
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 007

On the Complexity of Partitioning Graphs
for Arc-Flags

Reinhard Bauer, Moritz Baum, Ignaz Rutter, and Dorothea Wagner

September 2012

On the Complexity of Partitioning Graphs for
Arc-Flags∗

Reinhard Bauer, Moritz Baum, Ignaz Rutter, and
Dorothea Wagner

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
firstname.lastname@kit.edu

Abstract
Precomputation of auxiliary data in an additional off-line step is a common approach towards
improving the performance of shortest-path queries in large-scale networks. One such technique
is the arc-flags algorithm, where the preprocessing involves computing a partition of the input
graph. The quality of this partition significantly affects the speed-up observed in the query
phase. It is evaluated by considering the search-space size of subsequent shortest-path queries, in
particular its maximum or its average over all queries. In this paper, we substantially strengthen
existing hardness results of Bauer et al. and show that optimally filling this degree of freedom
is NP-hard for trees with unit-length edges, even if we bound the height or the degree. On
the other hand, we show that optimal partitions for paths can be computed efficiently and give
approximation algorithms for cycles and trees.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases shortest paths, arc-flags, search space, preprocessing, complexity

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.71

1 Introduction

In recent years, route planning has become a widely known application of algorithm engineer-
ing. Although Dijkstra’s algorithm [6] is of polynomial-time complexity on arbitrary graphs,
its performance on large realistic graphs is not acceptable for practical applications. Speed-up
techniques that yield improved query times split the work into two parts. In the off-line phase
a precomputation step is executed on the input graph to gain additional information about
the underlying network. The retrieved data is then used during the on-line phase to improve
the performance of shortest-path queries. For a survey of recent approaches exploiting this
pattern we refer to Delling et al. [5]. Here, we focus on one particular technique. The idea of
arc-flags was first introduced by Lauther [9]. The basic approach was exhaustively evaluated
in experimental studies, see for example Köhler et al. [8] and Möhring et al. [11]. Moreover,
it was combined with other techniques in order to gain additional speed-up [2, 3].

We use the following definition of arc-flags. Given a directed graph G = (V,E) and a
partition C = {C1, . . . , Ck} of V into cells, the arc-flags for a directed edge e ∈ E consist of k
binary flags, where the i-th flag is set if and only if e is part of some shortest path to a target
node belonging to the cell Ci. In a query to a node t lying in cell Cj , all edges whose j-th
flag is not set may safely be ignored, as no shortest path to any node in cell Cj contains e.

∗ Partially supported by DFG grant WA 654/16-2, by BMWi grant iZeus, and by the EU FP7/2007-2013
(DG INFSO.G4-ICT for Transport), under grant agreement no. 288094 (project eCOMPASS).

© Reinhard Bauer, Moritz Baum, Ignaz Rutter, and Dorothea Wagner;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 71–82

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

72 On the Complexity of Partitioning Graphs for Arc-Flags

Table 1 Complexity of the two examined problems on different graph classes.

Worst Case Average Case
Graph Class directed undirected directed undirected

Paths O(|V |) O(|V |) O(|V |) O(|V |)
Cycles O(|V |) OPT + 1 O(|V |) P 1

Trees (h ≤ 2) NPC NPC NPC NPC
Trees (∆ ≤ 3) NPC NPC ? ?

The preprocessing of the arc-flags algorithm computes a partition C of the input graph into k
cells and detects the corresponding arc-flags. Observe that the flags are uniquely specified by
the partition. In particular, the i-th flag of an edge only depends on the nodes contained in
cell Ci. Thus, the only degree of freedom in the preprocessing is the choice of C.

Although the outstanding performance of the arc-flags algorithm has been substantiated in
many experimental studies, little is known about its theoretical backgrounds. Yet, theoretical
analysis is a vital aspect of algorithm engineering. The choice of the partition C has a large
impact on query times in the on-line phase. Bauer et al. prove that it is is NP-hard to
compute a partition that minimizes the average search-space size (sss) of on-line queries [1].
However, the graph used in their reduction has a number of properties unlikely to be shared
by realistic instances.

1. The graph includes a huge cycle that is an inherent part of the reduction. Since the graph
is not acyclic, it does not apply to time-expanded graphs typically used in time-table
queries [12].

2. The graph contains substantially differing edge weights.
3. The graph is not strongly connected, and for undirected graphs the complexity is still

open.
4. The graph is unusually dense; it contains a quadratic number of edges.

Contributions and Outline. We substantially strengthen known results about the complex-
ity of preprocessing arc-flags. We examine several restricted classes of graphs and establish a
border of tractability for this problem. Besides the previously used average sss as a quality
measure we also consider the worst-case sss for assessing the quality of partitions. Moreover,
we consider directed as well as undirected graphs.

