
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 003

A New Dynamic Graph Data Structure for
Large-Scale Transportation Networks

Georgia Mali, Panagiotis Michail, Christos Zaroliagis

July 2012

A New Dynamic Graph Data Structure
for Large-Scale Transportation Networks ?

Georgia Mali1,2, Panagiotis Michail1,2, and Christos Zaroliagis1,2

1 Computer Technology Institute & Press “Diophantus”, N. Kazantzaki Str., Patras University Campus,
26504 Patras, Greece

2 Dept of Computer Engineering & Informatics, University of Patras, 26500 Patras, Greece
Email: {mali,michai,zaro}@ceid.upatras.gr

5 July 2012

Abstract. We present a new graph data structure specifically suited for large-scale dynamic
transportation networks. Our graph structure provides simultaneously three unique features:
compactness, agility and dynamicity. All previously known graph structures were lacking sup-
port in at least one of the aforementioned features and/or could not be efficiently applied
in large-scale dynamic transportation networks. We demonstrate the practicality of our new
graph structure by conducting an experimental study for shortest route planning in large-scale
European road networks with a few dozen millions of nodes and edges. Using classical short-
est path routing algorithms, we can easily achieve point-to-point query times in the order of
milliseconds, while our new graph structure can be updated in just a few microseconds after
a node or edge insertion or deletion.

1 Introduction

In recent years we observe a tremendous amount of research for efficient route planning in road
and other public transportation networks. For instance, we are witnessing extremely fast algorithms
that answer point-to-point shortest path queries in a few milliseconds (in certain cases even less) in
large-scale road networks with a few dozen millions of nodes and edges after a certain preprocessing
phase; see e.g., [3, 7, 11, 13, 14]. These algorithms are clever extensions and/or variations of the
classical Dijkstra’s algorithm [8] – which turns out to be rather slow when applied to large-scale
networks – and hence are usually referred to as speed-up techniques (over Dijkstra’s algorithm).

Speed-up techniques employ not only heuristics to improve the search space of Dijkstra’s algo-
rithm, but also optimizations in the way they are implemented. To the best of our knowledge, the
graph structures used are variations of the adjacency list graph representation and provide control
on the storage of the graph elements. These graph structures are not only compact, in the sense
that they store nodes and edges in adjacent memory addresses, but also support arbitrary reorder-
ing of nodes and edges to increase the locality of the main for-loop in Dijkstra’s algorithm. The
latter, known as internal node reordering, has played a crucial role in achieving the extremely fast
running times for point-to-point shortest path queries in large-scale networks [3, 7, 11, 13, 14]. This
optimization effectively improves the locality of the nodes by rearranging them within memory,
hence improving cache efficiency and running times of the algorithms.

These graph structures are very efficient when the graph remains static but suffer badly when
updates occur. The reason is that, in order to keep their compactness and locality, an update must
shift a great amount of elements in memory. Therefore, such representations are used mostly in
static scenarios, where the underlying network does not change, an assumption that may not always
be realistic in practice. For instance, road networks face sudden unforeseen changes like an accident
or a natural disaster, frequent small changes like traffic jams, even rare changes like the construction
of a new road. Also, edge weights reflecting travel times may change within a day depending on
the specific hour of the day considered. In such cases, the graph representing the network must
be updated and any preprocessed data must be recomputed. Hence, it is essential that any graph
structure used in such applications can support efficient insertions and deletions of nodes and edges.
? This work was supported by the EU FP7/2007-2013 (DG INFSO.G4-ICT for Transport), under grant

agreement no. 288094 (project eCOMPASS). This work was done while the third author was visiting the
Karlsruhe Institute of Technology.

2 Georgia Mali, Panagiotis Michail, Christos Zaroliagis

In summary, what is needed for efficient routing in dynamic large-scale transportation networks
is a graph data structure that supports the following features.

1. Compactness: ability to efficiently access consecutive nodes and edges, a requirement of all
speed-up techniques based on Dijkstra’s algorithm.

2. Agility : ability to change and reconfigure its internal layout in order to improve the locality of
the elements, according to a given algorithm.

3. Dynamicity : ability to efficiently insert or delete nodes and edges.

According to the above features, a choice of a graph structure suitable for the aforementioned
applications must be made. An obvious choice is an adjacency list representation, implemented
with linked lists of adjacent nodes, because of its simplicity and dynamic nature. Even though it is
inherently dynamic, in a way that it supports insertions and deletions of nodes and edges in O(1)
time, it provides no guarantee on the actual layout of the graph in memory (handled by the system’s
memory manager). Therefore, it does have dynamicity but it has neither compactness nor agility.

A very interesting variant of the adjacency list, extensively used in several speed-up techniques
(see e.g., [3]), is the forward star graph representation [1, 2], which stores the adjacency list in an
array, acting as a dedicated memory space for the graph. The nodes and edges can be laid out
in memory in a way that is optimal for the respective algorithms, occupying consecutive memory
addresses which can then be scanned with maximum efficiency. This is very fast when considering
a static graph, but when an update is needed, the time for inserting or deleting elements is pro-
hibitive because large shifts of elements must take place. Thus, a forward star representation offers
compactness and agility, and therefore ultra fast query times, but does not offer dynamicity.

Motivated by the efficiency of the forward star representation in the static scenario, we present a
new data structure for directed graphs which supports all the aforementioned features. In particular:

– Scanning of consecutive nodes or edges is optimal (up to a constant factor) in terms of time
and memory transfers, and therefore comparable to the maximum efficiency of the forward star
representation (compactness).

– Nodes and edges can be reordered within allocated memory in order to increase any algorithm’s
locality of reference, and therefore efficiency. Any speed-up technique can give its desired node
ordering as input to our graph structure (agility).

