trip design problems that
have more complicated requirements and constraints, e.g. allowing modeling multiple user
constraints and transfers through public transportation. This highlights a promising field
of research which calls for modeling and solving extensions of TOPTW and TDTOPTW
that take into account realistic TTDP issues or constraints like the following:

• Weather conditions: museums may be more appropriate to visit than open-air sites
in rainy or relatively cold days, while the contrary may be true in sunny days; hence,
route planning could take into account weather forecast information in recommending
daily itineraries.

• Accessibility features of sites should be taken into account when recommending visits
to individuals with motor disabilities.

• Tourists are commonly under inflexible budget restrictions when considering accom-
modation, meals, means of transport or visits to POIs with entrance fees. Hence,
next to the time budget, money budget further constrains the selection of POI visits.

• Recommended tourist routes that exclusively comprise POI visits and last longer than
a few hours are unlikely to be followed closely. Tourists typically enjoy relaxing and
breaks as much as they enjoy visits to POIs. A realistic route should therefore provide
for breaks either for resting (e.g. at a nearby park) or for a coffee and meal. Coffee
and meal breaks are typically specific in number, while respective recommendations
may be subject to strict time window (e.g. meal should be scheduled around noon)
and budget constraints.

• The assumption of POIs having periodic time windows is invalid. POIs typically
operate at specific days weekly, possibly with varying opening and closing hours.
Hence, TTDP modelling should take into account multiple time windows.

• Max-n Type [96] constrains the selection of POIs by allowing stating a maximum
number of certain types of POIs, per day or for the whole trip. e.g. maximum two
museum visits on the first day. Likewise, mandatory visits (i.e. tours including at
least one visit to a POI of certain type, such as a visit to a church) could also be
asked for.

• Tourists commonly prefer strolling downtown rather than visiting museums. In such
cases, tourists may prefer to walk along routes featuring buildings and squares with
historical value or routes with scenic beauty. Such routes are likely to be preferred also
when moving among POIs, e.g. a detour through a car-free street along a medieval
castle walls would be more appreciated than following a shortest path though streets
with car traffic.
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5.3 Modeling and solving relevant problems

Modeling and solving of problems relevant to TTDP represents another promising research
direction. For instance, hotel selection is often a cumbersome task for tourists unfamiliar
with hotels and POI locations or with the structure of the public transportation network in
the tourist destination area. This is even more true when planning long road trips across
large geographic areas (in such scenarios, changing accommodation in daily basis is com-
mon) [108]. Several criteria could apply in hotel recommendation, including cost, amenities
or cost-for-profit (i.e. select an affordable hotel suitably located so as to maximize the over-
all profit collected from POI visits throughout the whole trip). Restaurants selection is
equally important as meal/dinner breaks are mandatory, while constrained by several -
often contradictory - user preferences (e.g. budget, diet preferences, favorite cuisine) and
restaurant characteristics (e.g. menu, price list, opening hours).

Another example is the problem of determining the minimum number of days that
one needs to visit all selected POIs without violating the constraint of the available time
per day. This problem may be formulated using the distance constrained vehicle problem
(DVRP) described in Section 4. Other interesting variants of TTDP may be formulated
using the mixed orienteering problem, also discussed in Section 4.

5.4 Fast tourist routes updates

Existing TTDP solutions deal with tourist queries for multiple days’ route planning, con-
sidering routes with the same starting/ending location. However, there is no provision
for user deviations from the originally planned routes, although such deviations are highly
probable to occur.

Dynamic rescheduling functionality should detect route invalidation (infeasibility) and
present a new route schedule in real time. This should exclude POIs already visited and
recommend a tour for the remainder of the current day (starting from the user’s current
position) as well as the next days of stay at the destination.

5.5 Parallel computation

One of the most important objectives in the design of algorithmic methods for the TTDP
is the real time response to user queries. Parallel computing is a promising approach
for attaining this important objective. Considering all the solution methods for TTDP,
heuristics and metaheuristics are most amenable to parallel computation since the huge
solution space arising in this kind of problems enables a lot of variation in parallelizing
solution searching. Specifically, according to [42] one could parallelize the local search for
good neighboring solutions or partition the solution space in number of subspaces and
run a heuristic in each of these subspaces, in parallel. Alternatively, a number of search
threads could be created working on the same solution space, starting from different or the
same initial solution and applying same or different heuristics. These threads could work
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independently or could cooperate periodically exchanging information about their progress
and the good solutions they have found so far. An interesting aspect of these approaches
is that they may as well provide new heuristic solutions with improved solution quality
since they can search the solution space and combine solutions in such a way that it is
very costly to simulate with a sequential implementation. Although, parallel heuristics has
been proposed in the literature for the VRP and TSP [35], [39], [41], [86], [101] parallel
solutions for TTDP are missing and the design of new parallel heuristics for TTDP may
solve the problem of the fast derivation of the tourist itineraries.
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