We present preliminaries in Section 2. In Section 3, we show that computing a partition
that minimizes the worst-case sss is NP-hard, both for directed and for undirected unit-
weight trees. These results hold for binary trees as well as trees with limited height of at
most 2. On the other hand, we present an approximation algorithm for general trees with
arbitrary edge weights. For cycles the number of cells k necessary to bound the sss by a
given value W can be approximated within an additive constant of 1. For the average sss, we
show that it is NP-hard to compute an optimal partition both for directed and undirected
trees in Section 4. These results hold for the case of unit-weight edges and restricted height.
For paths an optimal partition can be computed efficiently, and the same holds for cycles if
we force cells to be connected. Table 1 shows an overview of our results. We conclude our
work and discuss open questions in Section 5.

1 We present a polynomial-time algorithm that computes optimal connected cells.

R. Bauer, M. Baum, I. Rutter, and D. Wagner 73

2 Preliminaries

We assume familiarity with basic concepts from graph theory and shortest-path search; see
the book by Cormen et al. [4] for foundations in this area. We consider directed weighted
graphs, denoted by a triple G = (V,E, ω), where ω is a weight function. Our treatment
of undirected graphs is somewhat non-standard, as depending on the direction of traversal,
an undirected edge may have different arc-flags set. Thus, we model undirected edges as a
pair of two separate, oppositely oriented edges of the same weight between the endpoints.
The size of a path P = 〈v1, . . . , vk〉 is the number k of nodes it contains. The length of P
is ω(P) =

∑k−1
i=1 ω(vi, vi+1) and the distance between two nodes s and t is denoted by d(s, t).

We say that a cell C ⊆ V is (strongly) connected if the subgraph induced by C is (strongly)
connected. A directed tree with root node r is a tree in which all edges point away from r

towards the leaves.

Dijkstra’s Algorithm, Arc-Flags, and Search Spaces. Dijkstra’s algorithm [6] solves the
single-source shortest path problem on directed graphs with non-negative edge weights. It
manages a priority queue, which initially contains only the source node. In each step, it
extracts the node u from the queue with smallest distance label. We say that the node u
is settled at this time. We assume that each node has a unique index in {1, . . . , |V |} that
determines the extracted node if there are two or more nodes with minimum key. Next, any
edge (u, v) outgoing from u is relaxed, that is, the distance label of v is updated if this edge
yields a shorter path from the source node to v via u. In an s-t-query, the algorithm may
stop once the target node t is settled (at this point the correct distance as well as a shortest
path is known). The query of the arc-flags algorithm modifies this procedure slightly; it
relaxes only edges whose flag for the target cell is set, while all other edges are ignored.

Given a graph G and a partition C, the search space of an s-t-query is the set of all nodes
settled by the query algorithm and its cardinality is denoted by S(G, C, s, t). As long as
the considered graph is sparse (which holds for realistic instances of street networks), the
query time is proportional to S(G, C, s, t). Therefore, the sss provides a machine-independent
efficiency measure which is also commonly used in experimental studies (see, e.g., Delling et
al. [5]). To assess the quality of C we use either the worst-case efficiency, i.e., Smax(G, C) :=
maxs,t∈V S(G, C, s, t) or the average sss over all queries Savg(G, C) :=

∑
s,t∈V S(G, C, s, t).

To obtain the actual average sss we would need to divide Savg(G, C) by |V |2. Since the
corresponding measure only differs by the fixed factor |V |2, we omit this. If G and C are
clear from the context, we may omit both from the notation.

Algorithmic Problems. All reductions in this work are made from the strongly NP-hard
problem 3-Partition [7]. An instance of 3-Partition is a tuple (S,B), where B is a
positive integer and S = {s1, . . . , s3m} is a set of 3m elements, such that each element si

is associated with a weight B/4 < ωi < B/2 and
∑3m

i=1 ωi = mB. The instance (S,B) is a
Yes-instance if and only if there exists a partition of S into m subsets Sj , j ∈ {1, . . . ,m},
such that for all j it is |Sj | = 3 and the weight of each subset equals B, i.e.,

∑
si∈Sj

ωi = B.
Since the problem is strongly NP-hard, we may use unary encodings of the element weights
in our reductions. The task considered in this work is to find a partition of a graph that
yields low sss. More precisely, given a graph G and a positive integer k, the problems
MinWorstCasePartition and MinAvgCasePartition are to find a partition C with at
most k cells that minimizes Smax or Savg, respectively.