– Inserting or deleting edges and nodes compares favourably with the performance of the adjacency
list representation implemented as a linked list, and therefore it is fast enough for all practical
applications (dynamicity).

To assess the practicality of our new graph structure, we conducted a series of experiments on
shortest path routing algorithms on large-scale European road networks. Our goal was to merely
show the performance gain of using our graph structure compared to the adjacency list or the forward
star representation on classical shortest path routing algorithms, rather than to beat the running
times of the best speed-up techniques. Even with the classical shortest path routing algorithms,
our graph structure can answer shortest path queries in milliseconds and handle updates of the
graph layout, like insertions or deletions of both nodes and edges, in just a few microseconds. Most
importantly, existing speed-up techniques can switch their underlying graph structure to our new
graph structure, thus keeping their stelar query performance while getting efficient update times
almost for free.

Our graph data structure stands as a good compromise between two extremes, the adjacency
list representation which offers optimal dynamicity and the forward star representation which offers
optimal compactness and agility. It is just 2% slower than the forward star representation in query
time but over a million times faster in update time. On the other hand, it is slower than the
adjacency list in update time, but close to 30% faster in query times.

Note that our graph structure is not a speed-up technique on its own but can increase the
efficiency of any speed-up technique implemented on top of it. Existing techniques operating on
static graph layouts can benefit from its dynamic nature to extend their focus to dynamic scenarios
as well, without sacrificing performance. To the best of our knowledge, our approach to deal with
dynamic large-scale transportation networks is the first one that concerns the dynamization of the

A New Dynamic Graph Data Structure 3

graph structure per se. In contrast, the so far known approaches to deal with such dynamic scenarios
[17, 18] operate on a static graph layout and are only concerned with the development of dynamic
algorithms that update the preprocessed data. All those techniques can also be implemented on top
of our graph structure and hence benefit from its performance.

Our analysis of the new graph structure is based on the cache-oblivious model [10, 15] which ac-
counts memory transfers in memory blocks of unknown size B, as these transfers are the dominating
operation w.r.t. time. We consider the two-level memory hierarchy model where the memory hier-
archy consists of a first-level fast memory (cache) and an arbitrarily large second-level slow memory
(main memory) partitioned into blocks of (unknown) size B. The data from the main memory to
the cache and vice versa are transferred in blocks (one block at a time).

This paper is organized as follows. In Section 2, we review some preliminary concepts that
will be used throughout the paper. In Section 3, we present the new graph structure, along with
its theoretical analysis and comparison to other graph structures. In Section 4, we present our
experimental study on real-world data. We conclude in Section 5.

2 Preliminaries

Let G = (V,E) be a directed graph with node set V , edge set E, n = |V |, and m = |E|. All graphs
throughout this paper are considered directed, unless mentioned otherwise. Also, there is a weight
function wt : E → R+

0 associated with E.

2.1 Graph Representations

There are multiple data structures for graph representations. The specific type of data structure
used, depends heavily on the characteristics of the input graph and the performance requirements
of each specific application.

The most commonly used data structure for representing a graph is the adjacency list rep-
resentation. The adjacency list A(u) of a vertex u in a graph G = (V,E) is defined as the set
A(u) = {w : (u,w) ∈ E}. The adjacency list representation of a graph G stores the adjacency list of
every vertex in G as a linked list. There is an additional linked list of length n for storing the heads
of the lists. The adjacency list representation takes O(n + m) space. Any additional information
attached to the nodes is stored at the respective heads of the lists. Accordingly, any additional
information attached to an edge (u,w), such as wt(u,w), is stored along with w at the adjacency
list of u. Figure 2 shows1 the adjacency list representation of the graph in Figure 1.

A variant of the adjacency list representation is the forward star representation [1, 2]. In this
representation, the node list is implemented as an array, and all adjacency lists are appended to a
single edge array sorted by their source node. Unique non-overlapping adjacency segments of the
edge array contain the adjacency list of each node. Each node points to the segment in the edge
array containing its adjacent edges. The additional information attached to nodes or edges is stored
in the same way as in the adjacency list. The forward star representation of the graph in Figure 1
is shown in Figure 3.

2.2 Packed-memory Array

A packed-memory array [4] maintains N ordered elements in an array of size P = cN , where c > 1
is a constant. The cells of the array either contain an element x or are considered empty. Hence,
the array contains N ordered elements and (c− 1)N empty cells called holes. The goal of a packed-
memory array is to provide a mechanism to keep the holes in the array uniformly distributed, in order
to support efficiently insertions, deletions and scans of (consecutive) elements. This is accomplished
by keeping intervals within the array such that a constant fraction of each interval contains holes.
When an interval of the array becomes too full or too empty, its elements are spread out evenly
within a larger interval by keeping their relative order. This process is called a rebalance of the
(larger) interval. Note that during a rebalance an element may be moved to a different cell within
an interval. We shall refer to this as the move of an element to another cell.
1 For simplicity, we do not show any additional information associated with nodes or edges.

4 Georgia Mali, Panagiotis Michail, Christos Zaroliagis

u0 u1

u4

u3

u2

Fig. 1: A directed graph with 5 nodes and 16 edges.

u0

u1

(u0,u2)

u2

(u1,u3)

u3

(u2,u0)

u4

(u3,u1)

(u4,u1)

(u0,u1) (u0,u4)

(u1,u4) (u1,u0) (u1,u2)

(u2,u3) (u2,u4) (u2,u1)

(u3,u2)

(u4,u2) (u4,u0)

Nodes Edges

Fig. 2: Adjacency list representation.