ATMOS’12

74 On the Complexity of Partitioning Graphs for Arc-Flags

3 Minimizing the Worst-Case Search-Space Size

In the following, we examine the problem MinWorstCasePartition on certain restricted
classes of graphs. We present efficient (approximation) algorithms for paths and cycles and
show NP-hardness for directed and undirected trees.

3.1 Paths and Cycles
Observe that on a path, the worst-case sss always occurs in a query between its endpoints,
regardless of the underlying partition. Hence, the worst-case sss is always |V |. A similar
argument holds for directed cycles.

To examine undirected cycles, we consider the following problem that is strongly related to
MinWorstCasePartition. We are given as input an undirected cycle G = (V,E, ω) and a
desired worst-case sss W , and the task is to compute a partition of minimum cardinality such
that the induced worst-case sss is at most W . Observe that solving this problem efficiently
immediately yields a polynomial-time algorithm for MinWorstCasePartition, as we can
use binary search to obtain the minimum bound W that allows a partition with at most k
cells. In what follows, let kopt(G,W) denote the minimum number of cells that is necessary
to achieve a worst-case sss of at most W on G. Clearly, the shortest path of maximum size
yields a lower bound L on the worst-case sss. For W ≥ L, we approximate kopt(G,W).

I Theorem 1. Given an undirected cycle G and a positive integer W ≥ L, a partition C
with kopt(G,W) + 1 cells and Smax(G, C) ≤W can be computed in polynomial time.

Proof. For simplicity, assume that all shortest paths in G = (V,E, ω) are unique. Consider
the shortest-path tree Ts rooted at an arbitrary node s. Since G is a cycle, there is exactly
one undirected edge es that is not in Ts, called the cut edge of s. We assign to each node t
the sss of a Dijkstra search from s to t. Note that each target node t gets a distinct number
in {1, . . . , |V |}, its Dijkstra rank with respect to s. Obviously, nodes on the two branches
of Ts originating at s have ascending ranks. Consider a pair s and t of nodes such that the
Dijkstra rank of t with respect to s is in {W + 1, . . . , |V |} and let Ct be the cell containing t.
Recall that the nodes assigned to Ct completely determine the sss of all arc-flags queries to t.
To make sure that the sss of an s-t-query is at most W , we have to ensure that the arc-flags
query prunes the search at the branch of Ts that does not contain t. This is achieved by
assigning nodes that cause a large sss to cells distinct from Ct. More precisely, we determine
the set Xt of nodes such that maxs∈V S(s, t) ≤W if and only if Ct ∩Xt = ∅.

Assume we traverse the cycle starting at t in both directions. Let eu and ev be the
first edges in the respective direction that are cut edges for some nodes u, v ∈ V . Consider
the backward shortest-path tree of t, i.e., the shortest-path tree of t obtained if edges are
traversed in reverse direction. Edges in this tree have the flag for Ct set. If we omit edge
directions, this tree coincides with Tt. Let et be its cut edge. Removing eu, ev, and et from
G yields three connected components Gu,v, Gu,t and Gv,t with t in V (Gu,v), see Figure 1.

I Claim 1. The set Xt is determined as follows.
(1) V (Gu,t) ⊆ Xt if S(s, t) > W for a node s ∈ V (Gv,t), and V (Gu,t) ∩Xt = ∅ otherwise.
(2) V (Gv,t) ⊆ Xt if S(s, t) > W for a node s ∈ V (Gu,t), and V (Gv,t) ∩Xt = ∅ otherwise.
(3) V (Gu,v) ∩Xt = ∅.

Next, consider the sets Ut = {w ∈ V (Gu,v) | Xw ⊇ V (Gv,t)} and U ′t = {w ∈ Gu,v | Xw ⊇
V (Gu,t)} of nodes in Gu,v whose sets Xw share a subgraph of G.

R. Bauer, M. Baum, I. Rutter, and D. Wagner 75

Gv,t

Gu,t

Gu,v ev

t

eu

et

Figure 1 The three subgraphs Gu,v, Gu,t, and Gv,t with respect to a certain node t.

I Claim 2. If Ut 6= ∅, it contains an endpoint of ev. If U ′t 6= ∅, it contains an endpoint of eu.
Both Ut and U ′t induce connected subgraphs of G.

We omit the proofs of both claims. Because all nodes in Ut lie between two consecutive
cut edges, it follows from Claim 1 that it is either Ut ⊆ Xw or Ut ∩Xw = ∅ for all nodes w
of the graph. Thus, restricting to partitions where all nodes in the set Ut are assigned to the
same cell neither causes the sss to exceed W nor does it increase the number of necessary
cells. The same holds for the set U ′t .

Summarizing the sets of nodes t, t′ where Ut = Ut′ or Ut = U ′t , we obtain a number of
distinct connected subsets Ui ⊆ V (connectivity holds by Claim 2). Each set Ui corresponds
to a set Xi 6= ∅, such that nodes in Xi must not be assigned to the cell that contains Ui. It
is easy to see that at most two sets Ui, Uj with Xi, Xj 6= ∅ can be put into the same cell
(roughly speaking, this is due to the fact that each set Xi blocks one of two branches of
a corresponding shortest-path tree). We can find a minimum number of cells for the sets
Ui if we find a maximum matching of them, where two sets Ui and Uj can be matched if
and only if Ui ∩Xj = Uj ∩Xi = ∅. This can be done in polynomial time [10] and yields a
lower bound k ≤ kopt(G,W) on the necessary number of cells. Finally, we have to assign
all remaining nodes u with Xu = ∅. A sophisticated matching may possibly allow for an
exhaustive assignment of these nodes to cells that are already used. However, this appears
to be difficult to guarantee in general. Instead, we use an extra cell and assign all nodes
u with Xu = ∅ to this cell, and therefore we use at most one more cell than necessary. In
summary, given a bound W on the worst-case sss we can compute a partition that needs at
most k + 1 ≤ kopt(G,W) + 1 cells. J

3.2 Hardness Results for Trees
We prove hardness on trees with uniform edge weights and height 2 in Theorem 2 given
below. Hence, the problem MinWorstCasePartition remains NP-hard even with severe
restrictions to the graph structure.

I Theorem 2. The problem MinWorstCasePartition is NP-hard for rooted directed
trees of height at most 2, even in the case of uniform edge weights.

Proof. We reduce from 3-Partition. Given an instance (S,B) of 3-Partition, we construct
(in polynomial time) an instance (T,m) of MinWorstCasePartition as follows. For each
element sp ∈ S, we create a limb `p consisting of one element node sp, ωp − 1 weight nodes,
and directed edges from sp to all its weight nodes. We add a root node r along with directed
edges connecting r to all element nodes sp; see Figure 2 for an example. We claim that (T,m)
admits a partition with worst-case sss at most B + 1 if and only if (S,B) is a Yes-instance.

ATMOS’12

76 On the Complexity of Partitioning Graphs for Arc-Flags

r
s1

Figure 2 The reduction of an instance with m = 2, B = 11 and weights 3, 3, 3, 4, 4, 5.

Assume (S,B) is a Yes-instance and S1, . . . , Sm a corresponding solution. Let C =
{C1, . . . , Cm} be the partition where Ci consists of all nodes of limbs corresponding to
elements of Si, and additionally r ∈ C1. We have |C1| = B + 1 and |Ci| = B for i ≥ 2. The
sss S(s, t) of an arbitrary s-t-query with s 6= r is bounded by dB/2− 1e, the maximum size
of a limb. Consider queries starting at r. Clearly, a query to an arbitrary target node t never
settles nodes outside the cell of t except for r itself. Hence, for queries into any cell Ci, i ≥ 2,
the sss cannot exceed B + 1, and the same holds for C1, as it already contains r.

Conversely, assume that C = {C1, . . . , Cm} is a partition of T inducing a worst-case
sss of at most B + 1. Without loss of generality, assume that r ∈ C1. We call C balanced
if |C1| = B + 1 and |Ci| = B for i ≥ 2. A limb `j is monochromatic if all its nodes belong to
the same cell. A balanced partition containing only monochromatic limbs is called perfect.
Clearly, a perfect partition corresponds to a solution of 3-Partition and it suffices to show
that C is perfect.

Observe that each cell Ci contains a distinct target node ti such that all nodes of Ci are
settled in an r-ti-query (because the order in which nodes are settled from a fixed source
node is deterministic). Together with the fact that r is settled in every such query, this
implies that |C1| ≤ B+ 1 and |Ci| ≤ B for i ≥ 2. Since the total number of nodes is mB+ 1,
these conditions must be satisfied with equality, and thus C is balanced. Now, assume for a
contradiction that there is a limb `p that is not monochromatic, and let sp be the element
node of `p. Then there exists a weight node of `p that is assigned to a cell Ci different from
the cell of sp. Now, the query from r to ti ∈ Ci settles r, all nodes in Ci and additionally sp,
resulting in a sss of at least B + 2; a contradiction. Hence, all limbs are monochromatic and
the claim follows. J

Modifying the reduction used in Theorem 2, we can also prove hardness if we limit the
maximum outdegree of a tree to a constant greater or equal 2.

I Theorem 3. MinWorstCasePartition is NP-hard for rooted directed trees with a
maximum outdegree of at most 2, even in case of uniform edge weights.

Moreover, we consider undirected trees. Using a very similar reduction compared to the
proof of Theorem 2, we obtain the following result.