0
u0

1
u1

2
u2

3
u3

4
u4

0
(u0,u2)

1
(u0,u1)

2
(u0,u4)

3
(u1,u3)

4
(u1,u4)

5
(u1,u0)

6
(u1,u2)

7
(u2,u0)

8
(u2,u3)

9
(u2,u4)

10
(u2,u1)

11
(u3,u1)

12
(u3,u2)

13
(u4,u1)

14
(u4,u2)

15
(u4,u0)

Nodes

Edges

Fig. 3: Forward star representation.

The array is initially divided into Θ(P/ logP) segments of size Θ(logP) such that the number
of segments is a power of 2. A perfect binary tree is built iteratively on top of these array segments,
assigning each leaf of the tree to one segment of the array. Each tree vertex y is associated with an
array interval corresponding to a collection of contiguous array segments assigned to y’s descendant
leaves. The root vertex is associated with the entire array. The depth of the root vertex is defined
as 0 and the depth of the leaves is equal to d = logΘ(P/ logP) = Θ(logP).

The total number of cells contained in the collection of array segments associated with an internal
tree vertex u is called the capacity of u, while the actual number of (non-empty) elements in the
respective cells is called the cardinality of u. The ratio between u’s cardinality and its capacity is
called the density of u. Clearly, 0 ≤ density(u) ≤ 1.

Strict density thresholds are imposed on the vertices of the tree. For arbitrary constants ρd,
ρ0, τ0, τd, such that 0 < ρd < ρ0 < τ0 < τd = 1, a vertex’s upper density threshold is defined as
τk = τ0 + τd−τ0

d k, where k is the vertex depth, and its lower density threshold as ρk = ρ0 + ρ0−ρd

d k.
Consequently, 0 < ρd < ρd−1 < ... < ρ0 < τ0 < τ1 < ... < τd = 1. A tree vertex u is within
thresholds if ρk ≤ density(u) ≤ τk. An example of a packed-memory array is shown in Figure 4,
where the upper field of each internal vertex shows the cardinality (left number) and the capacity
(right number) of the array segment it is associated with, while the lower field shows the lower and
upper density thresholds.

When inserting or deleting an element that belongs to a specific segment in the array, the leaf
vertex u associated with the segment is checked for whether it remains within thresholds after the
operation or not. If it does remain within thresholds, the segment is rebalanced, and the vertex’s
cardinality and density are updated. If the operation causes the vertex to exceed any of its thresholds,
an ancestor v of u that is within thresholds is sought. If such a vertex exists, then its associated
interval (containing all elements in the collection of segments comprising the interval) is rebalanced.
Note that whenever an interval associated with a tree vertex v is rebalanced, its descendant vertices

A New Dynamic Graph Data Structure 5

20/32
0.4-0.75

6/16
0.2-0.875

14/16
0.2-0.875

3/8
0-1

3/8
0-1

6/8
0-1

8/8
0-1

16
6

17
7

18
8

19
9

20
10

21
11

22 23 24
12

25
13

26
14

27
15

28
16

29
17

30
18

31
19

0
0

1
1

2
2

3 4 5 6 7 8
3

9
4

10
5

11 12 13 14 15

Fig. 4: Packed-Memory Array on the ordered set [0, 19].

are not only within their own density thresholds but also within the density thresholds of v. Finally,
if an ancestor within thresholds does not exist, the array is re-allocated to a new space, double or
half in size accordingly, and the thresholds are recomputed. The following results are shown in [4].

Theorem 1. [4] The packed-memory array structure maintains N elements in an array of size cN ,
for any desired constant c > 1, supporting insertions and deletions in O(log2N) amortized time and
O(1 + log2N

B) amortized memory transfers, as well as scanning of S consecutive elements in O(S)
time and O(1 + S/B) memory transfers.

3 The Packed-memory Graph

3.1 Structure

Our graph structure consists of three packed-memory arrays, one for the nodes and two for the
edges of the graph (viewed as either outgoing or incoming) with pointers associating them. The two
edge arrays are copies of each other, with the edges sorted as outgoing or incoming in each case.
Therefore, the description and analysis in the following will consider only the outgoing edge array.
The structure and analysis is identical for the incoming edge array. A graphical representation of
our new graph structure, for the example graph of Figure 1, is shown in Figure 5.

Let Pn = 2k, where k is such that 2k−1 < n ≤ 2k. The nodes are stored in a packed-memory
array of size Pn with node density dn = n

Pn
. Therefore, the packed-memory node array has size

Pn = cnn where cn = 1/dn. Each node is stored in a separate cell of the packed-memory node array
along with any information associated with it. The nodes are stored with a specific arbitrary order
u0, u1, ..., un−2, un−1 which is called internal node ordering of the graph. As we shall see in Section
3.3, this ordering has a great impact on the performance of the algorithms implemented on top of
our new graph structure.

Let Pm = 2l, where l is such that 2l−1 < m ≤ 2l. The edges are also stored in a packed-memory
array of size Pm with edge density dm = m

Pm
. Therefore, the packed-memory edge array has size

Pm = cmm where cm = 1/dm. Each edge is stored in a separate cell of the packed-memory edge
array along with any information associated with it, such as the edge weight. The edges are laid
out in a specific order, which is defined by their source node. More specifically, we define a partition
C = {Eu0 , Eu1 , ..., Eun−2 , Eun−1} of the edges of the graph according to their source nodes, where
Eui = {e ∈ E|source(e) = ui}, Eui ∩Euj = ∅, ∀i, j, i 6= j, and Eu0 ∪Eu1 ∪ ...∪Eun−2 ∪Eun−1 = E.
That is, each edge e belongs to only one set of the partition and there is a one-to-one mapping of
nodes to their corresponding outgoing edge sets.