I Theorem 4. MinWorstCasePartition is NP-hard for undirected trees with height at
most 2, even in case of uniform edge weights.

Again, this proof carries over to the case where the degree is restricted to 3. Note that a
maximum outdegree of 2 leads to the trivial graph class of paths.

I Theorem 5. MinWorstCasePartition is NP-hard for undirected trees with a maximum
degree of at most 3, even in case of uniform edge weights.

Restricting both the degree and the height of the tree restricts its size, and thus renders
the problem MinWorstCasePartition efficiently solvable. Essentially, the remaining class

R. Bauer, M. Baum, I. Rutter, and D. Wagner 77

of trees that we have not covered so far is the class of stars (i.e., trees with height at most 1).
Considering a directed star, the sss of a query starting at an arbitrary leaf is 1. On an
undirected star, starting from a leaf, the second node that is settled is always the root node.
Hence, in both cases it suffices to minimize the worst-case sss of queries from the root node.
Clearly, this is achieved if the cell sizes are balanced. In total, we obtain a tight border of
tractability for the problem MinWorstCasePartition.

3.3 An Approximation Algorithm for Trees
We present an algorithm that approximates the optimal worst-case sss with a given number of
cells within a factor of 5/2 and 3 for undirected and directed trees, respectively. The essential
task concerning the instances constructed in the proof of Theorem 2 is to find balanced cells
that are almost connected. We exploit this observation to derive an approximation algorithm.
We say that a cell C of a partition C given a graph T = (V,E, ω) is 1-disconnected if there is
a node v ∈ V such that C ∪ {v} induces a connected subgraph of T .

We describe the algorithm TreeApprox that, given an undirected tree T (if T is directed,
we simply ignore edge directions) and a parameter k, computes at most k 1-disconnected cells
of size at most 2d|V |/ke. Starting from the leaves of the tree, we traverse it in a bottom-up
fashion and keep track of the size of the subtree induced by each node. Once a node v
is reached whose subtree contains at least sv ≥ d|V |/ke nodes, we assign all nodes in this
subtree including v to c = max{a ∈ N | a · d|V |/ke ≤ sv} newly introduced cells. For each
descendant w of v, we add the subtree rooted at w to one of the c new cells such that the
cell size does not exceed 2d|V |/ke. The subtree rooted at v is removed and the algorithm
continues recursively until T contains less than d|V |/ke nodes. All remaining nodes are put
into a final new cell, which is added to C as well. The partition C generated by the algorithm
fulfills the following desired conditions.

I Lemma 6. Given input parameters T = (V,E, ω) and k, the algorithm TreeApprox
terminates and computes a partition C = {C1, . . . , Ck′} satisfying the following properties.
(a) All cells Ci ∈ C are 1-disconnected.
(b) For all Ci ∈ C it is |Ci| ≤ 2d|V |/ke.
(c) The number of cells k′ in the computed partition C is at most k.

We prove approximation guarantees for the algorithm TreeApprox. Theorem 7 provides
a first bound, which can be improved for undirected trees.

I Theorem 7. Algorithm TreeApprox is a 3-approximation for MinWorstCaseParti-
tion on directed and undirected trees.

Proof. Let C = {C1, . . . , Ck′} be the output of algorithm TreeApprox given the input
parameters T = (V,E, ω) and k. Let ALG denote the worst-case sss induced by C and OPT
the optimal worst-case sss for T and k. Since all cells in C are 1-disconnected, after entering
the target cell, a query settles at most one more node outside this cell. Moreover, only
edges pointing towards the target cell have the corresponding flag set. Hence, a worst-case
query into a given cell Ci settles at most all nodes in Ci plus an additional node, and the
largest possible path outside Ci leading into this cell. Let Ps,t denote the unique s-t-path for
any s, t ∈ V and let ∆ = maxs,t∈V |Ps,t| be the diameter of T . Clearly, the worst-case sss
is bounded by ALG ≤ max1≤i≤k′{∆ + |Ci|} ≤ ∆ + 2d|V |/ke ≤ 3 ·max{∆, d|V |/ke} (note
that the longest path of size ∆ is at least as large as the longest path outside Ci plus the
additional node possibly settled). On the other hand, an optimal partition contains at least
one cell of size at least d|V |/ke and there is a query that settles all nodes of this cell. Since

ATMOS’12

78 On the Complexity of Partitioning Graphs for Arc-Flags

the diameter is a lower bound on the worst-case sss, the optimal solution for T must be
OPT ≥ max{∆, d|V |/ke} (this holds for directed trees as well, since there must exist a root
node from which all nodes are reachable). It follows immediately that ALG ≤ 3 ·OPT. J

A more sophisticated analysis leads to an improvement of the lower bound on the optimal
solution for undirected trees and yields the following guarantee.

I Theorem 8. Algorithm TreeApprox is a 5/2-approximation for MinWorstCasePar-
tition on undirected trees.

4 Minimizing the Average Search-Space Size

Since MinAvgCasePartition is NP-hard in general [1], we investigate restricted input
instances. Along the lines of Section 3, we examine paths, cycles, stars, and trees.

4.1 Paths and Cycles
First, we consider paths. Given a graph consisting of a single undirected path P and a
parameter k, let the partition Copt consist of k connected cells C1, . . . , Ck of balanced size,
i.e., |Ci| ∈ {b|V |/kc , d|V |/ke} for all 1 ≤ i ≤ k.

I Theorem 9. Let P be an undirected path and k a positive integer. The partition Copt
described above yields an optimal partition if k bounds the number of cells.

The following Theorem 10 shows that the partition Copt optimizes the average sss on
directed paths as well. The proof is very similar to the undirected case.

I Theorem 10. Let P be a directed path and k a positive integer. The partition Copt described
above yields an optimal partition if k bounds the number of cells.

Observe that the sss of queries in a directed cycle is independent of the underlying
partition, rendering the problem trivial for these graphs. On the other hand, we have seen
in Section 3.1 that finding optimal cells on undirected cycles is nontrivial for worst-case
optimization. Since the average-case minimization seems more difficult in general, we make
the following simplification. We present an algorithm that computes optimal connected cells
for cycles. Note that in general, an optimal partition may require disconnected cells, as
shown in Figure 3. Here, x is a large number while all other edge weights are 1. It can be
shown that an optimal partition with at most four cells inherently contains the disconnected
white cell. The rough idea is that making A,B, and C cells of the partition results in a
very small sss of all queries into these comparatively large cells. Since the number of cells is
bounded by four, this leaves the two remaining (disconnected) nodes for the last cell.

The algorithm is based on the following observation. After choosing an orientation of the
cycle G = (V,E, ω), a connected cell Cu,v is uniquely described by two border nodes u and v,
such that Cu,v contains all nodes encountered when traversing the cycle from u to v along
the chosen orientation, including u and v. Recall from the introduction that the flags for the
cell Cu,v only depend on Cu,v. Thus, given Cu,v, the sss SC(u, v) =

∑
s∈V,t∈Cu,v

S(s, t) of all
s-t-queries with an arbitrary source s ∈ V and a target t ∈ Cu,v can be computed efficiently.

Using this observation, we describe a dynamic programming approach to compute optimal
connected cells on undirected cycles. Let V = {v1, . . . , v|V |} be indexed along the orientation
of G and without loss of generality, we assume that v1 is the left boundary of a cell in an
optimal partition (to preserve correctness, we simply consider each node vi as the starting

R. Bauer, M. Baum, I. Rutter, and D. Wagner 79

2x

x

x x

x

CA

B

Figure 3 An example of a cycle with an optimal partition containing a disconnected cell.

point once). We define a two dimensional |V | × k-table T , where T [i, `] is the optimal sss of
all s-t-queries with s ∈ V and t ∈ {v1, . . . , vi} provided that v1, . . . , vi are partitioned into `
distinct cells. We initialize the first row by setting T [i, 1] = SC(v1, vi). Moreover, T satisfies
the following recurrence relation.

T [i, `] = min
1≤j≤i−`+1

T [i− j, `− 1] + SC(vi−j+1, vi), for i ≥ ` ≥ 2.

This follows directly from the fact that the sss of queries into the `-th cell is independent
of the choice of the first `− 1 cells. Using this recurrence, the table entries can be filled in
polynomial time. By definition, T [n, k] is the sss of an optimal partition that contains the
boundary v1. By keeping track of the boundary nodes yielding the table entries, a partition
with this sss can be computed in the same running time. We have the following theorem.

I Theorem 11. The problem MinAvgCasePartition on cycles can be solved in polynomial
time if partitions are restricted to strongly connected cells.

Clearly, replacing SC(u, v) by the corresponding worst-case sss and taking the maximum
instead of the sum in the recurrence yields an algorithm that computes connected cells with
minimum worst-case sss.

4.2 Hardness Results for Trees
We show that provided P 6= NP, there is no efficient algorithm that can guarantee to find
optimal cell assignments on undirected trees.

I Theorem 12. MinAvgCasePartition is NP-hard on undirected trees with uniform edge
weights and a maximum height of 2.