The sets Eui
, 0 ≤ i < n, are then stored consecutively in the packed-memory edge array in the

same order as the one dictated by the internal node ordering in the packed-memory node array.
Thus, all outgoing edges Eui

of a node ui are stored in a unique range of cells of the packed-memory
edge array without any other outgoing edges stored between them. This range is denoted by Rui

and its length is O(|Eui |) due to the properties of the packed-memory edge array.

6 Georgia Mali, Panagiotis Michail, Christos Zaroliagis

5/8
0.4-0.75

3/4
0-1

2/4
0-1

0 u0
1 u1
2 u2
3

4 u3
5 u4
6
7

0 (u0,u2)
1 (u0,u1)
2 (u0,u4)
3
4
5
6
7

8 (u1,u3)
9 (u1,u4)
10 (u1,u0)
11
12
13
14
15

16 (u1,u2)
17 (u2,u0)
18 (u2,u3)
19
20
21
22
23

24 (u2,u4)
25 (u2,u1)
26 (u3,u1)
27 (u3,u2)
28 (u4,u1)
29 (u4,u2)
30 (u4,u0)
31

3/8
0-1

3/8
0-1

3/8
0-1

7/8
0-1

16/32
0.4-0.75

10/16
0.2-0.875

6/16
0.2-0.875

Nodes

Edges

Fig. 5: Packed-memory Graph representation

Every node ui stores a pointer to the start and to the end of Rui
in the edge array. The end

of Rui is at the same location as the start of Rui+1 , since the outgoing edge sets have the same
ordering as the nodes. If a node ui has no outgoing edges, both of its pointers point to the start of
Rui+1 . Hence, given a node ui, determining Rui

takes O(1) time.

3.2 Operations

Our new graph structure supports the following operations.

Scanning Edges. In order to scan the outgoing edges of a node u, the range, Ru, including them is
determined by the pointers stored in the node. Then this range is sequentially scanned returning
every outgoing edge of u.

Inserting Nodes. In order to insert a node ui between two existing nodes uj , uj+1, we identify
the actual cell that should contain ui and execute an insert operation in the packed-memory node
array. Clearly, this insertion changes the internal node ordering. The insert operation may result in
a rebalance of some interval of the packed-memory node array, and some nodes being moved into
different cells. For each node that is moved, its edges are updated with the new position of the node.
The outgoing edge pointers of the newly created node ui (which has not yet any adjacent edges)
point to the start of the range Ruj+1 .

Deleting Nodes. In order to delete a node ui between two existing nodes ui−1, ui+1, we first have
to delete all of its outgoing edges, a process that is described in the next paragraph. Then, we
identify the actual node array cell that should be cleared and execute a delete operation in the
packed-memory node array. The delete operation may also result in a rebalance as before, so, for
each node that is moved, its edges are updated with the new position of the node.

A New Dynamic Graph Data Structure 7

Inserting or Deleting Edges. When a new edge (ui, uj) is inserted (deleted), we proceed as follows.
First, node ui and its outgoing edge range Rui are identified. Then, the cell to insert to (delete
from) within this range is selected and an insert (delete) operation in this cell of the packed-memory
edge array is executed. This insert (delete) operation may cause a rebalance in an interval of the
packed-memory edge array, causing some edges to be moved to different cells. As a result, the ranges
of other nodes are changed too.

When a range Ruk
changes, the non-zero ranges Rux and Ruy , x < k < y, adjacent to it change

too. Note that x may not be equal to k − 1 and y may not be equal to k + 1, since there may
be ranges with zero length adjacent to Ruk

. In order for Rux
, Ruy

and the pointers towards them
to be updated, the next and previous nodes of uk with outgoing edges need to be identified. Let
the maximum time required to identify these nodes be denoted by Tup. We describe later how to
implement this operation efficiently and thus specifying Tup.

3.3 Internal Node Reordering

One of the most important operations supported by our graph structure is the internal node re-
ordering. In many cases, there are algorithms that have some information beforehand about the
sequence of accesses of the elements of the graph, and this can be exploited in speeding-up their
performance. For example, if an algorithm needs to access all nodes in a topologically sorted order,
a performance speed-up can be gained if these nodes have been already laid out in memory in that
specific order. In this way, the cache misses get reduced, the memory transfers during the scanning
of the nodes is optimal, and the algorithm has a much lower running time. In another example, some
algorithms (e.g., [11]) use hierarchical decomposition techniques in order to obtain a small sub-graph
which is considered more important than the rest of the graph. The nodes of this sub-graph are
accessed much more frequently than the rest of the nodes. Therefore, improving the locality of those
important nodes in memory can give a performance boost in the algorithm.

Our graph structure can internally change the relative position of the nodes and the edges,
effectively changing their internal ordering. It does so, by removing an element from its original
position and reinserting it to arbitrary new position. We call this operation an internal relocation of
an element. In fact, a relocation is nothing more than a deletion and reinsertion of an element, two
operations that have efficient running times and memory accesses. In order to relocate internally an
edge (ui, uj), it is sufficient to delete the edge and then reinsert it in an arbitrary cell within the
range Rui

. In order to relocate internally a node ui it suffices to delete the node and its adjacent
edges Eui from the graph and then reinsert ui and Eui in another arbitrary position.

3.4 Analysis

In this section we give the bounds of the operations supported by our graph structure. We start
with the operation of scanning nodes and edges.

Lemma 1. The packed-memory graph supports scanning of S consecutive nodes or S consecutive
edges in O(S) time and O(1 + S/B) memory transfers.

Proof. Scanning S consecutive nodes or S consecutive edges is equivalent to scanning S consecutive
elements in a packed-memory array. Hence, the lemma follows from Theorem 1. ut

The next lemma provides bounds for accessing a node’s outgoing edges, a core subroutine in
many algorithms especially of those based on Dijkstra’s algorithm.