Proof. We use the reduction given in the proof of Theorem 4 to construct a tree T = (V,E, ω)
from an instance (S,B) of 3-Partition. Let the root r have the smallest index in the
ordering that is used for tie breaks in the query, that is, in any s-t-query, r is settled before
all other nodes v with distance d(s, v) = d(s, r). We establish a bound Γ such that (T,m)
admits a partition C with Savg ≤ Γ if and only if (S,B) is a Yes-instance.

Assume (S,B) is a Yes-instance and S1, . . . , Sm a corresponding solution. Consider the
partition C = {C1, . . . , Cm} where Ci contains all nodes of limbs corresponding to elements
in Si, and r ∈ C1. We have |C1| = B + 1 and |Ci| = B for i ≥ 2. We distinguish queries
starting from three different types of nodes.

For a query starting at r, we know that besides r, no nodes outside the target cell are
settled. For every cell Ci and every index 1 ≤ j ≤ |Ci|, there is a distinct node ti,j such

ATMOS’12

80 On the Complexity of Partitioning Graphs for Arc-Flags

that the query from r to ti,j settles exactly j nodes of Ci. Therefore, the total sss of queries
from r to nodes in C1 is

∑
t∈C1

S(r, t) =
∑B+1

j=1 j = (B + 1)(B + 2)/2. For Ci with i ≥ 2, we
obtain

∑
t∈Ci

S(r, t) = B + B(B + 1)/2, because r is additionally settled in each of the B
queries. This yields

γ1 :=
∑
t∈V

S(r, t) = |V |+m · B(B + 1)
2 , where |V | = mB + 1.

Next, consider queries starting at an element node sp. The node sp is settled in every
query. Since r has the least index regarding tie breaks and all flags on all incoming edges of r
are set, the second node settled, if any, is always r. Let S(u, v) denote the set of settled nodes
in an u-v-query. Clearly, we have

∑
t∈V |S(sp, t) ∩ {sp, r}| = 2 |V | − 1 and besides sp and r,

no node outside the target cell is settled in an sp-t-query. For a cell Ci ∈ C, the total number
of nodes in Ci \ {sp, r} settled in queries from sp equals |Ci \ {sp, r}|(|Ci \ {sp, r}|+ 1)/2.
Observe that we have |Ci \ {sp, r}| = B if sp /∈ Ci and |Ci \ {sp, r}| = B − 1 otherwise. For
the sss of all queries originating at sp, this yields

γ2 :=
∑
t∈V

S(sp, t) = 2|V | − 1 + (m− 1)B(B + 1)
2 + B(B − 1)

2 .

Finally, we account for queries from a leaf wp,q of the tree. We know that wp,q is
settled in all |V | distinct queries starting at wp,q. The corresponding element node sp

is the only reachable node from wp,q and is always settled unless we have s = t = wp,q.
As we observed before, the first note settled after sp (if any) is always r, leaving us with∑

t∈V |S(wp,q, t) ∩ {wp,q, sp, r}| = 3 |V | − 3. Along the lines of the argumentation for the
element-node case, we infer a sss for the remaining parts of queries from wp,q that equals
|Ci \ {wp,qsp, r}|(|Ci \ {wp,q, sp, r}|+ 1)/2 for each cell Ci ∈ C. We obtain the following sss
for queries from an arbitrary leaf wp,q.

γ3 :=
∑
t∈V

S(wp,q, t) = 3|V | − 3 + (m− 1)B(B + 1)
2 + (B − 1)(B − 2)

2 .

The tree T consists of one root node, 3m element nodes and mB−3m weight nodes. Thus,
setting Γ = γ1 + 3mγ2 +m(B − 3)γ3, we can assure that the inequality

∑
s,t∈V S(s, t) ≤ Γ

stated above is fulfilled by the partition C.
For the other direction, assume we are given a partition C = {C1, . . . , Cm} of T such that

the resulting sss is at most Γ. We show that T corresponds to a Yes-instance of 3-Partition.
Again, we divide the sss into three components and distinguish queries with respect to their
source nodes. Without loss of generality, assume that r ∈ C1. Then it suffices to show that C
is perfect (cf. Theorem 2). To this end, we show that Γ in fact yields a tight lower bound
on the total sss of T that is only reached if C is perfect. For every source node s ∈ T we
determine a subset U ⊆ V such that

∑
t∈V |S(s, t) ∩ U | is independent of the underlying

partition C. Observe that we actually did this before in order to obtain the values of γ1,
γ2, and γ3. To account for the remaining parts of the search spaces, consider the subgraph
induced by the nodes in V \ U . For each target cell Ci ∈ C, there are ci := |Ci ∩ (V \ U)|
distinct s-t-queries with t ∈ Ci ∩ (V \ U) and these ci nodes are settled in a deterministic
order. Thus, the overall sss of queries from s into the cell Ci within the considered subgraph
must be at least

∑
t∈Ci\U |S(s, t) \ U | ≥ ci(ci + 1)/2. In order to reach this lower bound,

one has to ensure that in no such query, nodes from another cell are additionally settled.
Following this approach, we can show the following claim.