Lemma 2. The packed-memory graph supports the scanning of all outgoing edges Eui of a node ui
in O(|Eui

|) time and O(1 + |Eui
|/B) memory transfers.

Proof. In order to scan all outgoing edges Eui
of a node ui, we initially determine the range Rui

in
constant time by following the respective pointers from ui. This range has size O(|Eui

|) and lies in
consecutive cells in the packed-memory edge array. Now, the lemma follows from Theorem 1. ut

We turn now to the dynamic operations in our graph structure. At first, we need to analyze the
performance of inserting or deleting edges between existing nodes in the graph.

8 Georgia Mali, Panagiotis Michail, Christos Zaroliagis

Lemma 3. The packed-memory graph supports inserting (deleting) an edge in O(Tup log2m) amor-
tized time and O(1 + Tup log2m

B) amortized memory transfers.

Proof. In order to insert (delete) an edge, the actual operation is executed on the packed-memory
edge array, which stores m elements. From Theorem 1, this takes O(log2m) amortized time and
O(1 + log2m

B) amortized memory transfers.
The insert (delete) operation may cause a rebalance in an interval of the packed-memory edge

array, and its respective ranges. For any existing edge that is moved to a different cell due to
the rebalance, an update to the ranges may be needed. Any such update takes at most Tup time.
Hence, overall any insert (delete) operation takes O(Tup log2m) amortized time and O(1+ Tup log2m

B)
amortized memory transfers. ut

In order to insert a node, our graph structure might need to move several nodes to different cells
in the packed-memory node array and update all of their adjacent edges. The number of adjacent
edges of any node is bounded by ∆ which is the maximum degree of a node in the graph. Note that
in large-scale transportation networks ∆ is typically bounded by a small constant; for instance, in
road networks ∆ ≤ 4. The following lemma describes the performance of our graph structure when
inserting a node to the graph.

Lemma 4. The packed-memory graph supports inserting a node in O(∆ log2 n) amortized time and
O(1 + ∆ log2 n

B) amortized memory transfers, where ∆ is the maximum node degree of the graph.

Proof. In order to insert a node ui in the graph, we need to insert it into the packed-memory node
array. Such an insertion may cause some nodes to be moved to different cells. All adjacent edges of
these nodes must be updated with the new position of the node. These edges lie in O(∆) consecutive
cells of the packed-memory edge array. Creating the pointers of ui takes constant time, since they
are set equal to the start pointer of ui+1. Now, the lemma follows from Theorem 1 and Lemma
2. ut

We now study the complexity of deleting a node from the graph. Clearly, a node cannot be deleted
unless all of its adjacent edges are deleted. Thus, the process of deleting a node is complemented by
the process of deleting all of its adjacent edges.

Lemma 5. The packed-memory graph supports deleting a node in O(∆Tup log2m+∆ log2 n) amor-
tized time and O(1+∆Tup log2m+∆ log2 n

B) amortized memory transfers, where ∆ is the maximum node
degree of the graph.

Proof. In order to delete a node u from the graph, first we need to delete all adjacent edges of u.
Since the node has O(∆) adjacent edges, we get from Lemma 3 that deleting all adjacent edges
takes O(∆Tup log2m) amortized time and O(1 + ∆Tup log2m

B) amortized memory transfers.
Then, we need to delete the node from the packed-memory node array which, from Theorem 1,

takes O(log2 n) amortized time and O(1 + log2 n
B) amortized memory transfers. Such a deletion may

cause some nodes to be moved to different cells and their adjacent edges have to be updated as
before. These edges lie in O(∆) consecutive cells of the packed-memory edge array. From Theorem 1
and Lemma 2, this takes O(∆ log2 n) amortized time and O(1+∆ log2 n

B) amortized memory transfers.
Therefore, the deletion of a node u takes a total of O(∆Tup log2m + ∆ log2 n) amortized time

and requires O(1 + ∆Tup log2m+∆ log2 n
B) amortized memory transfers. ut

Finally, it remains to specify the actual time Tup needed for identifying the range of a node. As
described before, this is the time needed to identify the immediately next and previous nodes of a
given node ui that have adjacent edges. The naive approach would be starting two linear searches
from ui, one towards the start of the node array and one towards its end that would end as soon
as a node with adjacent edges is found in each direction. However, this may take up to O(n) time
which is not efficient.

An alternative would be to use a segment tree [5],[6, Section 10.3] over the packed-memory
node array. This kind of tree can answer range queries in O(log n) time. Therefore, it can efficiently

A New Dynamic Graph Data Structure 9

identify the first nodes to the left and to the right of ui that have outgoing edges in O(log n) time
and thus Tup = O(log n).

A crucial observation, however, is that when the graph has no isolated nodes then both ui−1 and
ui+1 have adjacent edges and can be identified in O(1) time. In this case, the search routine finishes
after just one step resulting in Tup = O(1). Since we are interested in transportation networks which
usually have no isolated nodes, we can safely use linear search to identify these nodes, a process
that rarely needs to scan more than just a few adjacent cells. Therefore, for all practical purposes
Tup = O(1), which is actually verified by our experimental study.

3.5 Comparison with other Graph Structures

In this section, we compare our new graph structure with other graph structures on the basis of the
three performance features set in the Introduction, namely compactness, agility, and dynamicity.

Adjacency List Forward Star Packed-memory Graph

Space O(m+ n) O(m+ n) O(cmm+ cnn)

Time

Scanning S edges O(S) O(S) O(S)

Inserting/Deleting an edge O(1) O(m) O(log2m)

Inserting a node O(1) O(n) O(∆ log2 n)

Deleting a node u O(∆) O(∆m+ n) O(∆ log2m+∆ log2 n)

Memory Transfers

Scanning S edges O(S) O(1 + S/B) O(1 + S/B)

Inserting/Deleting an edge O(1) O(1 +m/B) O(1 + log2m
B

)

Inserting a node O(1) O(1 + n/B) O(1 + ∆ log2 n
B

)

Deleting a node u O(∆) O(1 + ∆m+n
B

) O(1 + ∆ log2m+∆ log2 n
B

)

Table 1: Comparison of space, running time and memory transfer complexities on all three graph
data structures. B denotes the cache block size, while ∆ denotes the maximum node degree.