R. Bauer, M. Baum, I. Rutter, and D. Wagner 81

I Claim 3. The terms γ1, γ2, and γ3 are tight lower bounds on the average sss of queries
from the root node, an element node, or a leave of the tree, respectively. To reach the lower
bound γ1, the underlying partition must be perfect.
We omit the rather technical proof here. Since only a Yes-instance admits a perfect partition,
this completes the proof. J

The next theorem shows that the problem MinAvgCasePartition is NP-hard for
directed trees, a subclass of directed acyclic graphs. Since directed acyclic graphs occur in
the form of time-expanded graphs in time-dependent scenarios [12], this result is of vast
importance for practical applications.

I Theorem 13. MinAvgCasePartition is NP-hard on directed trees with uniform edge
weights and a maximum height of 2.

The outline of the proof of Theorem 13 is similar to the proof of Theorem 12. Replacing
undirected edges by directed ones in the reduction, we first examine the sss of a perfect
partition. Then we can show that this bound yields a tight lower bound on the sss that is
reached if and only if the partition of the graph is perfect.

Finally, we mention that MinAvgCasePartition on stars can be solved efficiently.
Using arguments similar to the worst-case analysis at the end of Section 3.2, it is easy to see
that balanced cell sizes yield optimal partitions. Thus, we have established a border between
hard instances and those solvable in polynomial time for the average case as well.

5 Conclusion

We investigated the complexity of the computational problems MinWorstCasePartition
and MinAvgCasePartition concerning graph partitioning for arc-flags on several classes
of graphs. It turned out that in both cases, solving even very restricted classes of trees
is NP-hard. This yields a substantial improvement of the known general hardness result.
Together with the efficiently computable partitions on paths and stars, our results also
provide a tight border of tractability for both problems. In addition to that, it seems that
the introduction of cycles, and thus ambiguity of shortest paths, vastly increases the difficulty
of the problems. In fact, the complexity of both problems remains unknown on cycles.

As an insight from the analysis of trees, a major difficulty seems to be the computation of
connected cells of balanced size. Both the reductions used and the approximation algorithm
presented support this hypothesis. One may take this as a theoretical approval of practical
heuristics, which essentially aim at finding cells that have such structure. The obtained
hardness results were similar for both problems on all examined graph classes. Since the
worst-case sss seems to allow for a much simpler examination, the investigation of the problem
MinWorstCasePartition provides a reasonable alternative to gain further insights into
the complexity of preprocessing arc-flags or speed-up techniques in general.

Besides the complexity of cycles, the primary open question would be whether there
exist better approximation algorithms or inapproximability results for trees as well as more
general classes of graphs.

References
1 Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea Wagner.

Preprocessing Speed-Up Techniques is Hard. In Proceedings of the 7th Conference on
Algorithms and Complexity (CIAC’10), volume 6078 of Lecture Notes in Computer Science,
pages 359–370. Springer, 2010.

ATMOS’12

82 On the Complexity of Partitioning Graphs for Arc-Flags

2 Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Routing.
ACM Journal of Experimental Algorithmics, 14(2.4):1–29, August 2009. Special Section on
Selected Papers from ALENEX 2008.

3 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-Up Techniques for
Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15(2.3):1–31, January
2010. Special Section devoted to WEA’08.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, USA, 2nd edition, 2001.

5 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering Route
Planning Algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina A. Zweig, editors,
Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes in Computer
Science, pages 117–139. Springer, 2009.

6 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

7 Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, CA, USA,
1979.

8 Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration of Shortest Path and
Constrained Shortest Path Computation. In Proceedings of the 4th Workshop on Experi-
mental Algorithms (WEA’05), volume 3503 of Lecture Notes in Computer Science, pages
126–138. Springer, 2005.

9 Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static
Networks with Geographical Background. In Geoinformation und Mobilität - von der
Forschung zur praktischen Anwendung, volume 22, pages 219–230. IfGI prints, 2004.

10 Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum

matchings in general graphs. In Proceedings of the 21st Annual Symposium on Foundations
of Computer Science (FOCS’80), pages 17–27, 1980.

11 Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm.
Partitioning Graphs to Speedup Dijkstra’s Algorithm. ACM Journal of Experimental Al-
gorithmics, 11(2.8):1–29, 2006.

12 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient Models
for Timetable Information in Public Transportation Systems. ACM Journal of Experimental
Algorithmics, 12(2.4):1–39, 2007.