An adjacency list representation implemented with linked lists seems like a reasonable candidate for a
graph data structure. It supports optimal insertions/deletions of nodes and the scanning of the edges
is fast enough to be used in practice. However, since there is no guarantee for the memory allocation
scheme, the nodes and edges are most probably scattered in memory, resulting in many cache misses
and less efficiency during scan operations, especially for large-scale networks. Finally, an adjacency
list representation provides no support for any (re-)ordering of the nodes and edges in arbitrary
relative positions in memory, since the allocated memory positions are not necessarily ordered.
Therefore, an adjacency list representation implemented with linked lists favours no algorithm that
can exploit any insight in memory accesses.

On the other hand, a forward star representation is optimal during the scan operations. Due to
its layout, S consecutive edges are stored in at most 1 + S

B memory blocks. Hence, the least amount
of blocks is transferred into the cache memory during a scan operation. Moreover, its elements can
be reordered in-line in a way that will favour the memory accesses of any algorithm. However, an
insertion (deletion) of a node or an edge in an arbitrary position must shift all subsequent elements
in the array in order to make space for the new element. Clearly, this has O(n) and O(m) time
complexity for nodes and edges, respectively, which is prohibitive for large-scale networks. Hence,
the forward star representation cannot support fast enough insertions and deletions of elements.

A packed-memory graph representation is effective in all three features. It keeps the elements in
the same way as the forward star representation, with only one difference: it keeps slightly larger
arrays complemented with empty elements uniformly distributed within the array. Therefore, it
accomplishes a performance within a factor of the forward star representation’s performance in
scanning consecutive elements. Also, it supports fast enough insertions and deletions of elements to
be used in practical applications. Finally, the elements can be efficiently reordered in order to favour
the memory accesses of any algorithm.

10 Georgia Mali, Panagiotis Michail, Christos Zaroliagis

A summary of the complexity of the main operations in the aforementioned three graph structures
is shown in Table 1. The above discussion and Table 1 show that our new graph structure is a good
compromise, at the expense of a small space overhead, between the graph structures that accomplish
two extreme complexities. It is a viable choice in dynamic scenarios, contrary to the forward star
representation, without sacrificing any time or memory transfers complexity, and is clearly superior
to the adjacency list representation in the most frequent operation of scanning consecutive edges, a
core subroutine of all shortest path routing techniques.

4 Experiments

To assess the practicality of our new graph structure, we conducted a series of experiments on
shortest path routing algorithms on real world large-scale transportation networks (European road
networks) in dynamic scenarios. We considered mixed sequences of operations consisting of point-
to-point shortest path queries and updates. For the point-to-point shortest path queries we used
Dijkstra’s algorithm and two classical speed-up techniques, the Bidirectional and the A∗ variants
of Dijkstra’s algorithm. We used these speed-up techniques since our goal is to merely show the
performance gain of our graph structure over the adjacency list and forward star representations,
rather than beat the running times of the fastest possible algorithms.

Setup. All experiments were conducted on an Intel(R) Core(TM) i5-2500K CPU @ 3.30GHz with a
cache size of 6144Kb and 4Gb of RAM. Our applications were compiled by GCC version 4.4.3 with
optimization level 3.

Data. The road networks for our experiments were acquired from [9] and consist of the road networks
of Italy and Germany. The provided graphs are strongly connected and undirected. Hence, we
consider each edge as bidirectional. Edge weights represent travel distances.

Algorithms. As already mentioned, the algorithms used are classical shortest path routing algo-
rithms, in particular, the plain Dijkstra’s algorithm, the Bidirectional Dijkstra’s algorithm (B-
Dijkstra), and the A∗ variant of Dijkstra’s algorithm, using Euclidean distances. Each of these
algorithms was implemented once, supporting interchangeable graph representations in order to
minimize the impact of factors other than the performance of the underlying data structures. All
three graph structures were implemented having as target to keep only the essential core parts differ-
ent, such as the accessing of a node or an edge. Thus, the only factor differentiating the experiments
is the efficiency of accessing and reading, as well as inserting or deleting nodes and edges in each
graph structure.

4.1 Results

Static performance

Query Times. We have executed 10000 random queries on each of the road networks, using all the
above algorithms, on all three graph structures. The results are reported in Tables 2 and 3.

The results clearly show a speed-up of the packed-memory graph (PMG) over the adjacency list
(AL) in all of our selected algorithms. Moreover, it is very close to the performance of the forward
star (FS) representation, the difference being the additional holes added in the arrays. Losing less
than 2% in query efficiency over the forward star representation, our graph structure has a clear
dynamic potential, as shown in the next section.

The results also show that there is a trade-off between the node and edge density of the graph
and its performance. The less holes (larger density) the packed-memory arrays have, the better the
performance of the graph in queries. This is to be expected since the size of the graph gets larger
with the addition of the holes. The advantage is that we can fine tune the density of the graph
according to the application. If the application expects many updates, we will configure the graph
to have smaller density in order to efficiently accommodate new nodes and edges. In less dynamic
cases, we might raise the density to a much higher level, or even compress the packed-memory graph
by removing all holes and continue statically.

A New Dynamic Graph Data Structure 11

AL FS PMG Speedup

PMG vs AL

Italy Size (Mb) 731.68 731.68 896 -22.46%

n = 6686493 Edge Scan (ms) 2002.84 987.88 1271.42 36.52%

m = 14027956 Dijkstra (ms) 1359.83 954.11 970.19 28.65%

Density A∗ Dijkstra (ms) 663.13 522.92 532.16 19.75%

dn = 80% dm = 84% B-Dijkstra (ms) 1058.95 730.67 743.06 29.83%

Table 2: Running times on the road network of Italy.

AL FS PMG Speedup

PMG vs AL

Germany Size (Mb) 1277.36 1277.36 1792 -40.29%

n = 11548845 Edge Scan (ms) 3821.61 1889.69 2404.77 37.07%

m = 24738362 Dijkstra (ms) 2629.46 1892.87 1938.62 26.27%

Density A∗ Dijkstra (ms) 846.75 666.85 680.38 19.65%

dn = 69% dm = 74% B-Dijkstra (ms) 1822.59 1287.61 1318.45 27.66%

Table 3: Running times on the road network of Germany.

Locality of reference. In order to measure the locality of reference we have monitored the main
memory accesses during the execution of 10000 queries of Dijkstra’s algorithm on our road networks.
We call two consecutive reads/writes in memory a hop and its distance hop size. Clearly, the larger
the hop size, the worse the locality of the algorithm. We have recorded each hop during consecutive
node accesses and consecutive edge accesses and have plotted the distributions of their size in Figure
6. The results confirm our theoretical analysis and explain the running times in the previous section.

It is evident that the hop size is much smaller using the forward star or packed-memory graph
representation, as expected. The edge hops are smaller in both these cases because the outgoing
edges of a node are accessed all at once since they lie in consecutive memory addresses. The difference
in the node hops is not so large since the pattern of accessing the nodes during the queries of the
plain Dijkstra is not matched to the internal ordering of the nodes in the graph structure.

Moreover, hops larger than the block size will yield a block transfer in any case, hence the size
of the hop over the block threshold is of no significant importance. However, it is obvious that in
the forward star or the packed-memory graph representation it is much more likely for a hop to be
smaller than the block size, therefore avoiding a cache miss and increasing efficiency. This is clearly
the reason why the packed-memory graph and forward star representations are so much faster than
the adjacency list in the static scenario.

Dynamic performance

Individual operations. In order to measure the performance of our graph structure in dynamic sce-
narios, we have compared it with the optimal performance of the adjacency list representation. Our
dynamic operations include the random insertion and deletion of nodes and edges, and the internal
relocation of nodes in random arbitrary relative positions. Since in an adjacency list representation
there is no actual node ordering in memory, changing the relative order of the nodes is of no use.
However, its performance can serve as a reference to the performance of our relocating routine. The
results can be seen in Tables 4a and 4b.

The performance of the forward star representation is not reported in these experiments be-
cause its update operations were rather inefficient (close to a million times slower than the update
performance of the other two graph structures).

Clearly, the adjacency list representation supports extremely fast update operations since it
needs O(1) time to allocate (deallocate) space and update its pointers. The performance of our
graph structure is about an order of magnitude slower than the performance of the adjacency list
representation. However, its update operations are still extremely fast to be used in practice. Hence,
unless there is a need for excessively more update operations than queries, our graph structure
should outperform the adjacency list. Our next experiment elaborates on this matter.

12 Georgia Mali, Panagiotis Michail, Christos Zaroliagis

Random sequence of operations. In order to compare the adjacency list representation and the
packed-memory graph representation in a typical dynamic scenario, we have compared their perfor-
mance on sequences of random, uniformly distributed, mixed operations. These sequences contain
either random queries using the A∗ Dijkstra’s algorithm or random updates in the graph, namely
edge insertions and deletions.

All sequences contain the same amount of shortest path queries (1000 queries) with varying order
of magnitude of updates in the range [104, 108]. To have the same basis of comparison, the same
sequence of shortest path queries is used in all experiments.

The update operations are chosen at random between edge insertions and edge deletions. When
inserting an edge, we do not consider this edge during the shortest path queries, since we do not
want insertions to have any effect on them. In a deletion operation, we select at random a previously
inserted edge to remove. We remove no original edges, since altering the original graph structure
between shortest path queries would yield non-comparable results. The experimental results are
reported in Figure 7, where the horizontal axis represents the ratio of the number of updates and
the number of queries, while the vertical axis represents the total time for executing the sequence
of operations.

The experiments verify our previous findings. While the running times of the queries dominate
the running times of the updates, the packed-memory graph representation maintains a constant
speed-up over the adjacency list representation. Our experiments show that the number of updates
should be at least 50000 times more than the number of (A∗ Dijkstra) queries in order for the
packed-memory graph to be inferior than the adjacency list, a situation that is rather uncommon
for the application scenario we consider.

Clearly, there are much faster speed-up techniques on Dijkstra’s algorithm than its A∗ variant,
but even their running times dominate the running times of our updates. Since updates are much
more rare in practical scenarios than shortest path queries, we can safely suggest the usage of our
graph structure even for the fastest existing techniques.

5 Conclusion and Future Work

We have presented a new graph structure that is very efficient for routing in dynamic large-scale
transportation networks. It builds upon the advantages of basic data structures, and at the same
time remedies the drawbacks of existing graph structures.

We look forward to see the effects of our graph structure on other speed-up techniques, especially
those that employ specific node orderings and hierarchical decomposition. We expect that the gain
will be much larger in such techniques, since there will exist a natural matching between node
importance in the algorithm’s realm and node ordering within actual memory.

Finally, we are very interested in future implementations of the new graph structure on systems
that will make even better use of its advantages. We firmly believe that its usage on slower memory
hierarchies, like these of hand-held devices will improve the overall performance of the respective
routing algorithms.

Acknowledgements. We would like to thank Daniel Delling for many fruitful and motivating
discussions, and Kostas Tsichlas for introducing us to the cache-oblivious data structures.

Italy Adjacency List PMG

Insert / Delete nodes (µs) 0.31 2.74

Insert / Delete edges (µs) 0.71 7.01

Internal node relocations (µs) 2.41 29.61

(a) Italy

Germany Adjacency List PMG

Insert / Delete nodes (µs) 0.34 3.18

Insert / Delete edges (µs) 0.75 7.31

Internal node relocations (µs) 2.59 24.15

(b) Germany

Table 4: Dynamic operations

References

1. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993) “Network Flows: Theory, Algorithms and Ap-
plications”. Englewood Cliffs, NJ: Prentice Hall.

A New Dynamic Graph Data Structure 13

edges nodes

0
20

0
40

0
60

0
80

0
10

00

Main Memory Hops during Dijkstra's Algorithm on Italy

H
op

 s
iz

e
(M

by
te

s)

edges nodes

0
20

0
40

0
60

0
80

0
10

00

edges nodes

0
20

0
40

0
60

0
80

0
10

00

Forward Star
Adjacency List
Packed−memory Array

(a)

edges nodes

0
50

0
10

00
15

00

Main Memory Hops during Dijkstra's Algorithm on Germany

H
op

 s
iz

e
(M

by
te

s)

edges nodes

0
50

0
10

00
15

00

edges nodes

0
50

0
10

00
15

00

Forward Star
Adjacency List
Packed−memory Array

(b)

Fig. 6: Memory hops during Dijkstra’s algorithm on the road networks of Italy and Germany.

● ● ●
●

●

●

10 102 103 104 5*104 105

100

200

300

400

500

600

700

800

Random operation sequence on Italy

#updates/#queries

tim
e

(s
ec

)

● Adjacency List
Packed−memory Graph

(a)

● ● ● ●

●

●

10 102 103 104 7*104 105

100

200

300

400

500

600

700

800

900

Random operation sequence on Germany

#updates/#queries

tim
e

(s
ec

)

● Adjacency List
Packed−memory Graph

(b)

Fig. 7: Running times on mixed sequences of operations consisting of 1000 queries and updates of
varying length in [104, 108].

14 Georgia Mali, Panagiotis Michail, Christos Zaroliagis

2. ARRIVAL Deliverable D3.6, “Improved Algorithms for Robust and Online Timetabling
and for Timetable Information Updating”. ARRIVAL Project, March 2009,
http://arrival.cti.gr/uploads/3rd year/ARRIVAL-Del-D3.6.pdf.

3. Bauer, R., Delling, D.: “SHARC: Fast and robust unidirectional routing”. ACM Journal of Experimental
Algorithmics 14: (2009)

4. Bender, M. A., Demaine, E., Farach-Colton, M.: “Cache-Oblivious B-Trees”. SIAM Journal on Com-
puting, 35(2):341-358, 2005.

5. Bentley, J. L.: “Solutions to Klee’s rectangle problem”. Technical Report, Carnegie-Mellon University,
Pittsburgh, 1977.

6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: “Computational Geometry: Algorithms and
applications”. 3rd edition, 2008.

7. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: “PHAST: Hardware-Accelerated Shortest
Path Trees”. In 25th International Parallel and Distributed Processing Symposium (IPDPS’11), IEEE,
2011

8. Dijkstra, E.K.: “A note on two problems in connexion with graphs”. Numerische Mathematik 1 (1959)
269-271

9. 10th DIMACS Implementation Challenge – Graph Partitioning and Graph Clustering,
http://www.cc.gatech.edu/dimacs10/.

10. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: “Cache-oblivious algorithms”. In Proceedings
of the 40th IEEE Symposium on Foundations of Computer Science (FOCS 99), p.285-297. 1999

11. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: “Contraction Hierarchies: Faster and Simpler
Hierarchical Routing in Road Networks”. In Catherine C. McGeoch, editor, Proceedings of the 7th
Workshop on Experimental Algorithms (WEA08), volume 5038 of Lecture Notes in Computer Science,
pages 319333. Springer, June 2008.

12. Goldberg, A.V., Harrelson, C.: “Computing the Shortest Path: A∗ Search Meets Graph Theory”. In
Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’05), 156-165

13. Goldberg, A. V., Kaplan, H., and Werneck, R. F. 2007. “Better Landmarks Within Reach”. In Proceed-
ings of the 6th Workshop on Experimental Algorithms (WEA07), C. Demetrescu, Ed. Lecture Notes in
Computer Science, vol. 4525. Springer, 3851.

14. Goldberg, A. V., Kaplan, H., and Werneck, R. F. 2009. “Reach for A∗: Shortest Path Algorithms
with Preprocessing”. In The Shortest Path Problem: Ninth DIMACS Implementation Challenge, ser.
DIMACS Book, C. Demetresku, A.V. Goldberg and D.S. Johnson, Eds. American Mathematical Society,
2009, vol.74, pp. 93-139

15. Prokop, H.: “Cache-oblivious algorithms”. MSc Thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, 1999.

16. Sanders, P., Schultes, D.: “Engineering Highway Hierarchies”. In 14th European Symposium on Algo-
rithms (ESA), LNCS 4168, pp. 804-816. Springer, 2006.

17. Schultes, D., Sanders, P.: “Dynamic highway-node routing”. In Proceedings of the 6th international
conference on Experimental algorithms (WEA’07), 2007, pp. 66-79.

18. Wagner, D., Willhalm, T., Zaroliagis, C.: “Geometric Containers for Efficient Shortest Path Computa-
tion”, ACM Journal of Experimental Algorithmics, Vol.10 (2005), No.1.3, pp.1-30.

